- Home
- A-Z Publications
- Publications
Publications
The EOS Project- A SOFC Pilot Plant in Italy Safety Aspects
Sep 2005
Publication
This paper deals with the main safety aspects of the EOS project. The partners of the project – Politecnico di Torino Gas Turbine Technologies (GTT Siemens group) Hysylab (Hydrogen System Laboratory) of Environment Park and Regione Piemonte – aim to create the main node of a regional fuel cell generator network. As a first step the Pennsylvania-based Stationary Fuel Cells division of Siemens Westinghouse Power Corporation (SWPC) supplied GTT with a CHP 100 kWe SOFC (Solide Oxide Fuel Cell) field unit fuelled by natural gas with internal reforming. The fuel cell is connected to the electricity national grid and provides part of the industrial district energy requirement. The thermal energy from the fuel cells is used for heating and air-conditioning of GTT offices bringing the total first Law efficiency of the plant to 70-80%. In the second phase of the EOS project (2007/2008) the maximum power produced by the SOFC systems installed in the GTT EOS test room will be increased to a total of about 225 kWe by means of an additional SOFC generator rated 125 kWe and up to 115 kWth. The paper provides information about the safety analysis which was performed during the main steps of the design of the system i.e. the HAZOP during the SOFC design by SWPC and the safety evaluations during the test hall design by GTT and Politecnico di Torino.
Hydrogen: Enabling A Zero-Emission Society
Nov 2021
Publication
Discover the colours of hydrogen debunk the myths around hydrogen and learn the facts and key moments in history for hydrogen as well as innovative technologies ground-breaking projects state-of-the-art research development and cooperation by members of Hydrogen Europe
Development of Liquid Hydrogen Leak Frequencies Using a Bayesian Update Process
Sep 2021
Publication
To quantify the risk of an accident in a liquid hydrogen system it is necessary to determine how often a leak may occur. To do this representative component leakage frequencies specific to liquid hydrogen can be determined as a function of the normalized leak size. Subsequently the system characteristics (e.g. system pressure) can be used to calculate accident consequences. Operating data (such as leak frequencies) for liquid hydrogen systems are very limited; rather than selecting a single leak frequency value from a literature source data from different sources can be combined using a Bayesian model. This approach provides leakage rates for different amounts of leakage distributions for leakage rates to propagate through risk assessment models to establish risk result uncertainty and a means for incorporating liquid hydrogen-specific leakage data with leakage frequencies from other fuels. Specifically other cryogenic fluids like liquefied natural gas are used as a baseline for the Bayesian analysis. This Bayesian update process is used to develop leak frequency distributions for different system component types and leak sizes. These leak frequencies can be refined as liquid hydrogen data becomes available and may then inform safety code requirements based on the likelihood of liquid hydrogen release for different systems.
Study of Hydrogen Enriched Premixed Flames
Sep 2005
Publication
In the present paper the theoretical study of the un-stretched laminar premixed flames of hydrogen-methane mixtures is carried out by using the detailed reaction mechanism GRI-Mech 3.0 implemented in the CHEMKIN software to find out the effect of hydrogen addition on the hybrid fuel burning velocity. The model results show that the laminar burning velocity of the hydrogen-methane mixtures is not the linear regression of those of the pure fuels since it results substantially less than the proportional averaging of the values for the fuel constituents. Moreover the effect of hydrogen addition in terms of enhancement of the mixture laminar burning velocity with respect to the methane is relevant only at very high values of the hydrogen content in the hybrid mixtures (> 70 % mol.). The performed sensitivity analysis shows that these results can be attributed to kinetics and in particular to the concentration of H radicals: depending on the hydrogen content in the fuels mixture the production of the H radicals can affect the limiting reaction step for methane combustion. Two regimes are identified in the hydrogen-methane combustion. The first regime is controlled by the methane reactivity the hydrogen being not able to significantly affect the laminar burning velocity (< 70 % mol.). In the second regime the hydrogen combustion has a relevant role as its high content in the hybrid fuel leads to a significant H radicals pool thus enhancing the reaction rate of the more slowly combusting methane.
Potential of Power-to-Methane in the EU Energy Transition to a Low Carbon System Using Cost Optimization
Oct 2018
Publication
Power-to-Methane (PtM) can provide flexibility to the electricity grid while aiding decarbonization of other sectors. This study focuses specifically on the methanation component of PtM in 2050. Scenarios with 80–95% CO2 reduction by 2050 (vs. 1990) are analyzed and barriers and drivers for methanation are identified. PtM arises for scenarios with 95% CO2 reduction no CO2 underground storage and low CAPEX (75 €/kW only for methanation). Capacity deployed across EU is 40 GW (8% of gas demand) for these conditions which increases to 122 GW when liquefied methane gas (LMG) is used for marine transport. The simultaneous occurrence of all positive drivers for PtM which include limited biomass potential low Power-to-Liquid performance use of PtM waste heat among others can increase this capacity to 546 GW (75% of gas demand). Gas demand is reduced to between 3.8 and 14 EJ (compared to ∼20 EJ for 2015) with lower values corresponding to scenarios that are more restricted. Annual costs for PtM are between 2.5 and 10 bln€/year with EU28’s GDP being 15.3 trillion €/year (2017). Results indicate that direct subsidy of the technology is more effective and specific than taxing the fossil alternative (natural gas) if the objective is to promote the technology. Studies with higher spatial resolution should be done to identify specific local conditions that could make PtM more attractive compared to an EU scale.
Introducing Power-to-H3: Combining Renewable Electricity with Heat, Water and Hydrogen Production and Storage in a Neighbourhood
Oct 2019
Publication
In the transition from fossil to renewable energy the energy system should become clean while remaining reliable and affordable. Because of the intermittent nature of both renewable energy production and energy demand an integrated system approach is required that includes energy conversion and storage. We propose a concept for a neighbourhood where locally produced renewable energy is partly converted and stored in the form of heat and hydrogen accompanied by rainwater collection storage purification and use (Power-to-H3). A model is developed to create an energy balance and perform a techno-economic analysis including an analysis of the avoided costs within the concept. The results show that a solar park of 8.7 MWp combined with rainwater collection and solar panels on roofs can supply 900 houses over the year with heat (20 TJ) via an underground heat storage system as well as with almost half of their water demand (36000m3) and 540 hydrogen electric vehicles can be supplied with hydrogen (90 tonnes). The production costs for both hydrogen (8.7 €/kg) and heat (26 €/GJ) are below the current end user selling price in the Netherlands (10 €/kg and 34 €/GJ) making the system affordable. When taking avoided costs into account the prices could decrease with 20–26% while at the same time avoiding 3600 tonnes of CO2 a year. These results make clear that it is possible to provide a neighbourhood with all these different utilities completely based on solar power and rainwater in a reliable affordable and clean way.
Production of High-purity Hydrogen from Paper Recycling Black Liquor via Sorption Enhanced Steam Reforming
Jul 2020
Publication
Environmentally friendly and energy saving treatment of black liquor (BL) a massively produced waste in Kraft papermaking process still remains a big challenge. Here by adopting a Ni-CaO-Ca12Al14O33 bifunctional catalyst derived from hydrotalcite-like materials we demonstrate the feasibility of producing high-purity H2 (∼96%) with 0.9 mol H2 mol-1 C yield via the sorption enhanced steam reforming (SESR) of BL. The SESRBL performance in terms of H2 production maintained stable for 5 cycles but declined from the 6th cycle. XRD Raman spectroscopy elemental analysis and energy dispersive techniques were employed to rationalize the deactivation of the catalyst. It was revealed that gradual sintering and agglomeration of Ni and CaO and associated coking played important roles in catalyst deactivation and performance degradation of SESRBL while deposition of Na and K from the BL might also be responsible for the declined performance. On the other hand it was demonstrated that the SESRBL process could effectively reduce the emission of sulfur species by storing it as CaSO3. Our results highlight a promising alternative for BL treatment and H2 production thereby being beneficial for pollution control and environment governance in the context of mitigation of climate change.
GIS-Based Method for Future Prospect of Energy Supply in Algerian Road Transport Sector Using Solar Roads Technology
May 2019
Publication
This paper aims to investigate the possibility of integration of Electric Vehicles EVs supply’s with electricity and/or hydrogen in the road transport sector and estimate the energy supply derived from solar irradiation by using solar roads technology. The case study is road Est-Oust (road E-O) of Algeria. A Geographic Information System and spatial analysis tools are combined with spatial data and technical models to carry out these calculations. The results of this study demonstrate that solar road panels which are integrated into the road E-O produce over to 804 GWh/year which equivalents to 13778 tons of hydrogen per year.by using FCEVs will saving over then 41.103 liter of fossil fuels (regular gasoline); and reduce GHG emission (CO2) in the transportation sector by 216 tons per year.
Promotion Effect of Hydrogen Addition in Selective Catalytic Reduction of Nitrogen Oxide Emissions from Diesel Engines Fuelled with Diesel-biodiesel-ethanol Blends
Nov 2021
Publication
Ethanol and palm oil biodiesel blended with diesel fuel have the potential to reduce greenhouse gas emissions such as carbon dioxide (CO2) and can gradually decrease dependence on fossil fuels. However the combustion products from these fuels such as oxides of nitrogen (NOx) total hydrocarbons (THC) and particulate matter (PM) require to be examined and any beneficial or detrimental effect to the environment needs to be assessed. This study investigates the hydrocarbon selective catalyst reduction (HC-SCR) activities by the effect of combustion using renewable fuels (biodiesel-ethanol-diesel) blends and the effect of hydrogen addition to the catalyst with the various diesel engine operating conditions. Lower values rate of heat released were recorded as the ethanol fraction increases resulting in trade-off where lower NOx was produced while greater concentration of carbon monoxide (CO) and THC was measured in the exhaust. Consequently increasing the THC/NOx promoting the NOx reduction activity (up to 43%). Additionally the HC-SCR performance was greatly heightened when hydrogen was added into the catalyst and able to improve the NOx reduction activity up to 73%. The experiment demonstrated plausible alternatives to improve the HC-SCR performance through the aids from fuel blends and hydrogen addition.
Methanol Synthesis Using Captured CO2 as Raw Material: Techno-economic and Environmental Assessment
Aug 2015
Publication
The purpose of this paper is to assess via techno-economic and environmental metrics the production of methanol (MeOH) using H2 and captured CO2 as raw materials. It evaluates the potential of this type of carbon capture and utilisation (CCU) plant on (i) the net reduction of CO2 emissions and (ii) the cost of production in comparison with the conventional synthesis process of MeOH Europe. Process flow modelling is used to estimate the operational performance and the total purchased equipment cost; the flowsheet is implemented in CHEMCAD and the obtained mass and energy flows are utilised as input to calculate the selected key performance indicators (KPIs). CO2 -based metrics are used to assess the environmental impact. The evaluated MeOH plant produces 440 ktMeOH/yr and its configuration is the result of a heat integration process. Its specific capital cost is lower than for conventional plants. However raw materials prices i.e. H2 and captured CO2 do not allow such a project to be financially viable. In order to make the CCU plant financially attractive the price of MeOH should increase in a factor of almost 2 or H2 costs should decrease almost 2.5 times or CO2 should have a value of around 222 €/t under the assumptions of this work. The MeOH CCU-plant studied can utilise about 21.5% of the CO2 emissions of a pulverised coal (PC) power plant that produces 550MWnet of electricity. The net CO2 emissions savings represent 8% of the emissions of the PC plant (mainly due to the avoidance of consuming fossil fuels as in the conventional MeOH synthesis process). The results demonstrate that there is a net but small potential for CO2 emissions reduction; assuming that such CCU plants are constructed in Europe to meet the MeOH demand growth and the quantities that are currently imported the net CO2 emissions reduction could be of 2.71 MtCO2/yr.
Delivering an Energy Export Transition: Impact of Conflicting and Competing Informational Contexts on Public Acceptance of Australia's Hydrogen Export Industry
Mar 2024
Publication
This study uses an online quasi-experiment with a national sample from Australia to evaluate public acceptance of hydrogen exports. It explores the complex communications environment that messaging about hydrogen exports is typically encountered in. We find that acceptance of green hydrogen exports is significantly higher than blue or brown hydrogen exports and acceptance of blue hydrogen exports higher than brown hydrogen exports. Additionally results show economic-framed benefit messages are associated with lesser public acceptance when encountered in communication contexts that outline differently-focused environmental downsides (competing contexts) but not same-focused economic downsides (conflicting contexts). In contrast environment-framed benefit messages are associated with lesser public acceptance when presented in communication contexts that outline same-focused environmental downsides (conflicting contexts) but not differentlyfocused economic downsides (competing contexts). Overall the study indicates message framing can impact acceptance of hydrogen exports and that organisations should consider the informational context within which their communications will be received.
Developing New Understanding of Photoelectrochemical Water Splitting Via In-situ Techniques: A Review on Recent Progress
Mar 2014
Publication
Photoelectrochemical (PEC) water splitting is a promising technology for solar hydrogen production to build a sustainable renewable and clean energy economy. Given the complexity of the PEC water splitting processes it is important to note that developing in-situ techniques for studying PEC water splitting presents a formidable challenge. This review is aimed at highlighting advantages and disadvantages of each technique while offering a pathway of potentially combining several techniques to address different aspects of interfacial processes in PEC water splitting. We reviewed recent progress in various techniques and approaches utilized to study PEC water splitting focusing on spectroscopic and scanning-probe methods.
Potential for Hydrogen and Power-to-Liquid in a Low-carbon EU Energy System Using Cost Optimization
Oct 2018
Publication
Hydrogen represents a versatile energy carrier with net zero end use emissions. Power-to-Liquid (PtL) includes the combination of hydrogen with CO2 to produce liquid fuels and satisfy mostly transport demand. This study assesses the role of these pathways across scenarios that achieve 80–95% CO2 reduction by 2050 (vs. 1990) using the JRC-EU-TIMES model. The gaps in the literature covered in this study include a broader spatial coverage (EU28+) and hydrogen use in all sectors (beyond transport). The large uncertainty in the possible evolution of the energy system has been tackled with an extensive sensitivity analysis. 15 parameters were varied to produce more than 50 scenarios. Results indicate that parameters with the largest influence are the CO2 target the availability of CO2 underground storage and the biomass potential.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
China Progress on Renewable Energy Vehicles: Fuel Cells, Hydrogen and Battery Hybrid Vehicles
Dec 2018
Publication
Clean renewable energy for Chinese cities is a priority in air quality improvement. This paper describes the recent Chinese advances in Polymer Electrolyte Membrane (PEM) hydrogen-fuel-cell-battery vehicles including buses and trucks. Following the 2016 Chinese government plan for new energy vehicles bus production in Foshan has now overtaken that in the EU USA and Japan combined. Hydrogen infrastructure requires much advance to catch up but numbers of filling stations are now increasing rapidly in the large cities. A particular benefit in China is the large number of battery manufacturing companies which fit well into the energy storage plan for hybrid fuel cell buses. The first city to manufacture thousands of PEM-battery hybrid buses is Foshan where the Feichi (Allenbus) company has built a new factory next to a novel fuel cell production line capable of producing 500 MW of fuel cell units per year. Hundreds of these buses are running on local Foshan routes this year while production of city delivery trucks has also been substantial. Results for energy consumption of these vehicles are presented and fitted to the Coulomb theory previously delineated.
Bench-Scale Steam Reforming of Methane for Hydrogen Production
Jul 2019
Publication
The effects of reaction parameters including reaction temperature and space velocity on hydrogen production via steam reforming of methane (SRM) were investigated using lab- and bench-scale reactors to identify critical factors for the design of large-scale processes. Based on thermodynamic and kinetic data obtained using the lab-scale reactor a series of SRM reactions were performed using a pelletized catalyst in the bench-scale reactor with a hydrogen production capacity of 10 L/min. Various temperature profiles were tested for the bench-scale reactor which was surrounded by three successive cylindrical furnaces to simulate the actual SRM conditions. The temperature at the reactor bottom was crucial for determining the methane conversion and hydrogen production rates when a sufficiently high reaction temperature was maintained (>800 ◦C) to reach thermodynamic equilibrium at the gas-hourly space velocity of 2.0 L CH4/(h·gcat). However if the temperature of one or more of the furnaces decreased below 700 ◦C the reaction was not equilibrated at the given space velocity. The effectiveness factor (0.143) of the pelletized catalyst was calculated based on the deviation of methane conversion between the lab- and bench-scale reactions at various space velocities. Finally an idling procedure was proposed so that catalytic activity was not affected by discontinuous operation.
Hydrogen Double Compression-expansion Engine (H2DCEE): A Sustainable Internal Combustion Engine with 60%+ Brake Thermal Efficiency Potential at 45 Bar BMEP
May 2022
Publication
Hydrogen (H2) internal combustion engines may represent cost-effective and quick solution to the issue of the road transport decarbonization. A major factor limiting their competitiveness relative to fuel cells (FC) is the lower efficiency. The present work aims to demonstrate the feasibility of a H2 engine with FC-like 60%+ brake thermal efficiency (BTE) levels using a double compression-expansion engine (DCEE) concept combined with a high pressure direct injection (HPDI) nonpremixed H2 combustion. Experimentally validated 3D CFD simulations are combined with 1D GT-Power simulations to make the predictions. Several modifications to the system design and operating conditions are systematically implemented and their effects are investigated. Addition of a catalytic burner in the combustor exhaust insulation of the expander dehumidification of the EGR and removal of the intercooling yielded 1.5 1.3 0.8 and 0.5%-point BTE improvements respectively. Raising the peak pressure to 300 bar via a larger compressor further improved the BTE by 1.8%-points but should be accompanied with a higher injector-cylinder differential pressure. The λ of ~1.4 gave the optimum tradeoff between the mechanical and combustion efficiencies. A peak BTE of 60.3% is reported with H2DCEE which is ~5%-points higher than the best diesel-fueled DCEE alternative.
Net Zero Strategy: Build Back Greener
Oct 2021
Publication
Last year the Prime Minister set out his 10 point plan for a green industrial revolution laying the foundations for a green economic recovery from the impact of COVID-19 with the UK at the forefront of the growing global green economy.
This strategy builds on that approach to keep us on track for UK carbon budgets our 2030 Nationally Determined Contribution and net zero by 2050. It includes:
This strategy builds on that approach to keep us on track for UK carbon budgets our 2030 Nationally Determined Contribution and net zero by 2050. It includes:
- our decarbonisation pathways to net zero by 2050 including illustrative scenarios
- policies and proposals to reduce emissions for each sector
- cross-cutting action to support the transition.
Environmental and Socio-Economic Analysis of Naphtha Reforming Hydrogen Energy Using Input-Output Tables: A Case Study from Japan
Aug 2017
Publication
Comprehensive risk assessment across multiple fields is required to assess the potential utility of hydrogen energy technology. In this research we analyzed environmental and socio-economic effects during the entire life cycle of a hydrogen energy system using input-output tables. The target system included hydrogen production by naphtha reforming transportation to hydrogen stations and FCV (Fuel Cell Vehicle) refilling. The results indicated that 31% 44% and 9% of the production employment and greenhouse gas (GHG) emission effects respectively during the manufacturing and construction stages were temporary. During the continuous operation and maintenance stages these values were found to be 69% 56% and 91% respectively. The effect of naphtha reforming was dominant in GHG emissions and the effect of electrical power input on the entire system was significant. Production and employment had notable effects in both the direct and indirect sectors including manufacturing (pumps compressors and chemical machinery) and services (equipment maintenance and trade). This study used data to introduce a life cycle perspective to environmental and socio-economic analysis of hydrogen energy systems and the results will contribute to their comprehensive risk assessment in the future.
SNG Generation via Power to Gas Technology: Plant Design and Annual Performance Assessment
Nov 2020
Publication
Power to gas (PtG) is an emerging technology that allows to overcome the issues due to the increasingly widespread use of intermittent renewable energy sources (IRES). Via water electrolysis power surplus on the electric grid is converted into hydrogen or into synthetic natural gas (SNG) that can be directly injected in the natural gas network for long-term energy storage. The core units of the Power to synthetic natural gas (PtSNG) plant are the electrolyzer and the methanation reactors where the renewable electrolytic hydrogen is converted to synthetic natural gas by adding carbon dioxide. A technical issue of the PtSNG plant is the different dynamics of the electrolysis unit and the methanation unit. The use of a hydrogen storage system can help to decouple these two subsystems and to manage the methanation unit for assuring long operation time and reducing the number of shutdowns. The purpose of this paper is to evaluate the energy storage potential and the technical feasibility of the PtSNG concept to store intermittent renewable sources. Therefore different plant sizes (1 3 and 6 MW) have been defined and investigated by varying the ratio between the renewable electric energy sent to the plant and the total electric energy generated by the renewable energy source (RES) facility based on a 12 MW wind farm. The analysis has been carried out by developing a thermochemical and electrochemical model and a dynamic model. The first allows to predict the plant performance in steady state. The second allows to forecast the annual performance and the operation time of the plant by implementing the control strategy of the storage unit. The annual overall efficiencies are in the range of 42–44% low heating value (LHV basis). The plant load factor i.e. the ratio between the annual chemical energy of the produced SNG and the plant capacity results equal to 60.0% 46.5% and 35.4% for 1 3 and 6 MW PtSNG sizes respectively.
Thermal Management System Architecture for Hydrogen-Powered Propulsion Technologies: Practices, Thematic Clusters, System Architectures, Future Challenges, and Opportunities
Jan 2022
Publication
The thermal management system architectures proposed for hydrogen-powered propulsion technologies are critically reviewed and assessed. The objectives of this paper are to determine the system-level shortcomings and to recognise the remaining challenges and research questions that need to be sorted out in order to enable this disruptive technology to be utilised by propulsion system manufacturers. Initially a scientometrics based co-word analysis is conducted to identify the milestones for the literature review as well as to illustrate the connections between relevant ideas by considering the patterns of co-occurrence of words. Then a historical review of the proposed embodiments and concepts dating back to 1995 is followed. Next feasible thermal management system architectures are classified into three distinct classes and its components are discussed. These architectures are further extended and adapted for the application of hydrogen-powered fuel cells in aviation. This climaxes with the assessment of the available evidence to verify the reasons why no hydrogen-powered propulsion thermal management system architecture has yet been approved for commercial production. Finally the remaining research challenges are identified through a systematic examination of the critical areas in thermal management systems for application to hydrogen-powered air vehicles’ engine cooling. The proposed solutions are discussed from weight cost complexity and impact points of view by a system-level assessment of the critical areas in the field.
No more items...