- Home
- A-Z Publications
- Publications
Publications
Effect of Hot Mill Scale on Hydrogen Embrittlement of High Strength Steels for Pre-Stressed Concrete Structures
Mar 2018
Publication
The presence of a conductive layers of hot-formed oxide on the surface of bars for pre or post-compressing structures can promote localized attacks as a function of pH. The aggressive local environment in the occluded cells inside localized attacks has as consequence the possibility of initiation of stress corrosion cracking. In this paper the stress corrosion cracking behavior of high strength steels proposed for tendons was studied by means of Constant Load (CL) tests and Slow Strain Rate (SSR) tests. Critical ranges of pH for cracking were verified. The promoting role of localized attack was confirmed. Further electrochemical tests were performed on bars in as received surface conditions in order to evaluate pitting initiation. The adverse effect of mill scale was recognized.
Green Hydrogen Cost Reduction
Dec 2020
Publication
Scaling up renewables to meet the 1.5ºC climate goal
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
- Electrolyser design and construction: Increased module size and innovation with increased stack manufacturing have significant impacts on cost. Increasing plant size from 1 MW (typical in 2020) to 20 MW could reduce costs by over a third. Optimal system designs maximise efficiency and flexibility.
- Economies of scale: Increasing stack production with automated processes in gigawatt-scale manufacturing facilities can achieve a step-change cost reduction. Procurement of materials: Scarcity of materials can impede electrolyser cost reduction and scale-up.
- Efficiency and flexibility in operations: Power supply incurs large efficiency losses at low load limiting system flexibility from an economic perspective.
- Industrial applications: Design and operation of electrolysis systems can be optimised for specific applications in different industries. Learning rates: Based on historic cost declines for solar photovoltaics (PV) the learning rates for fuel cells and electrolysers – whereby costs fall as capacity expands – could reach values between 16% and 21%.
- Ambitious climate mitigation: An ambitious energy transition aligned with key international climate goals would drive rapid cost reduction for green hydrogen. The trajectory needed to limit global warming at 1.5oC could make electrolysers an estimated 40% cheaper by 2030.
Developing Community Trust in Hydrogen
Oct 2019
Publication
The report documents current knowledge of the social issues surrounding hydrogen projects. It reviews leading practice stakeholder engagement and communication strategies and findings from focus groups and research activities across Australia.
The full report can be found at this link.
The full report can be found at this link.
Regulatory Mapping for Future Fuels
May 2020
Publication
Australia’s gas infrastructure is currently subject to regulations that were designed for a natural-gas only network system. Future Fuels CRC has released a full report and database of regulations to share exactly how Australia’s current gas regulations can be modernised to enable hydrogen biomethane and other potential future fuels.
This research thoroughly assessed Australia’s current regulatory framework to identify the regulations that will require modernisation to facilitate the use of future fuels within Australia’s energy networks and align them with the goals of Australia’s National Hydrogen Strategy. This study builds on the initial work completed as part of Australia’s National Hydrogen Strategy and creates a comprehensive regulatory map of relevant legislation across the natural gas production and supply chain which may be impacted by the addition of future fuels such as hydrogen and biomethane.
The research was delivered by RMIT University of Sydney and GPA Engineering supported by our industry and government participants APA APGA ATCO AusNet Services ENA Energy Safe Victoria Jemena and the South Australian Government.
The study’s report summarises the key issues and the direction of possible solutions. The study also created a database that holds details of legislation by state and territory as well as Commonwealth legislation and applicable Australian standards. The database is designed to be readily updated as these regulations continue to evolve.
The Australian energy industry and regulators benefit from this study by ensuring that any regulatory changes required for future fuels are identified early so that appropriate regulatory changes can be initiated and delivered. These changes will enable the many highly-regulated pilot projects happening across Australia to expand and develop under a modernised and effective regulatory environment.
You can find the full report on the Future Fuels CRC website here
This research thoroughly assessed Australia’s current regulatory framework to identify the regulations that will require modernisation to facilitate the use of future fuels within Australia’s energy networks and align them with the goals of Australia’s National Hydrogen Strategy. This study builds on the initial work completed as part of Australia’s National Hydrogen Strategy and creates a comprehensive regulatory map of relevant legislation across the natural gas production and supply chain which may be impacted by the addition of future fuels such as hydrogen and biomethane.
The research was delivered by RMIT University of Sydney and GPA Engineering supported by our industry and government participants APA APGA ATCO AusNet Services ENA Energy Safe Victoria Jemena and the South Australian Government.
The study’s report summarises the key issues and the direction of possible solutions. The study also created a database that holds details of legislation by state and territory as well as Commonwealth legislation and applicable Australian standards. The database is designed to be readily updated as these regulations continue to evolve.
The Australian energy industry and regulators benefit from this study by ensuring that any regulatory changes required for future fuels are identified early so that appropriate regulatory changes can be initiated and delivered. These changes will enable the many highly-regulated pilot projects happening across Australia to expand and develop under a modernised and effective regulatory environment.
You can find the full report on the Future Fuels CRC website here
Hydrogen Scaling Up: A Sustainable Pathway for the Global Energy Transition
Nov 2017
Publication
Deployed at scale hydrogen could account for almost one-fifth of total final energy consumed by 2050. This would reduce annual CO2 emissions by roughly 6 gigatons compared to today’s levels and contribute roughly 20% of the abatement required to limit global warming to two degrees Celsius.
On the demand side the Hydrogen Council sees the potential for hydrogen to power about 10 to 15 million cars and 500000 trucks by 2030 with many uses in other sectors as well such as industry processes and feedstocks building heating and power power generation and storage. Overall the study predicts that the annual demand for hydrogen could increase tenfold by 2050 to almost 80 EJ in 2050 meeting 18% of total final energy demand in the 2050 two-degree scenario. At a time when global populations are expected to grow by two billion people by 2050 hydrogen technologies have the potential to create opportunities for sustainable economic growth.
“The world in the 21st century must transition to widespread low carbon energy use” said Takeshi Uchiyamada Chairman of Toyota Motor Corporation and co-chair of the Hydrogen Council. “Hydrogen is an indispensable resource to achieve this transition because it can be used to store and transport wind solar and other renewable electricity to power transportation and many other things. The Hydrogen Council has identified seven roles for hydrogen which is why we are encouraging governments and investors to give it a prominent role in their energy plans. The sooner we get the hydrogen economy going the better and we are all committed to making this a reality.”
Achieving such scale would require substantial investments; approximately US$20 to 25 billion annually for a total of about US$280 billion until 2030. Within the right regulatory framework – including long-term stable coordination and incentive policies – the report considers that attracting these investments to scale the technology is feasible. The world already invests more than US$1.7 trillion in energy each year including US$650 billion in oil and gas US$300 billion in renewable electricity and more than US$300 billion in the automotive industry.
“This study confirms the place of hydrogen as a central pillar in the energy transition and encourages us in our support of its large-scale deployment. Hydrogen will be an unavoidable enabler for the energy transition in certain sectors and geographies. The sooner we make this happen the sooner we will be able to enjoy the needed benefits of Hydrogen at the service of our economies and our societies” said Benoît Potier Chairman and CEO Air Liquide. “Solutions are technologically mature and industry players are committed. We need concerted stakeholder efforts to make this happen; leading this effort is the role of the Hydrogen Council.”
The launch of the new roadmap came during the Sustainability Innovation Forum in the presence of 18 senior members of the Hydrogen led by co-chairs Takeshi Uchiyamada Chairman of Toyota and Benoît Potier Chairman and CEO Air Liquide and accompanied by Prof. Aldo Belloni CEO of The Linde Group Woong-chul Yang Vice Chairman of Hyundai Motor Company and Anne Stevens Board Member of Anglo American. During the launch the Hydrogen Council called upon investors policymakers and businesses to join them in accelerating deployment of hydrogen solutions for the energy transition. It was also announced that Woong-chul Yang of Hyundai Motor Company will succeed Takeshi Uchiyamada of Toyota in the rotating role of the Council’s co-chair and preside the group together with Benoit Potier CEO Air Liquide in 2018. Mr Uchiyamada is planning to return as Co-chairman in 2020 coinciding with the Tokyo Olympic and Paalympic Games an important milestone for showcasing hydrogen society and mobility.
You can download the full report from the Hydrogen Council website here
On the demand side the Hydrogen Council sees the potential for hydrogen to power about 10 to 15 million cars and 500000 trucks by 2030 with many uses in other sectors as well such as industry processes and feedstocks building heating and power power generation and storage. Overall the study predicts that the annual demand for hydrogen could increase tenfold by 2050 to almost 80 EJ in 2050 meeting 18% of total final energy demand in the 2050 two-degree scenario. At a time when global populations are expected to grow by two billion people by 2050 hydrogen technologies have the potential to create opportunities for sustainable economic growth.
“The world in the 21st century must transition to widespread low carbon energy use” said Takeshi Uchiyamada Chairman of Toyota Motor Corporation and co-chair of the Hydrogen Council. “Hydrogen is an indispensable resource to achieve this transition because it can be used to store and transport wind solar and other renewable electricity to power transportation and many other things. The Hydrogen Council has identified seven roles for hydrogen which is why we are encouraging governments and investors to give it a prominent role in their energy plans. The sooner we get the hydrogen economy going the better and we are all committed to making this a reality.”
Achieving such scale would require substantial investments; approximately US$20 to 25 billion annually for a total of about US$280 billion until 2030. Within the right regulatory framework – including long-term stable coordination and incentive policies – the report considers that attracting these investments to scale the technology is feasible. The world already invests more than US$1.7 trillion in energy each year including US$650 billion in oil and gas US$300 billion in renewable electricity and more than US$300 billion in the automotive industry.
“This study confirms the place of hydrogen as a central pillar in the energy transition and encourages us in our support of its large-scale deployment. Hydrogen will be an unavoidable enabler for the energy transition in certain sectors and geographies. The sooner we make this happen the sooner we will be able to enjoy the needed benefits of Hydrogen at the service of our economies and our societies” said Benoît Potier Chairman and CEO Air Liquide. “Solutions are technologically mature and industry players are committed. We need concerted stakeholder efforts to make this happen; leading this effort is the role of the Hydrogen Council.”
The launch of the new roadmap came during the Sustainability Innovation Forum in the presence of 18 senior members of the Hydrogen led by co-chairs Takeshi Uchiyamada Chairman of Toyota and Benoît Potier Chairman and CEO Air Liquide and accompanied by Prof. Aldo Belloni CEO of The Linde Group Woong-chul Yang Vice Chairman of Hyundai Motor Company and Anne Stevens Board Member of Anglo American. During the launch the Hydrogen Council called upon investors policymakers and businesses to join them in accelerating deployment of hydrogen solutions for the energy transition. It was also announced that Woong-chul Yang of Hyundai Motor Company will succeed Takeshi Uchiyamada of Toyota in the rotating role of the Council’s co-chair and preside the group together with Benoit Potier CEO Air Liquide in 2018. Mr Uchiyamada is planning to return as Co-chairman in 2020 coinciding with the Tokyo Olympic and Paalympic Games an important milestone for showcasing hydrogen society and mobility.
You can download the full report from the Hydrogen Council website here
Charpy Impact Properties of Hydrogen-Exposed 316L Stainless Steel at Ambient and Cryogenic Temperatures
May 2019
Publication
316L stainless steel is a promising material candidate for a hydrogen containment system. However when in contact with hydrogen the material could be degraded by hydrogen embrittlement (HE). Moreover the mechanism and the effect of HE on 316L stainless steel have not been clearly studied. This study investigated the effect of hydrogen exposure on the impact toughness of 316L stainless steel to understand the relation between hydrogen charging time and fracture toughness at ambient and cryogenic temperatures. In this study 316L stainless steel specimens were exposed to hydrogen in different durations. Charpy V-notch (CVN) impact tests were conducted at ambient and low temperatures to study the effect of HE on the impact properties and fracture toughness of 316L stainless steel under the tested temperatures. Hydrogen analysis and scanning electron microscopy (SEM) were conducted to find the effect of charging time on the hydrogen concentration and surface morphology respectively. The result indicated that exposure to hydrogen decreased the absorbed energy and ductility of 316L stainless steel at all tested temperatures but not much difference was found among the pre-charging times. Another academic insight is that low temperatures diminished the absorbed energy by lowering the ductility of 316L stainless steel
Prospective Hydrogen Production Regions of Australia
Oct 2019
Publication
There is significant interest in Australia both federally and at the state level to develop a hydrogen production industry. Australia’s Chief Scientist Alan Finkel recently prepared a briefing paper for the COAG Energy Council outlining a road map for hydrogen. It identifies hydrogen has the potential to be a significant source of export revenue for Australia in future years assist with decarbonising Australia’s economy and could establish Australia as a leader in low emission fuel production.
As part of the ongoing investigations into the hydrogen production potential of Australia Geoscience Australia has been commissioned by the Department of Industry Innovation and Science to develop heat maps that show areas with high potential for future hydrogen production. The study is technology agnostic in that it considers hydrogen production via electrolysis using renewable energy sources and also fossil fuel hydrogen coupled with carbon capture and storage (CCS). The heat maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis renewable energy potential and the availability of water are the most important factors with various infrastructural considerations playing a secondary role. In the case of fossil fuel hydrogen proximity to gas and coal resources water and availability of carbon storage sites are the important parameters that control the heat maps. In this report we present 5 different heat map scenarios reflecting different assumptions in the geospatial analysis and also reflecting to some degree the different projected timeframes for hydrogen production. The first three scenarios pertain to renewable energy and hydrogen There is significant interest in Australia both federally and at the state level to develop a hydrogen production industry. In August 2018 Australia’s Chief Scientist Dr Alan Finkel prepared a briefing paper for the COAG Energy Council outlining a road map for hydrogen. It identifies hydrogen has the potential to be a significant source of export revenue for Australia in future years assist with decarbonising Australia’s economy and could establish Australia as a leader in low emission fuel production.
As part of ongoing investigations into the hydrogen production potential of Australia Geoscience Australia has been engaged by the Department of Industry Innovation and Science to develop maps that show areas with high potential for future hydrogen production. The study is technology agnostic but considers only low carbon production processes. It includes hydrogen production via electrolysis using renewable energy sources (referred to as renewable hydrogen) as well as fossil fuel-derived hydrogen coupled with carbon capture and storage (CCS) (referred to as CCS hydrogen). The maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis renewable energy potential (from wind solar and hydro resources) and the availability of water are the most important factors while various infrastructure considerations also play a role. In the case of CCS hydrogen proximity to gas and coal resources water and availability of carbon storage sites are the important parameters that control the spatial distribution of potential hydrogen production. In this report we present five different scenarios that reflect key differences in technologies for hydrogen production and the requirements of those technologies. Using geospatial analysis each scenario is translated into a heat map that shows regional trends in potential for hydrogen production based on access to underpinning resources and existing infrastructure.
Three scenarios explore the future potential for renewable hydrogen produced by electrolysis. These demonstrate a high potential for hydrogen production in the future near many Australian coastal areas which is even larger if infrastructure is available to transport renewable power generated from inland areas to the coast. Results also show significant future potential for hydrogen production in inland areas where water is available. The final two scenarios focus on the future potential for CCS hydrogen: a 2030 scenario and a 2050 scenario. A key factor in future CCS hydrogen potential is related to the timeframes for the availability of geological storage resources for CO2.
As part of the ongoing investigations into the hydrogen production potential of Australia Geoscience Australia has been commissioned by the Department of Industry Innovation and Science to develop heat maps that show areas with high potential for future hydrogen production. The study is technology agnostic in that it considers hydrogen production via electrolysis using renewable energy sources and also fossil fuel hydrogen coupled with carbon capture and storage (CCS). The heat maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis renewable energy potential and the availability of water are the most important factors with various infrastructural considerations playing a secondary role. In the case of fossil fuel hydrogen proximity to gas and coal resources water and availability of carbon storage sites are the important parameters that control the heat maps. In this report we present 5 different heat map scenarios reflecting different assumptions in the geospatial analysis and also reflecting to some degree the different projected timeframes for hydrogen production. The first three scenarios pertain to renewable energy and hydrogen There is significant interest in Australia both federally and at the state level to develop a hydrogen production industry. In August 2018 Australia’s Chief Scientist Dr Alan Finkel prepared a briefing paper for the COAG Energy Council outlining a road map for hydrogen. It identifies hydrogen has the potential to be a significant source of export revenue for Australia in future years assist with decarbonising Australia’s economy and could establish Australia as a leader in low emission fuel production.
As part of ongoing investigations into the hydrogen production potential of Australia Geoscience Australia has been engaged by the Department of Industry Innovation and Science to develop maps that show areas with high potential for future hydrogen production. The study is technology agnostic but considers only low carbon production processes. It includes hydrogen production via electrolysis using renewable energy sources (referred to as renewable hydrogen) as well as fossil fuel-derived hydrogen coupled with carbon capture and storage (CCS) (referred to as CCS hydrogen). The maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis renewable energy potential (from wind solar and hydro resources) and the availability of water are the most important factors while various infrastructure considerations also play a role. In the case of CCS hydrogen proximity to gas and coal resources water and availability of carbon storage sites are the important parameters that control the spatial distribution of potential hydrogen production. In this report we present five different scenarios that reflect key differences in technologies for hydrogen production and the requirements of those technologies. Using geospatial analysis each scenario is translated into a heat map that shows regional trends in potential for hydrogen production based on access to underpinning resources and existing infrastructure.
Three scenarios explore the future potential for renewable hydrogen produced by electrolysis. These demonstrate a high potential for hydrogen production in the future near many Australian coastal areas which is even larger if infrastructure is available to transport renewable power generated from inland areas to the coast. Results also show significant future potential for hydrogen production in inland areas where water is available. The final two scenarios focus on the future potential for CCS hydrogen: a 2030 scenario and a 2050 scenario. A key factor in future CCS hydrogen potential is related to the timeframes for the availability of geological storage resources for CO2.
Hydrogen Storage in Depleted Gas Reservoirs: A Comprehensive Review
Nov 2022
Publication
Hydrogen future depends on large-scale storage which can be provided by geological formations (such as caverns aquifers and depleted oil and gas reservoirs) to handle demand and supply changes a typical hysteresis of most renewable energy sources. Amongst them depleted natural gas reservoirs are the most cost-effective and secure solutions due to their wide geographic distribution proven surface facilities and less ambiguous site evaluation. They also require less cushion gas as the native residual gases serve as a buffer for pressure maintenance during storage. However there is a lack of thorough understanding of this technology. This work aims to provide a comprehensive insight and technical outlook into hydrogen storage in depleted gas reservoirs. It briefly discusses the operating and potential facilities case studies and the thermophysical and petrophysical properties of storage and withdrawal capacity gas immobilization and efficient gas containment. Furthermore a comparative approach to hydrogen methane and carbon dioxide with respect to well integrity during gas storage has been highlighted. A summary of the key findings challenges and prospects has also been reported. Based on the review hydrodynamics geochemical and microbial factors are the subsurface’s principal promoters of hydrogen losses. The injection strategy reservoir features quality and operational parameters significantly impact gas storage in depleted reservoirs. Future works (experimental and simulation) were recommended to focus on the hydrodynamics and geomechanics aspects related to migration mixing and dispersion for improved recovery. Overall this review provides a streamlined insight into hydrogen storage in depleted gas reservoirs.
Scotland’s Energy Strategy Position Statement
Mar 2021
Publication
This policy statement provides:
An overview of our key priorities for the short to medium-term and then moves on to look at how we have continued to abide by the three key principles set out in Scotland's Energy Strategy published in 2017 in our policy design and delivery. Those principles are:
Separate sections have been included on Maximising Scotland's International Potential in the lead up to the UN Framework Convention on Climate Change Conference of the Parties (COP26) and on Consumers to reflect the challenging economic climate we currently face and to highlight the action being taken by the Scottish Government to ensure the cost of our energy transition does not fall unequally.
This statement provides an overview of our approach to supporting the energy sector in the lead up to COP26 and as we embark on a green economic recovery from the COVID-19 pandemic. It summarises how our recent policy publications such as our Hydrogen Policy Statement Local Energy Policy Statement and Offshore Wind Policy Statement collectively support the delivery of the Climate Change Plan update along with the future findings from our currently live consultations including our draft Heat in Buildings Strategy our Call for Evidence on the future development of the Low Carbon Infrastructure Transition Programme (LCITP) and our consultation on Scottish skills requirements for energy efficiency.
While this statement sets out our comprehensive programme of work across the energy sector the current Energy Strategy (2017) remains in place until any further Energy Strategy refresh is adopted by Ministers. It is at the stage of refreshing Scotland's Energy Strategy where we will embark on a series of stakeholder engagements and carry out the relevant impact assessments to inform our thinking on future policy development.
An overview of our key priorities for the short to medium-term and then moves on to look at how we have continued to abide by the three key principles set out in Scotland's Energy Strategy published in 2017 in our policy design and delivery. Those principles are:
- a whole-system view;
- an inclusive energy transition; and
- a smarter local energy model.
- Skills and Jobs;
- Supporting Local Communities:
- Investment; and
- Innovation
Separate sections have been included on Maximising Scotland's International Potential in the lead up to the UN Framework Convention on Climate Change Conference of the Parties (COP26) and on Consumers to reflect the challenging economic climate we currently face and to highlight the action being taken by the Scottish Government to ensure the cost of our energy transition does not fall unequally.
This statement provides an overview of our approach to supporting the energy sector in the lead up to COP26 and as we embark on a green economic recovery from the COVID-19 pandemic. It summarises how our recent policy publications such as our Hydrogen Policy Statement Local Energy Policy Statement and Offshore Wind Policy Statement collectively support the delivery of the Climate Change Plan update along with the future findings from our currently live consultations including our draft Heat in Buildings Strategy our Call for Evidence on the future development of the Low Carbon Infrastructure Transition Programme (LCITP) and our consultation on Scottish skills requirements for energy efficiency.
While this statement sets out our comprehensive programme of work across the energy sector the current Energy Strategy (2017) remains in place until any further Energy Strategy refresh is adopted by Ministers. It is at the stage of refreshing Scotland's Energy Strategy where we will embark on a series of stakeholder engagements and carry out the relevant impact assessments to inform our thinking on future policy development.
Influence of Hydrogen for Crack Formation during Mechanical Clinching
Jan 2018
Publication
Hydrogen intrudes into the steel during pickling process which is a pre-processing before a joining process promoting crack formation. In a mechanical clinching which is one of joining method in the automotive industry cracks due to large strain sometimes forms. In order to guarantee reliability it is important to clarify the influence of hydrogen on crack formation of the joint. In this study we clarified the influence of hydrogen for the crack formation on the mechanical clinching. Hydrogen charge was carried out using an electrolytic cathode charge. After the charging mechanical clinching was performed. Mechanical clinching was carried out with steel plate and aluminium alloy plate. To clarify the influence of hydrogen mechanical clinching was conducted without hydrogen charring. To investigate the crack formation the test piece was cut and the cut surface was observed. When the joint was broken during the clinching the fracture surface was observed using an optical microscope and an electron microscope. The load-displacement diagram showed that without hydrogen charging the compressive load increased as the displacement increased. On the other hand the compressive load temporarily decreased with high hydrogen charging suggesting that cracks formed at the time. The cut surface observation showed that interlock was formed in both cases with low hydrogen charging and without hydrogen charging. With low hydrogen charging no cracks were formed in the joint. When high hydrogen charging was performed cracks were formed at the joining point. Fracture analysis showed brittle-like fracture surface. These results indicate that hydrogen induces crack formation in the mechanical clinching.
Environmental Degradation Effect of High-Temperature Water and Hydrogen on the Fracture Behavior of Low-Alloy Reactor Pressure Vessel Steels
Dec 2019
Publication
Structural integrity of reactor pressure vessel (RPV) in light water reactors (LWR) is of highest importance regarding operation safety and lifetime. The fracture behaviour of low-alloy RPV steels with different dynamic strain aging (DSA) & environmental assisted cracking (EAC) susceptibilities in simulated LWR environments was evaluated by elastic plastic fracture mechanics tests (EPFM) and by metallo- and fractographic post-test analysis. Exposure to high temperature water (HTW) environments at LWR temperatures revealed only moderated reductions in the fracture initiation and tearing resistance of low alloy RPV steels with high DSA or EAC susceptibility accompanied with a moderate but clear change in fracture morphology which indicates the potential synergies of hydrogen/HTW embrittlement with DSA and EAC under suitable conditions. The most pronounced degradation effects occurred in a) RPV steels with high DSA susceptibility where the fracture initiation and tearing resistance reduction increased with decreasing loading rate and were most pronounced in hydrogenated HTW and b) high sulphur steels with high EAC susceptibility in aggressive occluded crevice environment and with preceding fast EAC crack growth in oxygenated HTW. The moderate effects are due to the low hydrogen availability in HTW together with high density of fine-dispersed hydrogen traps in RPV steels. Stable ductile transgranular tearing by microvoid coalescence was the dominant failure mechanism in all environments with additional varying few % of secondary cracks macrovoids and quasi-cleavage in HTW. The observed behavior suggests a combination of plastic strain localisation by the Hydrogen-enhanced Local Plasticity (HELP) mechanism in synergy with DSA and Hydrogen-enhanced Strain-induced Vacancies (HESIV) mechanism with additional minor contributions of Hydrogen-enhanced Decohesion Embrittlement (HEDE) mechanism.
The Role of the Testing Rate on Small Punch Tests for the Estimation of Fracture Toughness in Hydrogen Embrittlement
Dec 2020
Publication
In this paper different techniques to test notched Small Punch (SPT) samples in fracture conditions in aggressive environments are studied based on the comparison of the micromechanisms at different rates. Pre-embrittled samples subsequently tested in air at rates conventionally employed (0.01 and 0.002 mm/s) are compared to embrittled ones tested in environment at the same rates (0.01 and 0.002 mm/s) and at a very slow rate (5E-5 mm/s). A set of samples tested in environment under a set of constant loads that produce very slow rates completes the experimental results. As a conclusion it is recommended to test SPT notched specimens in environment at very slow rates of around E-6 mm/s when characterizing in Hydrogen Embrittlement (HE) scenarios in order to allow the interaction material-environment to govern the process.
Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications
Jul 2016
Publication
Fuel cells are the most clean and efficient power source for vehicles. In particular proton exchange membrane fuel cells (PEMFCs) are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade the performance of PEMFCs including energy efficiency volumetric and mass power density and low temperature startup ability have achieved significant breakthroughs. In 2014 fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review the technical progress of key materials and components for PEMFCs has been summarized and critically discussed including topics such as the membrane catalyst layer gas diffusion layer and bipolar plate. The development of high-durability processing technologies is also introduced. Finally this review is concluded with personal perspectives on the future research directions of this area.
Enabling Large-scale Hydrogen Storage in Porous Media – The Scientific Challenges
Jan 2021
Publication
Niklas Heinemann,
Juan Alcalde,
Johannes M. Miocic,
Suzanne J. T. Hangx,
Jens Kallmeyer,
Christian Ostertag-Henning,
Aliakbar Hassanpouryouzband,
Eike M. Thaysen,
Gion J. Strobel,
Cornelia Schmidt-Hattenberger,
Katriona Edlmann,
Mark Wilkinson,
Michelle Bentham,
Stuart Haszeldine,
Ramon Carbonell and
Alexander Rudloff
Expectations for energy storage are high but large-scale underground hydrogen storage in porous media (UHSP) remains largely untested. This article identifies and discusses the scientific challenges of hydrogen storage in porous media for safe and efficient large-scale energy storage to enable a global hydrogen economy. To facilitate hydrogen supply on the scales required for a zero-carbon future it must be stored in porous geological formations such as saline aquifers and depleted hydrocarbon reservoirs. Large-scale UHSP offers the much-needed capacity to balance inter-seasonal discrepancies between demand and supply decouple energy generation from demand and decarbonise heating and transport supporting decarbonisation of the entire energy system. Despite the vast opportunity provided by UHSP the maturity is considered low and as such UHSP is associated with several uncertainties and challenges. Here the safety and economic impacts triggered by poorly understood key processes are identified such as the formation of corrosive hydrogen sulfide gas hydrogen loss due to the activity of microbes or permeability changes due to geochemical interactions impacting on the predictability of hydrogen flow through porous media. The wide range of scientific challenges facing UHSP are outlined to improve procedures and workflows for the hydrogen storage cycle from site selection to storage site operation. Multidisciplinary research including reservoir engineering chemistry geology and microbiology more complex than required for CH4 or CO2 storage is required in order to implement the safe efficient and much needed large-scale commercial deployment of UHSP.
Hydrogen Storage Behavior of Nanocrystalline and Amorphous Mg–Ni–Cu–La Alloys
Sep 2020
Publication
Alloying and structural modification are two effective ways to enhance the hydrogen storage kinetics and decrease the thermal stability of Mg and Mg-based alloys. In order to enhance the characteristics of Mg2Ni-type alloys Cu and La were added to an Mg2Ni-type alloy and the sample alloys (Mg24Ni10Cu2)100−xLax (x = 0 5 10 15 20) were prepared by melt spinning. The influences of La content and spinning rate on the gaseous and electrochemical hydrogen storage properties of the sample alloys were explored in detail. The structural identification carried out by XRD and TEM indicates that the main phase of the alloys is Mg2Ni and the addition of La results in the formation of the secondary phases LaMg3 and La2Mg17. The as-spun alloys have amorphous and nanocrystalline structures and the addition of La promotes glass formation. The electrochemical properties examined by an automatic galvanostatic system show that the samples possess a good activation capability and achieve their maximal discharge capacities within three cycles. The discharge potential characteristics were vastly ameliorated by melt spinning and La addition. The discharge capacities of the samples achieve their maximal values as the La content changes and the discharge capacities always increase with increasing spinning rate. The addition of La leads to a decline in hydrogen absorption capacity but it can effectively enhance the rate of hydrogen absorption. The addition of La and melt spinning significantly increase the hydrogen desorption rate due to the reduced activation energy.
Role of Hydrogen in a Low-Carbon Electric Power System: A Case Study
Jan 2021
Publication
The European Union set a 2050 decarbonization target in the Paris Agreement to reduce carbon emissions by 90–95% relative to 1990 emission levels. The path toward achieving those deep decarbonization targets can take various shapes but will surely include a portfolio of economy-wide low-carbon energy technologies/options. The growth of the intermittent renewable power sources in the grid mix has helped reduce the carbon footprint of the electric power sector. Under the need for decarbonizing the electric power sector we simulated a low-carbon power system. We investigated the role of hydrogen for future electric power systems under current cost projections. The model optimizes the power generation mix economically for a given carbon constraint. The generation mix consists of intermittent renewable power sources (solar and wind) and dispatchable gas turbine and combined cycle units fuelled by natural gas with carbon capture and sequestration as well as hydrogen. We created several scenarios with battery storage options pumped hydro hydrogen storage and demand-side response (DSR). The results show that energy storage replaces power generation and pumped hydro entirely replaces battery storage under given conditions. The availability of pumped hydro storage and demand-side response reduced the total cost as well as the combination of solar photovoltaic and pumped hydro storage. Demand-side response reduces relatively costly dispatchable power generation reduces annual power generation halves the shadow carbon price and is a viable alternative to energy storage. The carbon constrain defines the generation mix and initializes the integration of hydrogen (H2). Although the model rates power to gas with hydrogen as not economically viable in this power system under the given conditions and assumptions hydrogen is important for hard-to-abate sectors and enables sector coupling in a real energy system. This study discusses the potential for hydrogen beyond this model approach and shows the differences between cost optimization models and real-world feasibility.
Experimental Challenges in Studying Hydrogen Absorption in Ultrasmall Metal Nanoparticles
Jun 2016
Publication
Recent advances on synthesis characterization and hydrogen absorption properties of ultrasmall metal nanoparticles (defined here as objects with average size ≤3 nm) are briefly reviewed in the first part of this work. The experimental challenges encountered in performing accurate measurements of hydrogen absorption in Mg- and noble metal-based ultrasmall nanoparticles are addressed. The second part of this work reports original results obtained for ultrasmall bulk-immiscible Pd–Rh nanoparticles. Carbon-supported Pd–Rh nanoalloys in the whole binary chemical composition range have been successfully prepared by liquid impregnation method followed by reduction at 300°C. EXAFS investigations suggested that the local structure of these nanoalloys is partially segregated into Rh-rich core and Pd-rich surface coexisting within the same nanoparticles. Downsizing to ultrasmall dimensions completely suppresses the hydride formation in Pd-rich nanoalloys at ambient conditions contrary to bulk and larger nanosized (5–6 nm) counterparts. The ultrasmall Pd90Rh10 nanoalloy can absorb hydrogen-forming solid solutions under these conditions as suggested by in situ X-ray diffraction (XRD). Apart from this composition common laboratory techniques such as in situ XRD DSC and PCI failed to clarify the hydrogen interaction mechanism: either adsorption on developed surfaces or both adsorption and absorption with formation of solid solutions. Concluding insights were brought by in situ EXAFS experiments at synchrotron: ultrasmall Pd75Rh25 and Pd50Rh50 nanoalloys absorb hydrogen-forming solid solutions at ambient conditions. Moreover the hydrogen solubility in these solid solutions is higher with increasing Pd content and this trend can be understood in terms of hydrogen preferential occupation in the Pd-rich regions as suggested by in situ EXAFS. The Rh-rich nanoalloys (Pd25Rh75 and Pd10Rh90) only adsorb hydrogen on the developed surface of ultrasmall nanoparticles. In summary in situ characterization techniques carried out at large-scale facilities are unique and powerful tools for in-depth investigation of hydrogen interaction with ultrasmall nanoparticles at local level.
Features of the Hydrogen-Assisted Cracking Mechanism in the Low-Carbon Steel at Ex- and In-situ Hydrogen Charging
Dec 2018
Publication
Hydrogen embrittlement has been intensively studied in the past. However its governing mechanism is still under debate. Particularly the details of the formation of specific cleavage-like or quasi-cleavage fracture surfaces related to hydrogen embrittled steels are unclear yet. Recently it has been found that the fracture surface of the hydrogen charged and tensile tested low-carbon steel exhibits quasi-cleavage facets having specific smoothly curved surface which is completely different from common flat cleavage facets. In the present contribution we endeavor to shed light on the origin of such facets. For this purpose the notched flat specimens of the commercial low carbon steel were tensile tested using ex- and in-situ hydrogen charging. It is found that in the ex-situ hydrogen charged specimens the cracks originate primarily inside the specimen bulk and expand radially form the origin to the specimen surface. This process results in formation of “fisheyes” – the round-shape areas with the surface composed of curved quasi-cleavage facets. In contrast during tensile testing with in-situ hydrogen charging the cracks initiate from the surface and propagate to the bulk. This process results in the formation of the completely brittle fracture surface with the quasi-cleavage morphology - the same as that in fisheyes. The examination of the side surface of the in-situ hydrogen charged specimens revealed the straight and S-shaped sharp cracks which path is visually independent of the microstructure and crystallography but is strongly affected by the local stress fields. Nano-voids are readily found at the tips of these cracks. It is concluded that the growth of such cracks occurs by the nano-void coalescence mechanism and is responsible for the formation of fisheyes and smoothly curved quasi-cleavage facets in hydrogen charged low-carbon steel.
Recent Advancements in Chemical Looping Water Splitting for the Production of Hydrogen
Oct 2016
Publication
Chemical looping water splitting or chemical looping hydrogen is a very promising technology for the production of hydrogen. In recent years extensive research has enabled remarkable leaps towards a successful integration of the chemical looping technology into a future hydrogen infrastructure. Progress has been reported with iron based oxygen carriers for stable hydrogen production capacity over consecutive cycles without significant signs of degradation. The high stability improvements were achieved by adding alien metal oxides or by integrating the active component into a mineral structure which offers excellent resistance towards thermal stress. Prototype systems from small μ-systems up to 50 kW have been operated with promising results. The chemical looping water splitting process was broadened in terms of its application area and utilization of feedstocks using a variety of renewable and fossil resources. The three-reactor system was clearly advantageous due to its flexibility heat integration capabilities and possibility to produce separate pure streams of hydrogen CO2 and N2. However two-reactor and single fixed-bed reactor systems were successfully operated as well. This review aims to survey the recently presented literature in detail and systematically summarize the gathered data.
Strain Rate Sensitivity of Microstructural Damage Evolution in a Dual-Phase Steel Pre-Charged with Hydrogen
Dec 2018
Publication
We evaluated the strain rate sensitivity of the micro-damage evolution behavior in a ferrite/martensite dual-phase steel. The micro-damage evolution behavior can be divided into three regimes: damage incubation damage arrest and damage growth. All regimes are associated with local deformability. Thus the total elongation of DP steels is determined by a combination of plastic damage initiation resistance and damage growth arrestability. This fact implies that hydrogen must have a critical effect on the damage evolution because hydrogen enhances strain localization and lowers crack resistance. In this context the strain rate must be an important factor because it affects the time for microstructural hydrogen diffusion/segregation at a specific microstructural location or at the damage tip. In this study tensile tests were carried out on a DP steel with different strain rates of 10− 2 and 10− 4 s−1. We performed the damage quantification microstructure characterization and fractography. Specifically the quantitative data of the damage evolution was analyzed using the classification of the damage evolution regimes in order to separately elucidate the effects of the hydrogen on damage initiation resistance and damage arrestability. In this study we obtained the following conclusions with respect to the strain rate. Lowering the strain rate increased the damage nucleation rate at martensite and reduced the critical strain for fracture through shortening the damage arrest regime. However the failure occurred via ductile modes regardless of strain rate.
No more items...