Applications & Pathways
Performance, Emissions, and Combustion Characteristics of a Hydrogen-Fueled Spark-Ignited Engine at Different Compression Ratios: Experimental and Numerical Investigation
Jul 2023
Publication
This paper investigates the performance of hydrogen-fueled spark-ignited single-cylinder Cooperative Fuel Research using experimental and numerical approaches. This study examines the effect of the air–fuel ratio on engine performance emissions and knock behaviour across different compression ratios. The results indicate that λ significantly affects both engine performance and emissions with a λ value of 2 yielding the highest efficiency and lowest emissions for all the tested compression ratios. Combustion analysis reveals normal combustion at λ ≥ 2 while knocking combustion occurs at λ < 2 irrespective of the tested compression ratios. The Livenwood–Wu integral approach was evaluated to assess the likelihood of end-gas autoignition based on fuel reactivity demonstrating that both normal and knocking combustion possibilities are consistent with experimental investigations. Combustion analysis at the ignition timing for maximum brake torque conditions demonstrates knock-free stable combustion up to λ = 3 with increased end-gas autoignition at lower λ values. To achieve knock-free combustion at those low λs the spark timings are significantly retarded to after top dead center crank angle position. Engine-out NOx emissions consistently increase in trend with a decrease in the air–fuel ratio of up to λ = 3 after which a distinct variation in NOx is observed with an increase in the compression ratio.
A Control Strategy Study of a Renewable CCHP Energy System Integrated Hydrogen Production Unit - A Case Study of an Industrial Park in Jiangsu Province
Aug 2023
Publication
This paper describes a renewable energy system incorporating a hydrogen production unit to address the imbalance between energy supply and demand. The system utilizes renewable energy and hydrogen production energy to release energy to fill the power gap during peak demand power supply for demand peaking and valley filling. The system is optimized by analyzing marine predator behavioral logic and optimizing the system for maximum operational efficiency and best economic value. The results of the study show that after the optimized scheduling of the hydrogen production coupled renewable energy integrated energy system using the improved marine predator optimization algorithm the energy distribution of the whole energy system is good with the primary energy saving rate maintained at 24.75% the CO2 emission reduction rate maintained at 42.32% and the cost saving rate maintained at 0.78%. In addition this paper uses the Adaboost-BP prediction model to predictively analyze the system. The results show that as the price of natural gas increases the advantages of the combined hydrogen production renewable integrated energy system proposed in this paper become more obvious and the cumulative cost over three years is better than other related systems. These research results provide an important reference for the application and development of the system.
Study on Hydrogen Substitution in a Compressed Natural Gas Spark-ignition Passenger Car Engine
Jun 2023
Publication
Hydrogen substitution in applications fueled by compressed natural gas arises as a potential alternative to fossil fuels and it may be the key to an effective hydrogen economy transition. The reduction of greenhouse gas emissions especially carbon dioxide and unburned methane as hydrogen is used in transport and industry applications makes its use an attractive option for a sustainable future. The purpose of this research is to examine the gradual adoption of hydrogen as a fuel for light-duty transportation. Particularly the study focuses on evaluating the performance and emissions of a single-cylinder port fuel injection spark-ignition engine as hydrogen is progressively increased in the natural gas-based fuel blend. Results identify the optimal conditions for air dilution and engine operation parameters to achieve the best performance. They corroborate that the dilution rate has to be adjusted to control pollutant emissions as the percentage of hydrogen is increased. Moreover the study identifies the threshold for hydrogen substitution below which the reduction of carbon dioxide emissions due to efficiency gains is negligible compared to the reduction of the carbon content in the fuel blend. These findings will help reduce the environmental footprint of light-duty transportation not only in the long term but also in the short and medium terms.
A Web-based Decision Support System (DSS) for Hydrogen Refueling Station Location and Supply Chain Optimisation
Jun 2023
Publication
This study presents a novel web-based decision support system (DSS) that optimizes the locations of hydrogen refueling stations (HRSs) and hydrogen supply chains (HSCs). The system is developed with a design science approach that identifies key design requirements and features through interviews and literature reviews. Based on the findings a system architecture and data model were designed incorporating scenario management optimization model visualization and data management components. The DSS provides a two-stage solution model that links demand to HRSs and production facilities to HRSs. A prototype is demonstrated with a plan for 2025 and 2030 in the Republic of Korea where 450 to 660 stations were deployed nationwide and linked to production facilities. User evaluation confirmed the effectiveness of the DSS in solving optimization problems and its potential to assist the government and municipalities in planning hydrogen infrastructure.
The Use of Hydrogen for Traction in Freight Transport: Estimating the Reduction in Fuel Consumption and Emissions in a Regional Context
Jan 2023
Publication
The Italian National Recovery and Resilience Plan (NRRP) includes among other measures investments in hydrogen vehicle refuelling stations intending to promote the use of fuel cell electric vehicles (FCEVs) for long-haul freight transport. This paper evaluates the impact that this action could have on CO2 emissions and fuel consumption focusing on a case study of the Campania region. The proposed approach which can also be transferred to other geographical contexts requires the implementation of a freight road transport simulation model; this model is based on the construction of a supply model the estimation of road freight demand and an assignment procedure for computing traffic flows. This study covers the period from 2025 to 2040 according to the forecasts of the NRRP and some assumptions on the action effects; moreover it is assumed that hydrogen is entirely produced from renewable sources (green hydrogen). The key findings from three different scenarios show that savings between 423832 and 778538 tonnes of CO2 and between 144 and 264 million litres of diesel could be obtained.
On-site Hydrogen Refuelling Station Techno-economic Model for a Fleet of Fuel Cell Buses
May 2024
Publication
Fuel cell electric buses (FCBs) have proven to be a technically viable solution for transportation owing to various advantages such as reliability simplicity better energy efficiency and quietness of operation. However largescale adoption of FCBs is hindered by the lack of extensive and structured infrastructure and the high cost of clean hydrogen. Many studies agree that one of the significant contributors to the lack of competitiveness of green hydrogen is the cost of electricity for its production followed by transportation costs. On the one hand to reduce the investment cost of the electrolyzer high operating hours should be achieved; on the other as the number of operating hours decreases the impact of the electricity costs declines. This paper presents an innovative algorithm for a scalable hydrogen refuelling station (HRS) capable of successfully matching and identifying the most cost-efficient levelized cost of hydrogen (LCOH) produced via electrolysis and connected to the grid based on the HRS components’ cost curves and the hourly average electricity price profile. The objective is to identify the least-cost range of LCOH by considering both the electric energy and the investment costs associated with a hydrogen demand given by different FCB sizes and electrolyzer rated powers. In addition sensitivity analyses have been conducted to quantify the technology cost margins and a cost comparison between the refuelling of an FCB fleet and the recharging infrastructure required for an equivalent fleet of Battery Electric Buse (BEB) has been performed. An LCOH of around 10.5 €/kg varying from 12 €/kg (2 FCB) to 10.2 €/kg (30 FCB) has been found for the best-optimized configurations. The final major conclusion of this paper is that FCB technology is currently not economically competitive. Still a cost contraction of the electric energy price and the electrolyzer capital investment would lead to a 50% decrease in the LCOH. Furthermore increasing renewable energies into the grid may shift the electricity cost curve resulting in higher prices when the BEB recharging demand is more significant. This impact in addition to the peak power load and longer recharging times might contribute to bridging the gap with FCBs.
Optimal Scheduling of Power Systems with High Proportions of Renewable Energy Accounting for Operational Flexibility
Jul 2023
Publication
Yi Lin,
Wei Lin,
Wei Wu and
Zhenshan Zhu
The volatility and uncertainty of high-penetration renewable energy pose significant challenges to the stability of the power system. Current research often fails to consider the insufficient system flexibility during real-time scheduling. To address this issue this paper proposes a flexibility scheduling method for high-penetration renewable energy power systems that considers flexibility index constraints. Firstly a quantification method for flexibility resources and demands is introduced. Then considering the constraint of the flexibility margin index optimization scheduling strategies for different time scales including day-ahead scheduling and intra-day scheduling are developed with the objective of minimizing total operational costs. The intra-day optimization is divided into 15 min and 1 min time scales to meet the flexibility requirements of different time scales in the power system. Finally through simulation studies the proposed strategy is validated to enhance the system’s flexibility and economic performance. The daily operating costs are reduced by 3.1% and the wind curtailment rate is reduced by 4.7%. The proposed strategy not only considers the economic efficiency of day-ahead scheduling but also ensures a sufficient margin to cope with the uncertainty of intra-day renewable energy fluctuations.
An Economic and Greenhouse Gas Footprint Assessment of International Maritime Transportation of Hydrogen Using Liquid Organic Hydrogen Carriers
Apr 2023
Publication
The supply storage and (international) transport of green hydrogen (H2) are essential for the decarbonization of the energy sector. The goal of this study was to assess the final cost-price and carbon footprint of imported green H2 in the market via maritime shipping of liquid organic hydrogen carriers (LOHCs) including dibenzyl toluene-perhydro-dibenzyltoluene (DBTPDBT) and toluene-methylcyclohexane (TOL-MCH) systems. The study focused on logistic steps in intra-European supply chains in different scenarios of future production in Portugal and demand in the Netherlands and carbon tariffs between 2030 and 2050. The case study is based on a formally accepted agreement between Portugal and the Netherlands within the Strategic Forum on Important Projects of Common European Interest (IPCEI). Under the following assumptions the results show that LOHCs are a viable technical-economic solution with logistics costs from 2030 to 2050 varying between 0.30-0.37 €/kg-H2 for DBT-PDBT and 0.28-0.34 €/kg-H2 for TOL-MCH. The associated CO2 emissions of these international H2 supply chains are between 0.46 and 2.46 kg-CO2/GJ (LHV) and 0.55-2.95 kg-CO2/GJ (LHV) for DBT-PDBT and TOL-MCH respectively.
Energy and Environmental Costs in Transitioning to Zero and Low Emission Trucks for the Australian Truck Fleet: An Industry Perspective
May 2024
Publication
Modernising Australia’s old truck fleet and adopting a more stringent standard to reduce emissions and air pollutants is a primary objective for the Australian truck sector. Various strategies worldwide have been introduced to cut emissions and pollutants in the truck sector such as a low-emission strategy supported by strict diesel standards and a zero-emission strategy to shift to battery-electric or hydrogen trucks. The paper focuses on emissions and local air pollutants of trucks under various transition scenarios at both the tailpipe and the wider supply chain including domestic power generation and hydrogen production. In contrast for diesel we focus on tailpipe outputs following fuel standards in Australia given diesel is imported other than in some limited refineries. We compare and recommend actions that government and truck operators may take in the near to longer term in transitioning to cleaner energy. We tested a number of scenarios using a decision support system incorporating all the latest information on costs and emissions for all truck classes using diesel electric or hydrogen. A key finding from our scenario tests is that the current electricity mix has high carbon emissions and air pollutants due to fossil fuel-fired sources for power generation. Without improvement in using renewable energy sources in the future transitioning to electric trucks implies more carbon emissions and air pollutants in the atmosphere from power plants even though electric trucks generate zero tailpipe emissions. The main motivation for switching to zero-emission trucks is energy cost savings. We urge the government to decide on a clear roadmap for the truck sector before the sector is in a position to take action to shift to low or zero-emission trucks without totally relying on the likely reduction of emission intensity in electricity and renewable energy production.
Sustainable Propulsion Alternatives in Regional Aviation: The Case of the Canary Islands
May 2023
Publication
Sustainability is one of the main challenges the aviation industry is currently facing. In a global context of energy transition towards cleaner and renewable sources the sector is developing technologies to fly more efficiently and mitigate its environmental impact. Innovative propulsion alternatives such as biofuels electric aircraft and hydrogen engines are already a reality or are close to becoming so. To assess their feasibility a study is conducted on specific routes and aircraft across different flight ranges. The analysis focuses on the Canary Islands an outermost region of the EU with high mobility and no comparable alternative means of transport. For three routes flight profiles are analyzed obtaining the fuel consumption and emissions generated by the conventional propulsion and later applying the sustainable alternatives. The results indicate optimistic perspectives with reductions in environmental impact ranging between 40% and 75% compared to the present.
Investment Timing Analysis of Hydrogen-Refueling Stations and the Case of China: Independent or Co-Operative Investment?
Jun 2023
Publication
The investment in hydrogen-refueling stations (HRS) is key to the development of a hydrogen economy. This paper focuses on the decision-making for potential investors faced with the thought-provoking question of when the optimal timing to invest in HRS is. To fill the gap that exists due to the fact that few studies explain why HRS investment timing is critical we expound that earlier investment in HRS could induce the first mover advantages of the technology diffusion theory. Additionally differently from the previous research that only considered that HRS investment is just made by one individual firm we innovatively examine the HRS co-investment made by two different firms. Accordingly we compare these two optional investment modes and determine which is better considering either independent investment or co-operative investment. We then explore how the optimal HRS investment timing could be figured out under conditions of uncertainty with the real options approach. Given the Chinese HRS case under the condition of demand uncertainty the hydrogen demand required for triggering investment is viewed as the proxy for investment timing. Based on analytical and numerical results we conclude that one-firm independent investment is better than two-firm cooperative investment to develop HRS not only in terms of the earlier investment timing but also in terms of the attribute for dealing with the uncertainty. Finally we offer recommendations including stabilizing the hydrogen demand for decreasing uncertainty and accelerating firms’ innovation from both technological and strategic perspectives in order to ensure firms can make HRS investments on their own.
Resilience-oriented Operation of Microgrids in the Presence of Power-to-hydrogen Systems
Jul 2023
Publication
This study presents a novel framework for improving the resilience of microgrids based on the power-to-hydrogen concept and the ability of microgrids to operate independently (i.e. islanded mode). For this purpose a model is being developed for the resilient operation of microgrids in which the compressed hydrogen produced by power-to-hydrogen systems can either be used to generate electricity through fuel cells or sold to other industries. The model is a bi-objective optimization problem which minimizes the cost of operation and resilience by (i) reducing the active power exchange with the main grid (ii) reducing the ohmic power losses and (iii) increasing the amount of hydrogen stored in the tanks. A solution approach is also developed to deal with the complexity of the bi-objective model combining a goal programming approach and Generalized Benders Decomposition due to the mixed-integer nonlinear nature of the optimization problem. The results indicate that the resilience approach although increasing the operation cost does not lead to load shedding in the event of main grid failures. The study concludes that integrating distributed power-to-hydrogen systems results in significant benefits including emission reductions of up to 20 % and cost savings of up to 30 %. Additionally the integration of the decomposition method improves computational performance by 54 % compared to using commercial solvers within the GAMS software.
Renewable Marine Fuel Production for Decarbonised Maritime Shipping: Pathways, Policy Measures and Transition Dynamics
Jun 2023
Publication
This article investigates the potential of renewable and low-carbon fuel production for the maritime shipping sector using Sweden as a case in focus. Techno-economic modelling and socio-technical transition studies are combined to explore the conditions opportunities and barriers to decarbonising the maritime shipping industry. A set of scenarios have been developed considering demand assumptions and potential instruments such as carbon price energy tax and blending mandate. The study finds that there are opportunities for decarbonising the maritime shipping industry by using renewable marine fuels such as advanced biofuels (e.g. biomethanol) electrofuels (e.g. e-methanol) and hydrogen. Sweden has tremendous resource potential for bio-based and hydrogen-based renewable liquid fuel production. In the evaluated system boundary biomethanol presents the cheapest technology option while e-ammonia is the most expensive one. Green electricity plays an important role in the decarbonisation of the maritime sector. The results of the supply chain optimisation identify the location sites and technology in Sweden as well as the trade flows to bring the fuels to where the bunker facilities are potentially located. Biomethanol and hydrogen-based marine fuels are cost-effective at a carbon price beyond 100 €/tCO2 and 200 €/tCO2 respectively. Linking back to the socio-technical transition pathways the study finds that some shipping companies are in the process of transitioning towards using renewable marine fuels thereby enabling niche innovations to break through the carbon lock-in and eventually alter the socio-technical regime while other shipping companies are more resistant. Overall there is increasing pressure from (inter)national energy and climate policy-making to decarbonise the maritime shipping industry.
Analyzing the Future Potential of Defossilizing Industrial Specialty Glass Production with Hydrogen by LCA
Mar 2022
Publication
The glass industry is part of the energy-intensive industry with most of the energy needed to melt the raw materials. To produce glass temperatures between 1000 and 1600 °C are necessary. Presently mostly fossil natural gas is the dominant energy source. As direct electrification is not always possible in this paper a Life Cycle Assessment (LCA) for specialty glass production is conducted where the conventional fossil-based reference process is compared to a hydrogen-fired furnace. This hydrogen can be produced on-site in an water electrolyzer using not only the hydrogen for the combustion but also the produced oxygen. Hydrogen can be produced alternatively off-site in a large scale electrolyzer to facilitate economy of scale. For the transport and distribution of this hydrogen different options are available. A rather new option are liquid organic hydrogen carriers (LOHC) which bind the hydrogen in a chemical substance. However temperatures around 300 °C are necessary to separate the hydrogen from the LOHC after transport. At the glass trough waste heat is available at the required temperature level to facilitate the dehydrogenation. The comparison is completed by the production of off-site hydrogen transported to the glass trough as conventional liquefied hydrogen in cooling tanks by truck or in hydrogen pipelines. In this assessment to power the electrolyzers the national grid mix of Germany is used. A time frame from 2020 till 2050 and its changing energy system towards defossilisation is analyzed. Regarding climate change on-site hydrogen production causes the least impact for specialty glass production in 2050. However negative trade-offs for other environmental impact categories e.g. Metal depletion are recorded.
Characterization of the Hydrogen Combustion Process in a Scramjet Engine
May 2024
Publication
In this paper by using a large eddy simulation we study the combustion process in the HyShot II scramjet combustor. By conducting a detailed analysis of the mass-fraction distributions of the main species such as H2 H2O and the radicals OH and HO2 of the mass source terms of these main species and of the chemical source term of the energy equation we detect the regions where chemical reactions occur through a diffusion process and the regions where auto-ignition and premixed combustion may develop. The analysis indicates that the combustion process is mainly of diffusive type along a thin shear layer enveloping the hydrogen plume whereas there could be some auto-ignition and/or premixed combustion cores inside the plume.
Technology Pathways, Efficiency Gains and Price Implications of Decarbonising Residential Heat in the UK
Jun 2023
Publication
The UK government’s plans to decarbonise residential heating will mean major changes to the energy system whatever the specific technology pathway chosen driving a range of impacts on users and suppliers. We use an energy system model (UK TIMES) to identify the potential energy system impacts of alternative pathways to low or zero carbon heating. We find that the speed of transitioning can affect the network investment requirements the overall energy use and emissions generated while the primary heating fuel shift will determine which sectors and networks require most investment. Crucially we identify that retail price differences between heating fuels in the UK particularly gas and electricity could erode or eliminate bill savings from switching to more efficient heating systems.
Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method
Aug 2023
Publication
This paper presents a comparative analysis of two hydrogen station configurations during the refueling process: the conventional “directly pressurized refueling process” and the innovative “cascade refueling process.” The objective of the cascade process is to refuel vehicles without the need for booster compressors. The experiments were conducted at the Hydrogen Research and Fueling Facility located at California State University Los Angeles. In the cascade refueling process the facility buffer tanks were utilized as high-pressure storage enabling the refueling operation. Three different scenarios were tested: one involving the cascade refueling process and two involving compressor-driven refueling processes. On average each refueling event delivered 1.6 kg of hydrogen. Although the cascade refueling process using the high-pressure buffer tanks did not achieve the pressure target it resulted in a notable improvement in the nozzle outlet temperature trend reducing it by approximately 8 ◦C. Moreover the overall hydrogen chiller load for the two directly pressurized refuelings was 66 Wh/kg and 62 Wh/kg respectively whereas the cascading process only required 55 Wh/kg. This represents a 20% and 12% reduction in energy consumption compared to the scenarios involving booster compressors during fueling. The observed refueling range of 150–350 bar showed that the cascade process consistently required 12–20% less energy for hydrogen chilling. Additionally the nozzle outlet temperature demonstrated an approximate 8 ◦C improvement within this pressure range. These findings indicate that further improvements can be expected in the high-pressure region specifically above 350 bar. This research suggests the potential for significant improvements in the high-pressure range emphasizing the viability of the cascade refueling process as a promising alternative to the direct compression approach.
Research of Energy Efficiency and Environmental Performance of Vehicle Power Plant Converted to Work on Alternative Fuels
Apr 2024
Publication
The use of alternative fuels remains an important factor in solving the problem of reducing harmful substances caused by vehicles and decarbonising transport. It is also important to ensure the energy efficiency of vehicle power plants when using different fuels at a sufficient level. The article presents the results of theoretical and experimental studies of the conversion of diesel engine to alternative fuels with hydrogen admixtures. Methanol is considered as an alternative fuel which is a cheaper alternative to commercial diesel fuel. The chemical essence of improving the calorific value of alternative methanol fuel was investigated. Studies showed that the energy effect of burning an alternative mixture with hydrogen additives exceeds the effect of burning the same amount of methanol fuel. The increase in combustion energy and engine power is achieved as a result of heat from efficient use of the engine exhaust gases and chemical conversion of methanol. An experimental installation was created to study the work of a converted diesel engine on hydrogen–methanol mixtures and thermochemical regeneration processes. Experimental studies of the energy and environmental parameters of diesel engine converted to work on an alternative fuel with hydrogen admixtures have shown that engine power increases by 10–14% and emissions of harmful substances decrease.
A Theoretical Study on the Hydrogen Filling Process of the On-board Storage Cylinder in Hydrogen Refueling Station
May 2023
Publication
With the development of the hydrogen fuel automobile industry higher requirements are put forward for the construction of hydrogen energy infrastructure the matching of parameters and the control strategy of hydrogen filling rate in the hydrogen charging process of hydrogen refueling stations. At present the technological difficulty of hydrogen fueling is mainly reflected in the balanced treatment of reducing the temperature rise of hydrogen and shortening the filling time during the fast filling process. Vehicle hydrogen storage cylinder (VHSC) is one of the important components of hydrogen fuel cell vehicles. This study proposed a theoretical model for calculating the temperature rise in the VHSC during the high pressure refueling process and revealed the hydrogen temperature rise during refueling. A hydrogen temperature rise prediction model was constructed to elucidate the relationship between filling parameters and temperature rise. The filling process of VHSC was analyzed from the theoretical method. The theoretical analysis results were consistent with the simulation and experimental analysis results which provided a theoretical basis for the current hydrogen temperature control algorithm of the gas source in the hydrogen refueling station and then reduced the energy consumption required for hydrogen cooling in the hydrogen refueling station.
The Effect of Explosions on the Protective Wall of a Containerized Hydrogen Fuel Cell System
Jun 2023
Publication
With the development of hydrogen energy containerized hydrogen fuel cell systems are being used in distributed energy-supply systems. Hydrogen pipelines and electronic equipment of fuel cell containers can trigger hydrogen-explosion accidents. In the present study Computational Fluid Dynamics (CFD) software was used to calculate the affected areas of hydrogen fuel cell container-explosion accidents with and without protective walls. The protective effects were studied for protective walls at various distances and heights. The results show that strategically placing protective walls can effectively block the propagation of shock waves and flames. However the protective wall has a limited effect on the reduction of overpressure and temperature behind the wall when the protective wall is insufficiently high. Reflected explosion shock waves and flames will cause damage to the area inside the wall when the protective wall is too close to the container. In this study a protective wall that is 5 m away from the container and 3 m high can effectively protect the area behind the wall and prevent damage to the container due to the reflection of shock waves and flame. This paper presents a suitable protective wall setting scheme for hydrogen fuel cell containers.
No more items...