- Home
- A-Z Publications
- Publications
Publications
Innovation Insights Brief - Five Steps to Energy Storage
Jan 2020
Publication
As the global electricity systems are shaped by decentralisation digitalisation and decarbonisation the World Energy Council’s Innovation Insights Briefs explore the new frontiers in energy transitions and the challenges of keeping pace with fast moving developments. We use leadership interviews to map the state of play and case studies across the whole energy landscape and build a broader and deeper picture of new developments within and beyond the new energy technology value chain and business ecosystem.<br/><br/>With major decarbonisation efforts and the scaling up of renewable power generation the widespread adoption of energy storage continues to be described as the key game changer for electricity systems. Affordable storage systems are a critical missing link between intermittent renewable power and a 24/7 reliability net-zero carbon scenario. Beyond solving this salient challenge energy storage is being increasingly considered to meet other needs such as relieving congestion or smoothing out the variations in power that occur independently of renewable-energy generation. However whilst there is plenty of visionary thinking recent progress has focused on short-duration and battery-based energy storage for efficiency gains and ancillary services; there is limited progress in developing daily weekly and even seasonal cost-effective solutions which are indispensable for a global reliance on intermittent renewable energy sources.
Hydrogen Effects on Progressively Cold-Drawn Pearlitic Steels: Between Donatello and Michelangelo
Sep 2017
Publication
This paper reviews previous research by the author in the field of hydrogen effects on progressively cold-drawn pearlitic steels in terms of hydrogen degradation (HD) hydrogen embrittlement (HE) or at the micro-level hydrogen-assisted micro-damage (HAMD) thus affecting their microstructural integrity and compromising the (macro-)structural integrity of civil engineering structures such as prestressed concrete bridges. It is seen that hydrogen effects in pearlitic microstructure (either oriented or not) are produced at the finest micro-level by plastic tearing in the form in general of hydrogen damage topography (HDT) with different appearances depending of the cold drawing degree evolving from the so-called tearing topography surface (TTS) in hot-rolled (not cold-drawn at all) or slightly cold-drawn pearlitic steels to a sort of enlarged and oriented TTS (EOTTS) in heavily drawn steels (the pronounced enlargement and marked orientation being along the wire axis or cold drawing direction). Whereas the pure TTS mode (null or low degree of cold drawing) resembles the Michelangello stone sculpture texture (MSST) the EOTTS mode does the same in relation to the Donatello wooden sculpture texture (DWST).
Australian and Global Hydrogen Demand Growth Scenario Analysis
Nov 2019
Publication
Deloitte was commissioned by the National Hydrogen Taskforce established by the COAG Energy Council to undertake an Australian and Global Growth Scenario Analysis. Deloitte analysed the current global hydrogen industry its development and growth potential and how Australia can position itself to best capitalise on the newly forming industry.
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
Hybrid Hydrogen PEM Fuel Cell and Batteries Without DC–DC Converter
Sep 2013
Publication
Concerns about greenhouse gases as well as the price and security of oil supply have acted as a spur to sustainable automobile development. The hydrogen fuel cells electric vehicle (HFCEV) is generally recognised by leading automobile manufacturers and scientists as one of the optimum technologies for long-term future low carbon vehicle. In a typical HFCEV power train a DC–DC converter is required to balance the voltage difference between the fuel cells (FCs) stack and batteries. However research shows that a considerable amount of energy generated by the hydrogen FCs stack is deplete during this conversion process as heat. This experiment aims to improve the power train efficiency by eliminating the DC–DC converter by finding the best combination of FC stack and batteries matching the size and capacity of the electrical components.
Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option Towards an Environmentally Friendly Energy Transition
Nov 2020
Publication
The latest pre-production vehicles on the market show that the major technical challenges posed by integrating a fuel cell system (FCS) within a vehicle—compactness safety autonomy reliability cold starting—have been met. Regarding the ongoing maturity of fuel cell systems dedicated to road transport the present article examines the advances still needed to move from a functional but niche product to a mainstream consumer product. It seeks to address difficulties not covered by more traditional innovation approaches. At least in long-distance heavy-duty vehicles fuel cell vehicles (FCVs) are going to play a key role in the path to zero-emissions in one or two decades. Hence the present study also addresses the structuring elements of the complete chain: the latter includes the production storage and distribution of hydrogen. Green hydrogen appears to be one of the potential uses of renewable energies. The greener the electricity is the greater the advantage for hydrogen since it permits to economically store large energy quantities on seasonal rhythms. Moreover natural hydrogen might also become an economic reality pushing the fuel cell vehicle to be a competitive and environmentally friendly alternative to the battery electric vehicle. Based on its own functional benefits for on board systems hydrogen in combination with the fuel cell will achieve a large-scale use of hydrogen in road transport as soon as renewable energies become more widespread. Its market will expand from large driving range and heavy load vehicles
Resource Assessment for Hydrogen Production
Jul 2020
Publication
This analysis was conducted in support of the U.S. Department of Energy's H2@Scale initiative and this report examines the resources required to meet demand for an additional 10 million metric tonnes (MMT) of hydrogen in 2040. The technical potential of hydrogen production from fossil nuclear and renewable energy resources is presented. Updated maps describe the geographical distribution of hydrogen production potential from renewable energy resources. The results conclude that the technical resource availability of domestic energy resources is sufficient to meet an additional 10 MMT of hydrogen demand in 2040 without placing significant pressure on existing resources. While this level of hydrogen demand could result in a significant increase in renewable energy consumption in particular the technical potential of each resource is estimated to be sufficient to meet the demand. Future research to enable the large-scale integration of hydrogen in the U.S. energy and other sectors will include analyzing the geographic distribution of resources in relation to hydrogen demand for a variety of applications. Additional techno-economic analysis is also needed to understand the economic potential of hydrogen in other industries beyond transportation; such analysis is currently being undertaken by a multi-lab project initiated by DOE in 2016. Finally information from techno-economic analyses should be used to continually update and inform R&D targets for energy production hydrogen production and hydrogen utilization technologies.
Market Segmentation of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The main goal of the project is to enable the wide adoption of H2NG (hydrogen in natural gas) blends by closing knowledge gaps regarding technical impacts on residential and commercial gas appliances. The project consortium will identify and recommend appropriate codes and standards that should be adapted to answer the needs and develop a strategy for addressing the challenges for new and existing appliances.<br/>This deliverable on market segmentation is part of work package 2 and provides a quantitative segmentation of the gas appliance market in terms of appliance population numbers. It therefore prepares the project partners to perform the subsequent selection of the most representative product types to be tested in the laboratories of the THyGA partners.<br/>The classification is developed to categorise appliances installed in the field based on available statistics calculation methods and estimations. As a result appliance populations are provided for each technology segment that draw a representative picture of the installed end-use appliances within the European Union in 2020.
Lessons Learned from Australian Infrastructure Upgrades
Feb 2020
Publication
This report fulfils Deliverable Five for Research Project 2.1-01 of the Future Fuels CRC. The aims of this project Crystallising lessons learned from major infrastructure upgrades are to provide a report on lessons learned from earlier infrastructure upgrades and fuel transitions and identify tools that can be used to develop consistent messaging around the proposed transition to hydrogen and/or other low-carbon fuels. In both the report and the toolkit there are recommendations on how to apply lessons learned and shape messaging throughout the value chain based on prior infrastructure upgrades.
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
Methanol Steam Reforming for Hydrogen Generation Via Conventional and Membrane Reactors: A Review
Sep 2013
Publication
Variable renewable energy (VRE) is expected to play a major role in the decarbonization of the electricity sector. However decarbonization via VRE requires a fleet of flexible dispatchable plants with low CO2 emissions to supply clean power during times with limited wind and sunlight. These plants will need to operate at reduced capacity factors with frequent ramps in electricity output posing techno-economic challenges. This study therefore presents an economic assessment of a new near-zero emission power plant designed for this purpose. The gas switching reforming combined cycle (GSR-CC) plant can produce electricity during times of low VRE output and hydrogen during times of high VRE output. This product flexibility allows the plant to operate continuously even when high VRE output makes electricity production uneconomical. Although the CO2 avoidance cost of the GSR-CC plant (€61/ton) was similar to the benchmark post-combustion CO2 capture plant under baseload operation GSR-CC clearly outperformed the benchmark in a more realistic scenario where continued VRE expansion forces power plants into mid-load operation (45% capacity factor). In this scenario GSR-CC promises a 5 %-point higher annualized investment return than the post-combustion benchmark. GSR-CC therefore appears to be a promising concept for a future scenario with high VRE market share and CO2 prices provided that a large market for clean hydrogen is established.
Safety System Design for Mitigating Risks of Intended Hydrogen Releases from Thermally Activated Pressure Relief Device of Onboard Storage
Sep 2019
Publication
All vehicular high-pressure hydrogen tanks are equipped with thermally-activated pressure relief devices (TPRDs) required by Global Technical Regulation. This safety device significantly reduces the risk of tank catastrophic rupture by venting the hydrogen pressure outside. However the released flammable hydrogen raises additional safety problems. Japan Automobile Research Institute has demonstrated that in the vehicle fire event once the TPRD opens the hydrogen fires will engulf the whole vehicle making it difficult for the drivers and passenger to evacuate from the vehicle. This paper designs a new safety system to solve the evacuation problem. The safety system includes a rotatable pressure relief device with a motor a sensory system that consists of infrared sensors ultrasonic radar and temperature sensors a central control unit and an alarm device. The new design of the pressure relief device allows the system actively adjusting the release direction towards void open space outside the vehicle to minimize the risks of hydrogen fires. The infrared sensors located at the roof of the vehicles collect info inside the vehicle and the ultrasonic radar detect the region outside the vehicle. Temperature sensors tell when to trigger the alarm and set the motor in standby mode and the central control unit determines where to rotate based on the info from the infrared sensors and ultrasonic radars. A control strategy is also proposed to operate the safety system in an appropriate way. The cost-benefit analysis show that the new safety system can significantly reduce the risks of intended hydrogen releases from onboard pressure relief devices with total cost increases by less than 1% of the vehicle cost making it a good cost-effective engineering solution.
Microalloyed Steels through History until 2018: Review of Chemical Composition, Processing and Hydrogen Service
May 2018
Publication
Microalloyed steels have evolved in terms of their chemical composition processing and metallurgical characteristics since the beginning of the 20th century in the function of fabrication costs and mechanical properties required to obtain high-performance materials needed to accommodate for the growing demands of gas and hydrocarbons transport. As a result of this microalloyed steels present a good combination of high strength and ductility obtained through the addition of microalloying elements thermomechanical processing and controlled cooling processes capable of producing complex microstructures that improve the mechanical properties of steels. These controlled microstructures can be severely affected and result in catastrophic failures due to the atomic hydrogen diffusion that occurs during the corrosion process of pipeline steel. Recently a martensite–bainite microstructure with acicular ferrite has been chosen as a viable candidate to be used in environments with the presence of hydrogen. The aim of this review is to summarize the main changes of chemical composition processing techniques and the evolution of the mechanical properties throughout recent history on the use of microalloying in high strength low alloy steels as well as the effects of hydrogen in newly created pipelines examining the causes behind the mechanisms of hydrogen embrittlement in these steels.
Hydrogen-Assisted Crack Growth in the Heat-Affected Zone of X80 Steels during in Situ Hydrogen Charging
Aug 2019
Publication
Herein the hydrogen embrittlement of a heat-affected zone (HAZ) was examined using slow strain rate tension in situ hydrogen charging. The influence of hydrogen on the crack path of the HAZ sample surfaces was determined using electron back scatter diffraction analysis. The hydrogen embrittlement susceptibility of the base metal and the HAZ samples increased with increasing current density. The HAZ samples have lower resistance to hydrogen embrittlement than the base metal samples in the same current density. Brittle circumferential cracks located at the HAZ sample surfaces were perpendicular to the loading direction and the crack propagation path indicated that five or more cracks may join together to form a longer crack. The fracture morphologies were found to be a mixture of intergranular and transgranular fractures. Hydrogen blisters were observed on the HAZ sample surfaces after conducting tensile tests at a current density of 40 mA/cm2 leading to a fracture in the elastic deformation stage.
The UK Carbon Capture, Usage and Storage (CCUS) Deployment Pathway: An Action Plan
Nov 2018
Publication
CCUS has economy-wide qualities which could be very valuable to delivering clean industrial growth. It could deliver tangible results in tackling some of the biggest challenges we face in decarbonising our economy contributing to industrial competitiveness and generating new economic opportunities – a key part of our modern Industrial Strategy.
Our vision is to become a global leader in CCUS unlocking the potential of the technology and securing the added value which it can bring to our industrial centres and businesses all across the UK.
Our ambition is that the UK should have the option to deploy CCUS at scale during the 2030s subject to the costs coming down sufficiently.
Our Industrial Strategy set out four Grand Challenges to put the UK at the forefront of the industries of the future. The Clean Growth Grand Challenge seeks to maximise the advantages for UK industry from the global shift to clean growth. CCUS can be an important part of achieving these objectives.
Our vision is to become a global leader in CCUS unlocking the potential of the technology and securing the added value which it can bring to our industrial centres and businesses all across the UK.
Our ambition is that the UK should have the option to deploy CCUS at scale during the 2030s subject to the costs coming down sufficiently.
Our Industrial Strategy set out four Grand Challenges to put the UK at the forefront of the industries of the future. The Clean Growth Grand Challenge seeks to maximise the advantages for UK industry from the global shift to clean growth. CCUS can be an important part of achieving these objectives.
A Battery-Free Sustainable Powertrain Solution for Hydrogen Fuel Cell City Transit Bus Application
Apr 2022
Publication
The paper presents a sustainable electric powertrain for a transit city bus featuring an electrochemical battery-free power unit consisting of a hydrogen fuel cell stack and a kinetic energy storage system based on high-speed flywheels. A rare-earth free high-efficiency motor technology is adopted to pursue a more sustainable vehicle architecture by limiting the use of critical raw materials. A suitable dynamic energetic model of the full vehicle powertrain has been developed to investigate the feasibility of the traction system and the related energy management control strategy. The model includes losses characterisation as a function of the load of the main components of the powertrain by using experimental tests and literature data. The performance of the proposed solution is evaluated by simulating a vehicle mission on an urban path in real traffic conditions. Considerations about the effectiveness of the traction system are discussed.
Balancing Wind-power Fluctuation Via Onsite Storage Under Uncertainty Power-to-hydrogen-to-power Versus Lithium Battery
Oct 2019
Publication
Imbalance costs caused by forecasting errors are considerable for grid-connected wind farms. In order to reduce such costs two onsite storage technologies i.e. power-to-hydrogen-to-power and lithium battery are investigated considering 14 uncertain technological and economic parameters. Probability density distributions of wind forecasting errors and power level are first considered to quantify the imbalance and excess wind power. Then robust optimal sizing of the onsite storage is performed under uncertainty to maximize wind-farm profit (the net present value). Global sensitivity analysis is further carried out for parameters prioritization to highlight the key influential parameters. The results show that the profit of power-to-hydrogen-to-power case is sensitive to the hydrogen price wind forecasting accuracy and hydrogen storage price. When hydrogen price ranges in (2 6) €/kg installing only electrolyzer can earn profits over 100 k€/MWWP in 9% scenarios with capacity below 250 kW/MWWP under high hydrogen price (over 4 €/kg); while installing only fuel cell can achieve such high profits only in 1.3% scenarios with capacity below 180 kW/MWWP. Installing both electrolyzer and fuel cell (only suggested in 22% scenarios) results in profits below 160 k€/MWWP and particularly 20% scenarios allow for a profit below 50 k€/MWWP due to the contradictory effects of wind forecasting error hydrogen and electricity price. For lithium battery investment cost is the single highly influential factor which should be reduced to 760 €/kWh. The battery capacity is limited to 88 kW h/MWWP. For profits over 100 k€/MWWP (in 3% scenarios) the battery should be with an investment cost below 510 €/kWh and a depth of discharge over 63%. The power-to-hydrogen-to-power case is more advantageous in terms of profitability reliability and utilization factor (full-load operating hours) while lithium battery is more helpful to reduce the lost wind and has less environmental impact considering current hydrogen market.
Geomechanical Simulation of Energy Storage in Salt Formations
Oct 2021
Publication
A promising option for storing large-scale quantities of green gases (e.g. hydrogen) is in subsurface rock salt caverns. The mechanical performance of salt caverns utilized for long-term subsurface energy storage plays a signifcant role in long-term stability and serviceability. However rock salt undergoes non-linear creep deformation due to long-term loading caused by subsurface storage. Salt caverns have complex geometries and the geological domain surrounding salt caverns has a vast amount of material heterogeneity. To safely store gases in caverns a thorough analysis of the geological domain becomes crucial. To date few studies have attempted to analyze the infuence of geometrical and material heterogeneity on the state of stress in salt caverns subjected to long-term loading. In this work we present a rigorous and systematic modeling study to quantify the impact of heterogeneity on the deformation of salt caverns and quantify the state of stress around the caverns. A 2D fnite element simulator was developed to consistently account for the non-linear creep deformation and also to model tertiary creep. The computational scheme was benchmarked with the already existing experimental study. The impact of cyclic loading on the cavern was studied considering maximum and minimum pressure that depends on lithostatic pressure. The infuence of geometric heterogeneity such as irregularly-shaped caverns and material heterogeneity which involves diferent elastic and creep properties of the diferent materials in the geological domain is rigorously studied and quantifed. Moreover multi-cavern simulations are conducted to investigate the infuence of a cavern on the adjacent caverns. An elaborate sensitivity analysis of parameters involved with creep and damage constitutive laws is performed to understand the infuence of creep and damage on deformation and stress evolution around the salt cavern confgurations.
Biogas: Pathways to 2030
Mar 2021
Publication
Humans directly or indirectly generate over 105 billion tonnes of organic wastes globally each year all of which release harmful methane and other greenhouse gas emissions directly into the atmosphere as they decompose. These organic wastes include food waste sewage and garden wastes food and drink processing wastes and farm and agricultural wastes. Today only 2% of these are treated and recycled.
By simply managing these important bioresources more effectively we can cut global Greenhouse Gas (GHG) emissions by 10% by 2030. This report maps out how the global biogas industry can enable countries to deliver a 10% reduction in global GHG emissions by 2030. The pathways put humanity back on track to deliver by 2030 on the ambitions of both the Paris Agreement and UN Sustainable Development Goals (SDGs).
The report and the executive summary can be downloaded at this link
By simply managing these important bioresources more effectively we can cut global Greenhouse Gas (GHG) emissions by 10% by 2030. This report maps out how the global biogas industry can enable countries to deliver a 10% reduction in global GHG emissions by 2030. The pathways put humanity back on track to deliver by 2030 on the ambitions of both the Paris Agreement and UN Sustainable Development Goals (SDGs).
The report and the executive summary can be downloaded at this link
The Case for High-pressure PEM Water Electrolysis
Apr 2022
Publication
Hydrogen compression is a key part of the green hydrogen supply chain but mechanical compressors are prone to failure and add system complexity and cost. High-pressure water electrolysis can alleviate this problem through electrochemical compression of the gas internally in the electrolyzer and thereby eliminating the need for an external hydrogen compressor. In this work a detailed techno-economic assessment of high-pressure proton exchange membrane-based water electrolysis (PEMEL) systems was carried out. Electrolyzers operating at 80 200 350 and 700 bar were compared to state-of-the-art systems operating at 30 bar in combination with a mechanical compressor. The results show that it is possible to achieve economically viable solutions with high-pressure PEMEL-systems operating up to 200 bar. These pressure levels fit well with the requirements in existing and future industrial applications such as e-fuel production (30–120 bar) injection of hydrogen into natural gas grids (70 bar) hydrogen gas storage (≥200 bar) and ammonia production (200–300 bar). A sensitivity analysis also showed that if the cost of electricity is sufficiently low (
Unpacking Leadership-driven Global Scenarios Towards the Paris Agreement: Report Prepared for the UK Committee on Climate Change
Dec 2020
Publication
Outline
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
Palladium (Pd) Membranes as Key Enabling Technology for Pre-combustion CO2 Capture and Hydrogen Production
Aug 2017
Publication
Palladium (Pd) membranes are a promising enabling technology for power generation and hydrogen production with CO2 capture. SINTEF has developed and patented a flexible technology to produce Pd-alloy membranes that significantly improves flux and thereby reduces material costs. Reinertsen AS and SINTEF aim to demonstrate the Pd membrane technology for H2 separation on a side stream of the Statoil Methanol Plant at Tjeldbergodden Norway. In the present article we present the upscaling of the membrane manufacturing process together with the membrane module and skid design and construction.
No more items...