- Home
- A-Z Publications
- Publications
Publications
A Critique on the UK's Net Zero Strategy
Dec 2022
Publication
Before the Covid-19 pandemic UK passed net-zero emission law legislation to become the first major economy in the world to end its contribution to global warming by 2050. Following the UK’s legislation to reach net-zero emissions a long-term strategy for transition to a net-zero target was published in 2021. The strategy is a technology-led and with a top-down approach. The intention is to reach the target over the next three decades. The document targets seven sectors to reduce emissions and include a wide range of policies and innovations for decarbonization. This paper aims to accomplish a much needed review of the strategy in heat and buildings part and cover the key related areas in future buildings standard heat pumps and use of hydrogen as elaborated in the strategy. For that purpose this research reviews key themes in the policy challenges recent advancement and future possibilities. It provides an insight on the overall development toward sustainability and decarbonization of built environment in the UK by 2050. A foresight model Future Wheels is also used to visualize the findings from the review and provide a clear picture of the potential impact of the policy.
Carbon-Negative Hydrogen Production (HyBECCS) from Organic Waste Materials in Germany: How to Estimate Bioenergy and Greenhouse Gas Mitigation Potential
Nov 2021
Publication
Hydrogen derived from biomass feedstock (biohydrogen) can play a significant role in Germany’s hydrogen economy. However the bioenergy potential and environmental benefits of biohydrogen production are still largely unknown. Additionally there are no uniform evaluation methods present for these emerging technologies. Therefore this paper presents a methodological approach for the evaluation of bioenergy potentials and the attainable environmental impacts of these processes in terms of their carbon footprints. A procedure for determining bioenergy potentials is presented which provides information on the amount of usable energy after conversion when applied. Therefore it elaborates a four-step methodical conduct dealing with available waste materials uncertainties of early-stage processes and calculation aspects. The bioenergy to be generated can result in carbon emission savings by substituting fossil energy carriers as well as in negative emissions by applying biohydrogen production with carbon capture and storage (HyBECCS). Hence a procedure for determining the negative emissions potential is also presented. Moreover the developed approach can also serve as a guideline for decision makers in research industry and politics and might also serve as a basis for further investigations such as implementation strategies or quantification of the benefits of biohydrogen production from organic waste material in Germany
Energy, Exergy, and Environmental Analyses of Renewable Hydrogen Production Through Plasma Gasification of Microalgal Biomass
Feb 2021
Publication
In this study an energy exergy and environmental (3E) analyses of a plasma-assisted hydrogen production process from microalgae is investigated. Four different microalgal biomass fuels namely raw microalgae (RM) and three torrefied microalgal fuels (TM200 TM250 and TM300) are used as the feedstock for steam plasma gasification to generate syngas and hydrogen. The effects of steam-tobiomass (S/B) ratio on the syngas and hydrogen yields and energy and exergy efficiencies of plasma gasification (hEn;PG hEx;PG) and hydrogen production(hEn;H2 hEx;H2 ) are taken into account. Results show that the optimal S/B ratios of RM TM200 TM250 and TM300 are 0.354 0.443 0.593 and 0.760 respectively occurring at the carbon boundary points (CBPs) where the maximum values of hEn;PG hEx;PG hEn;H2 and hEx;H2 are also achieved. At CBPs torrefied microalgae as feedstock lower thehEn;PG hEx;PG hEn;H2 and hEx;H2 because of their improved calorific value after undergoing torrefaction and the increased plasma energy demand compared to the RM. However beyond CBPs the torrefied feedstock displays better performance. A comparative life cycle analysis indicates that TM300 exhibits the highest greenhouse gases (GHG) emissions and the lowest net energy ratio (NER) due to the indirect emissions associated with electricity consumption.
Prediction of Hydrogen-Heavy Fuel Combustion Process with Water Addition in an Adapted Low Speed Two Stroke Diesel Engine: Performance Improvement
Jun 2021
Publication
Despite their high thermal efficiency (>50%) large two-stroke (2 T) diesel engines burning very cheap heavy fuel oil (HFO) produce a high level of carbon dioxide (CO2). To achieve the low emission levels of greenhouse gases (GHG) that will be imposed by future legislation the use of hydrogen (H2) as fuel in 2 T diesel engines is a viable option for reducing or almost eliminate CO2 emissions. In this work from experimental data and system modelling an analysis of dual combustion is carried out considering different strategies to supply H2 to the engine and for different H2 fractions in energy basis. Previously a complete thermodynamic model of a 2 T diesel engine with an innovative scavenging model is developed and validated. The most important drawbacks of this type of engines are controlled in this work using dual combustion and water injection reducing nitrogen oxides emissions (NOx) self-ignition and combustion knocking. The results show that the developed model matches engine performance data in diesel mode achieving a higher efficiency and mean effective pressure (MEP) in hydrogen mode of 53% and 14.62 bar respectively.
Value of Power-to-gas as a Flexibility Option in Integrated Electricity and Hydrogen Markets
Oct 2021
Publication
This paper analyzes the economic potential of Power-to-Gas (PtG) as a source of flexibility in electricity markets with both high shares of renewables and high external demand for hydrogen. The contribution of this paper is that it develops and applies a short-term (hourly) partial equilibrium model of integrated electricity and hydrogen markets including markets for green certificates while using a welfare-economic framework to assess the market outcomes. We find that strongly increasing the share of renewable electricity makes electricity prices much more volatile while the presence of PtG reduces this price volatility. However a large demand for hydrogen from outside the electricity sector reduces the impact of PtG on the volatility of electricity prices. In a scenario with a high external hydrogen demand PtG can deliver positive benefits for some groups as it can provide hydrogen at lower costs than Steam Methane Reforming (SMR) during hours when electricity prices are low but these positive welfare effects are outweighed by the fixed costs of PtG assets plus the costs of replacing a less expensive energy carrier (natural gas) with a more expensive one (hydrogen). Investments in PtG are profitable from a social-welfare perspective when the induced reduction in carbon emissions is valued at 150–750 euro/ton. Hence at lower carbon prices PtG can only become a valuable provider of flexibility when installation costs are significantly reduced and conversion efficiencies of electrolysers increased.
A Preliminary Energy Analysis of a Commercial CHP Fueled with H2NG Blends Chemically Supercharged by Renewable Hydrogen and Oxygen
Dec 2016
Publication
Currently Power-to-Gas technologies are considered viable solutions to face the onset problems associated with renewable capacity firming. Indeed carbon-free hydrogen production converting renewable electricity excess and its injection into natural gas pipelines is considered a short- to medium-term solution. In this way the so-called H2NG blends can be fired within internal combustion engines and micro gas turbines operating in CHP mode offering better environmental-energy performances in machines. As regards the distributed energy generation scenario the local H2 production by means of electrolysis for methane enrichment will be more cost-effective if the oxygen is fruitfully used instead of venting it out like a by-product as usually occurs. This study focuses on the usefulness of using that oxygen to enrich the air-fuel mixture of an internal combustion engine for micro-CHP applications once it has been fuelled with H2NG blends. Thus the main aim of this paper is to provide a set of values for benchmarking in which H2NG blends ranging in 0%-15% vol. burn within an ICE in partial oxy-fuel conditions. In particular a preliminary energy analysis was carried out based on experimental data reporting the engine operating parameters gains and losses in both electrical and heat recovery efficiency. The oxygen content in the air varies up to 22% vol. A Volkswagen Blue Tender CHP commercial version (19.8 kWel. of rated electrical power output) was considered as the reference machine and its energy characterization was reported when it operated under those unconventional conditions.
The Use of Metal Hydrides in Fuel Cell Applications
Feb 2017
Publication
This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.
Optimal Design of Multi-energy Systems with Seasonal Storage
Oct 2017
Publication
Optimal design and operation of multi-energy systems involving seasonal energy storage are often hindered by the complexity of the optimization problem. Indeed the description of seasonal cycles requires a year-long time horizon while the system operation calls for hourly resolution; this turns into a large number of decision variables including binary variables when large systems are analyzed. This work presents novel mixed integer linear program methodologies that allow considering a year time horizon with hour resolution while significantly reducing the complexity of the optimization problem. First the validity of the proposed techniques is tested by considering a simple system that can be solved in a reasonable computational time without resorting to design days. Findings show that the results of the proposed approaches are in good agreement with the full-scale optimization thus allowing to correctly size the energy storage and to operate the system with a long-term policy while significantly simplifying the optimization problem. Furthermore the developed methodology is adopted to design a multi-energy system based on a neighborhood in Zurich Switzerland which is optimized in terms of total annual costs and carbon dioxide emissions. Finally the system behavior is revealed by performing a sensitivity analysis on different features of the energy system and by looking at the topology of the energy hub along the Pareto sets.
Controller Design for Polymer Electrolyte Membrane Fuel Cell Systems for Automotive Applications
May 2021
Publication
Continuous developments in Proton Exchange Membrane Fuel Cells (PEMFC) make them a promising technology to achieve zero emissions in multiple applications including mobility. Incremental advancements in fuel cells materials and manufacture processes make them now suitable for commercialization. However the complex operation of fuel cell systems in automotive applications has some open issues yet. This work develops and compares three different controllers for PEMFC systems in automotive applications. All the controllers have a cascade control structure where a generator of setpoints sends references to the subsystems controllers with the objective to maximize operational efficiency. To develop the setpoints generators two techniques are evaluated: off-line optimization and Model Predictive Control (MPC). With the first technique the optimal setpoints are given by a map obtained off-line of the optimal steady state conditions and corresponding setpoints. With the second technique the setpoints time profiles that maximize the efficiency in an incoming time horizon are continuously computed. The proposed MPC architecture divides the fast and slow dynamics in order to reduce the computational cost. Two different MPC solutions have been implemented to deal with this fast/slow dynamics separation. After the integration of the setpoints generators with the subsystems controllers the different control systems are tested and compared using a dynamic detailed model of the automotive system in the INN-BALANCE project running under the New European Driving Cycle.
Hydrogen - A Sustainable Energy Carrier
Jan 2017
Publication
Hydrogen may play a key role in a future sustainable energy system as a carrier of renewable energy to replace hydrocarbons. This review describes the fundamental physical and chemical properties of hydrogen and basic theories of hydrogen sorption reactions followed by the emphasis on state-of-the-art of the hydrogen storage properties of selected interstitial metallic hydrides and magnesium hydride especially for stationary energy storage related utilizations. Finally new perspectives for utilization of metal hydrides in other applications will be reviewed.
A Review on Recent Progress in the Integrated Green Hydrogen Production Processes
Feb 2022
Publication
The thermochemical water‐splitting method is a promising technology for efficiently con verting renewable thermal energy sources into green hydrogen. This technique is primarily based on recirculating an active material capable of experiencing multiple reduction‐oxidation (redox) steps through an integrated cycle to convert water into separate streams of hydrogen and oxygen. The thermochemical cycles are divided into two main categories according to their operating temperatures namely low‐temperature cycles (<1100 °C) and high‐temperature cycles (<1100 °C). The copper chlorine cycle offers relatively higher efficiency and lower costs for hydrogen production among the low‐temperature processes. In contrast the zinc oxide and ferrite cycles show great potential for developing large‐scale high‐temperature cycles. Although several challenges such as energy storage capacity durability cost‐effectiveness etc. should be addressed before scaling up these technologies into commercial plants for hydrogen production. This review critically examines various aspects of the most promising thermochemical water‐splitting cycles with a particular focus on their capabilities to produce green hydrogen with high performance redox pairs stability and the technology maturity and readiness for commercial use.
Integration of a Dark Fermentation Effluent in a Microalgal-based Biorefinery for the Production of High-added Value Omega-3 Fatty Acids
Mar 2019
Publication
Dark fermentation is an anaerobic digestion process of biowaste used to produce hydrogen- for generation of energy- that however releases high amounts of polluting volatile fatty acids such as acetic acid in the environment. In order for this biohydrogen production process to become more competitive the volatile fatty acids stream can be utilized through conversion to high added-value metabolites such as omega-3 fatty acids. The docosahexaenoic acid is one of the two most known omega-3 fatty acids and has been found to be necessary for a healthy brain and proper cardiovascular function. The main source is currently fish which obtain the fatty acid from the primary producers microalgae through the food chain. Crypthecodinium cohnii a heterotrophic marine microalga is known for accumulating high amounts of docosahexaenoic acid while offering the advantage of assimilating various carbon sources such as glucose ethanol glycerol and acetic acid. The purpose of this work was to examine the ability of a C. cohnii strain to grow on different volatile fatty acids as well as on a pre-treated dark fermentation effluent and accumulate omega-3. The strain was found to grow well on relatively high concentrations of acetic butyric or propionic acid as main carbon source in a fed-batch pH-auxostat. Most importantly C. cohnii totally depleted the organic acid content of an ultra-filtrated dark fermentation effluent after 60 h of fed-batch cultivation therefore offering a bioprocess not only able to mitigate environmental pollutants but also to provide a solution for a sustainable energy production process. The accumulated docosahexaenoic acid content was as high as 29.8% (w/w) of total fatty acids.
Numerical Study on Optics and Heat Transfer of Solar Reactor for Methane Thermal Decomposition
Oct 2021
Publication
This study aims to reduce greenhouse gas emissions to the atmosphere and effectively utilize wasted resources by converting methane the main component of biogas into hydrogen. Therefore a reactor was developed to decompose methane into carbon and hydrogen using solar thermal sources instead of traditional energy sources such as coal and petroleum. The optical distributions were analyzed using TracePro a Monte Carlo ray-tracing-based program. In addition Fluent a computational fluid dynamics program was used for the heat and mass transfer and chemical reaction. The cylindrical indirect heating reactor rotates at a constant speed to prevent damage by the heat source concentrated at the solar furnace. The inside of the reactor was filled with a porous catalyst for methane decomposition and the outside was surrounded by insulation to reduce heat loss. The performance of the reactor according to the cavity model was calculated when solar heat was concentrated on the reactor surface and methane was supplied into the reactor in an environment with a solar irradiance of 700 W/m2 wind speed of 1 m/s and outdoor temperature of 25 °C. As a result temperature methane mass fraction distribution and heat loss amounts for the two cavities were obtained and it was found that the effect on the conversion rate was largely dependent on a temperature over 1000 °C in the reactor. Moreover the heat loss of the full-cavity model decreased by 12.5% and the methane conversion rate increased by 33.5% compared to the semi-cavity model. In conclusion the high-temperature environment of the reactor has a significant effect on the increase in conversion rate with an additional effect of reducing heat loss.
Black TiO2 for Solar Hydrogen Conversion
Feb 2017
Publication
Titanium dioxide (TiO2 ) has been widely investigated for photocatalytic H2 evolution and photoelectrochemical (PEC) water splitting since 1972. However its wide bandgap (3.0–3.2 eV) limits the optical absorption of TiO2 for sufficient utilization of solar energy. Blackening TiO2 has been proposed as an effective strategy to enhance its solar absorption and thus the photocatalytic and PEC activities and aroused widespread research interest. In this article we reviewed the recent progress of black TiO2 for photocatalytic H2 evolution and PEC water splitting along with detailed introduction to its unique structural features optical property charge carrier transfer property and related theoretical calculations. As summarized in this review article black TiO2 could be a promising candidate for photoelectrocatalytic hydrogen generation via water splitting and continuous efforts are deserved for improving its solar hydrogen efficiency.
Road Map to a US Hydrogen Energy: Reducing Emissions and Driving Growth Across the Nation
Oct 2020
Publication
This US Hydrogen Road Map was created through the collaboration of executives and technical industry experts in hydrogen across a broad range of applications and sectors who are committed to improving the understanding of hydrogen and how to increase its adoption across many sectors of the economy. For the first time this coalition of industry leaders has convened to develop a targeted holistic approach for expanding the use of hydrogen as an energy carrier. Due to great variation among national and state policies infrastructure needs and community interests each state and region of the US will likely have its own specific policies and road maps for implementing hydrogen infrastructure. The West Coast for example has traditionally had progressive policies on reducing transportation emissions so it is likely that hydrogen will scale sooner for vehicles in this region especially California. Experts also acknowledge the role that hydrogen in combination with renewables can play in supplying microgrid-type power to communities with the highest risk of shut-offs during seasonal weather-related issues such as high temperatures or wildfire-related power interruptions. Some states have emphasized the need to decarbonize the gas grid so blending hydrogen in natural gas networks and using hydrogen as feedstock may advance more quickly in these regions. Other states are interested in hydrogen as a means to address power grid issues enable the deployment of renewables and support competitive nuclear power. The launch of hydrogen technologies in some states or regions will help to scale hydrogen in various applications across the country laying the foundation for energy security grid resiliency economic growth and the reduction of both greenhouse gas (GHG) emissions and air pollutants. This report outlines the benefits and impact of fuel cell technologies and hydrogen as a viable solution to the energy challenges facing the US through 2030 and beyond. As such it can serve as the latest comprehensive industry-driven national road map to accelerate and scale up hydrogen in the economy across North America
Hydrogen Safety Prediction and Analysis of Hydrogen Refueling Station Leakage Accidents and Process Using Multi-Relevance Machine Learning
Oct 2021
Publication
Hydrogen energy vehicles are being increasingly widely used. To ensure the safety of hydrogenation stations research into the detection of hydrogen leaks is required. Offline analysis using data machine learning is achieved using Spark SQL and Spark MLlib technology. In this study to determine the safety status of a hydrogen refueling station we used multiple algorithm models to perform calculation and analysis: a multi-source data association prediction algorithm a random gradient descent algorithm a deep neural network optimization algorithm and other algorithm models. We successfully analyzed the data including the potential relationships internal relationships and operation laws between the data to detect the safety statuses of hydrogen refueling stations.
Highly Resolved Large Eddy Simulation of Subsonic Hydrogen Jets – Evaluation of ADREA-HF Code Against Detailed Experiments
Sep 2019
Publication
The main objective of this work is the Large Eddy Simulation (LES) of hydrogen subsonic jets in order to evaluate modelling strategies and to provide guidelines for similar simulations. The ADREAHF code and the experiments conducted by Sandia National Laboratories are used for that purpose. These experiments are particularly ideal for LES studies because turbulent fluctuations have been measured which is something rare in hydrogen experiments. Hydrogen is released vertically from a small orifice of 1.91 mm diameter into an unconfined stagnant environment. Three experimental cases are simulated with different inlet velocity (49.7 76.0 and 133.9 m/s) which corresponds to transitional or turbulent flows. Hydrogen mass fraction and velocity mean values and fluctuations are compared against the experimental data. The Smagorinsky subgrid-scale model is mainly used. In the 49.7 m/s case the RNG LES is also evaluated. Several grid resolutions are used to assess the effect on the results. The amount of the resolved by the LES turbulence and velocity spectra are presented. Finally the effect of the release modelling is discussed.
Static and Dynamic Studies of Hydrogen Adsorption on Nanoporous Carbon Gels
Jun 2019
Publication
Although hydrogen is considered to be one of the most promising green fuels its efficient and safe storage and use still raise several technological challenges. Physisorption in porous materials may offer an attractive means of storage but the state-of-the-art capacity of these kinds of systems is still limited. To overcome the present drawbacks a deeper understanding of the adsorption and surface diffusion mechanism is required along with new types of adsorbents developed and/or optimised for this purpose. In the present study we compare the hydrogen adsorption behaviour of three carbon gels exhibiting different porosity and/or surface chemistry. In addition to standard adsorption characterisation techniques neutron spin-echo spectroscopy (NSE) has been also applied to explore the surface mobility of the adsorbed hydrogen. Our results reveal that both the porosity and surface chemistry of the adsorbent play a significant role in the adsorption of in these systems.
An Investigation of Mobile Hydrogen and Fuel Cell Technology Applications
Sep 2019
Publication
Safe practices in the production storage distribution and use of hydrogen are essential for the widespread acceptance of hydrogen and fuel cell technologies. A significant safety incident in any project could damage public perception of hydrogen and fuel cells. A recent incident involving a hydrogen mobile storage trailer in the United States has brought attention to the potential impacts of mobile hydrogen storage and transport. Road transport of bulk hydrogen presents unique hazards that can be very different from those for stationary equipment and new equipment developers may have less experience and expertise than seasoned gas providers. In response to the aforementioned incident and in support of hydrogen and fuel cell activities in California the Hydrogen Safety Panel (HSP) has investigated the safety of mobile hydrogen and fuel cell applications (mobile auxiliary/emergency fuel cell power units mobile fuellers multi-cylinder trailer transport unmanned aircraft power supplies and mobile hydrogen generators). The HSP examined the applications requirements and performance of mobile applications that are being used extensively outside of California to understand how safety considerations are applied. This paper discusses the results of the HSP’s evaluation of hydrogen and fuel cell mobile applications along with recommendations to address relevant safety issues.
Transitioning to Hydrogen
Jan 2020
Publication
The UK is investigating supplying hydrogen to homes and businesses instead of natural gas by “repurposing” the gas network. It presents a major engineering challenge which has never been done anywhere else in the world.
In a new report titled ‘Transitioning to hydrogen’ experts from a cross-professional engineering institution (PEI) working group including the IET have assessed the engineering risks and uncertainties and concluded there is no reason why repurposing the gas network to hydrogen cannot be achieved. But there are several engineering risks and uncertainties which need to be addressed.
In a new report titled ‘Transitioning to hydrogen’ experts from a cross-professional engineering institution (PEI) working group including the IET have assessed the engineering risks and uncertainties and concluded there is no reason why repurposing the gas network to hydrogen cannot be achieved. But there are several engineering risks and uncertainties which need to be addressed.
No more items...