Production & Supply Chain
Exploring the State-of-operation of Proton Exchange Membrane Electrolyzers
Dec 2024
Publication
Proton exchange membrane electrolytic cells (PEMECs) have the potential to provide green Hydrogen as a sustainable energy source. PEMEC has already been applied at an industrially relevant scale. However it still faces challenges regarding reliability and durability especially in long-term operation. This review emphasizes the need for standardizing the cell configuration the testing protocols and the evaluation procedures to attain the optimum operation Read More
Large-scale Production of Green Hydrogen from Solar Energy in Australia: Operation and Control of a Multi-unit PEM Electrolyser System
Dec 2024
Publication
Large-scale production of hydrogen using clean electricity from renewable energy sources (RESs) is gaining more momentum in attempts to foster the growth of the nascent hydrogen energy market. However the inherited intermittency of RESs constitutes a significant challenge for the reliable and economic operation of electrolysers and consequently the overall hydrogen production plant. This paper proposes a power allocation control strategy to reg Read More
Harnessing Enhanced Solar Efficiency for Green Hydrogen Production: A Comparative Analysis of PV and PV-T Systems
Dec 2024
Publication
Green hydrogen a critical element in the shift towards sustainable energy is traditionally produced by electrolysis powered by solar photovoltaic (PV) systems. This research explores the potential of underexploited photovoltaic thermal (PV-T) systems for efficient green hydrogen generation. This paper compares this advanced technology performance and economic viability against conventional PV setups. This paper uses TRNSYS simulation software to analyze Read More
An Updated Review of Recent Applications and Perspectives of Hydrogen Production from Biomass by Fermentation: A Comprehensive Analysis
Mar 2024
Publication
Dayana Nascimento Dari,
Isabelly Silveira Freitas,
Francisco Izaias da Silva Aires,
Rafael Leandro Fernandes Melo,
Kaiany Moreira dos Santos,
Patrick da Silva Sousa,
Paulo Gonçalves de Sousa Junior,
Antônio Luthierre Gama Cavalcante,
Francisco Simão Neto,
Jessica Lopes da Silva,
Érico Carlos de Castro,
Valdilane Santos Alexandre,
Ana M. da S. Lima,
Juliana de França Serpa,
Maria C. M. de Souza and
José C. S. dos Santos
Fermentation is an oxygen-free biological process that produces hydrogen a clean renewable energy source with the potential to power a low-carbon economy. Bibliometric analysis is crucial in academic research to evaluate scientific production identify trends and contributors and map the development of a field providing valuable information to guide researchers and promote scientific innovation. This review provides an advanced bibliometric analy Read More
Efficient Solar-powered PEM Electrolysis for Sustainable Hydrogen Production: An Integrated Approach
Apr 2024
Publication
The coupling of photovoltaics (PVs) and PEM water electrolyzers (PEMWE) is a promising method for generating hydrogen from a renewable energy source. While direct coupling is feasible the variability of solar radiation presents challenges in efcient sizing. This study proposes an innovative energy management strategy that ensures a stable hydrogen production rate even with fuctuating solar irradiation. By integrating battery-assisted hydrogen productio Read More
Life Cycle Assessment of Greenhouse Gas Emissions in Hydrogen Production via Water Electrolysis in South Korea
Dec 2024
Publication
This study evaluated the greenhouse gas (GHG) emissions associated with hydrogen production in South Korea (hereafter referred to as Korea) using water electrolysis. Korea aims to advance hydrogen as a clean fuel for transportation and power generation. To support this goal we employed a life cycle assessment (LCA) approach to evaluate the emissions across the hydrogen supply chain in a well-to-pump framework using the Korean clean hydr Read More
Seawater Treatment Technologies for Hydrogen Production by Electrolysis—A Review
Dec 2024
Publication
Green hydrogen produced by water electrolysis using renewable energy sources (RES) is an emerging technology that aligns with sustainable development goals and efforts to address climate change. In addition to energy electrolyzers require ultrapure water to operate. Although seawater is abundant on the Earth it must be desalinated and further purified to meet the electrolyzer’s feeding water quality requirements. This paper reviews seawater purifi Read More
Modelling and Simulation of an Integrated Coupled Reactor for Hydrogen Production and Carbon Dioxide Utilisation in an Integrated Fuel Cell Power System
Dec 2024
Publication
In today’s world the need for sustainable energy solutions is paramount to address the ongoing crisis of increasing greenhouse gas emissions and global warming. Industries heavily reliant on fossil fuels must explore alternative energy sources. Hydrogen with its high heating value and zero direct emissions has emerged as a promising fuel for the future. Electrolytic hydrogen production has gained significance as it enables demand-side response grid stab Read More
Thermo-economic Analysis of Green Hydrogen Production Onboard LNG Carriers through Solid Oxide Electrolysis Powered by Organic Rankine Cycles
Nov 2024
Publication
LNG carriers play a crucial role in the shipping industry meeting the global demand for natural gas (NG). However the energy losses resulting from the propulsion system and the excess boil-off gas (BOG) cannot be overlooked. The present article investigates the H2 production on board LNG carriers employing both the engine's waste heat (WH) and the excess BOG. Conventional (ORC) and dual-pressure (2P-ORC) organic Rankine cycles couple Read More
Social Life Cycle Assessment of Green Hydrogen Production: Evaluating a Projected Portuguese Industrial Production Plant
Sep 2024
Publication
The increase in industrial production and energy consumption has led to excessive exploitation of non-renewable resources resulting in serious environmental problems such as greenhouse gas emissions. In response there’s a growing investment in renewable energies such as hydroelectric wind and solar power. However these sources are unable to fully meet demand leading to imbalances between consumption and production. An emerging solution to thi Read More
Development of a Dynamic Mathematical Model of PEM Electrolyser for Integration into Large-scale Power Systems
May 2024
Publication
Proton exchange membrane (PEM) electrolyser stands as a promising candidate for sustainable hydrogen pro duction from renewable energy sources (RESs). Given the fluctuating nature of RESs accurate modelling of the PEM electrolyser is crucial. Nonetheless complex models of the PEM electrolyser demand substantial time and resource investments when integrating them into a large-scale power system. The majority of introduced models in Read More
Development of a Reliable Simulation Framework for Techno-economic Analyses on Green Hydrogen Production from Wind Farms using Alkaline Electrolyzers
Mar 2024
Publication
The present study investigates the feasibility of coupling the intermittent electric power generation from a wind farm with alkaline electrolyzers to produce green hydrogen. A physically accurate model of commercial elec trolytic modules has been first developed accounting for conversion efficiency drop due to modules’ cool down effects of shutdowns due to the intermittence of wind power and voltage degradation over the working time frame. The mod Read More
Status and Perspectives of Key Materials for PEM Electrolyzer
Sep 2024
Publication
Proton exchange membrane water electrolyzer (PEMWE) represents a promising technology for the sustainable production of hydrogen which is capable of efficiently coupling to intermittent electricity from renewable energy sources (e.g. solar and wind). The technology with compact stack structure has many notable advantages including large current density high hydrogen purity and great conversion efficiency. However the use of expensive electrocat Read More
Integrating Alkaline Electrolysis with Oxyfuel Combustion for Hydrogen and Electricity Production
Feb 2024
Publication
The present study explores the potential of integrating the NET Zero Cycle (NZC) with hydrogen production by alkaline electrolyzers. To achieve this an Aspen Plus model was developed for the NZC and its accuracy was first confirmed by comparing it with literature data. The creation of a model for an alkaline electrolyzer was achieved using Aspen Custom Modeler and later imported into Aspen Plus. A comprehensive simulation was conducted in Aspen Read More
Life Cycle Assessment of a 5 MW Polymer Exchange Membrane Water Electrolysis Plant
Jan 2024
Publication
This study performs a cradle-to-grave life cycle assessment of a 5 MW protonexchange membrane water electrolysis plant. The analysis follows a thoroughengineering-based bottom-up design based on the electrochemical model of thesystem. Three scenarios are analyzed comprising a state-of-the-art (SoA) plantoperated with the German electricity grid-mix a SoA plant operated with acompletely decarbonized energy system and a future develo Read More
Projecting Technological Advancement of Electrolyzers and the Impact on the Competitiveness of Hydrogen
Dec 2024
Publication
Green hydrogen has the potential to decarbonize hard-to-abate sectors and processes and should therefore play an important role in the energy system in achieving climate goals. However the main hydrogen supply is still based on fossil fuels and only limited amounts of electrolyzers have been installed. Switching from fossil-based fuel sources to green hydrogen is highly dependent on when and at what price green hydrogen will become available Read More
Impact of an Electrode-diaphragm Gap on Diffusive Hydrogen Crossover in Alkaline Water Electrolysis
Oct 2023
Publication
Hydrogen crossover limits the load range of alkaline water electrolyzers hindering their integration with renewable energy. This study examines the impact of the electrode-diaphragm gap on crossover focusing on diffusive transport. Both finite-gap and zero-gap designs employing the state-of-the-art Zirfon UTP Perl 500 and UTP 220 diaphragms were investigated at room temperature and with a 12 wt% KOH electrolyte. Experimental results reveal a relati Read More
Optimization of Renewable Energy Supply Chain for Sustainable Hydrogen Energy Production from Plastic Waste
Dec 2023
Publication
Disposing of plastic waste through burial or burning leads to air pollution issues while also contributing to gas emissions and plastic waste spreading underground into seas via springs. Henceforth this research aims at reducing plastic waste volume while simultaneously generating clean energy. Hydrogen energy is a promising fuel source that holds great value for humanity. However achieving clean hydrogen energy poses challenges including high Read More
Integration of Renewable Energy Sources in Tandem with Electrolysis: A Technology Review for Green Hydrogen Production
Jun 2024
Publication
The global shift toward sustainable energy solutions emphasises the urgent need to harness renewable sources for green hydrogen production presenting a critical opportunity in the transition to a low-carbon economy. Despite its potential integrating renewable energy with electrolysis to produce green hydrogen faces significant technological and economic challenges particularly in achieving high efficiency and cost-effectiveness at scale. This review syste Read More
Freshwater Supply for Hydrogen Production: An Underestimated Challenges
Jun 2024
Publication
This paper presents a thorough critical literature review aimed at understanding the challenges associated with freshwater supply associated with rapidly growing global hydrogen economies. The review has been prompted by the fact that the hydrogen production projected for 2030 will create at least an additional demand of 2.1 billion cubic meters for freshwater which needs to be addressed to support sustainable development of emerging hydro Read More
No more items...