- Home
- A-Z Publications
- Publications
Publications
Safety Risk and Strategy Analysis of On-Board Hydrogen System of Hydrogen Fuel Cell Vehicles in China
Nov 2023
Publication
Hydrogen fuel cell vehicles (HFCVs) represent an important breakthrough in the hydrogen energy industry. The safe utilization of hydrogen is critical for the sustainable and healthy development of hydrogen fuel cell vehicles. In this study risk factors and preventive measures are proposed for on-board hydrogen systems during the process of transportation storage and use of fuel cell vehicles. The relevant hydrogen safety standards in China are also analyzed and suggestions involving four safety strategies and three safety standards are proposed.
Alternative Gaseous Fuels for Marine Vessels towards Zero-Carbon Emissions
Nov 2023
Publication
The maritime industry is recognized as a major pollution source to the environment. The use of low- or zero-carbon marine alternative fuel is a promising measure to reduce emissions of greenhouse gases and toxic pollutants leading to net-zero carbon emissions by 2050. Hydrogen (H2 ) fuel cells particularly proton exchange membrane fuel cell (PEMFC) and ammonia (NH3 ) are screened out to be the feasible marine gaseous alternative fuels. Green hydrogen can reduce the highest carbon emission which might amount to 100% among those 5 types of hydrogen. The main hurdles to the development of H2 as a marine alternative fuel include its robust and energy-consuming cryogenic storage system highly explosive characteristics economic transportation issues etc. It is anticipated that fossil fuel used for 35% of vehicles such as marine vessels automobiles or airplanes will be replaced with hydrogen fuel in Europe by 2040. Combustible NH3 can be either burned directly or blended with H2 or CH4 to form fuel mixtures. In addition ammonia is an excellent H2 carrier to facilitate its production storage transportation and usage. The replacement of promising alternative fuels can move the marine industry toward decarbonization emissions by 2050.
CFD Simulations of Hydrogen Tank Fuelling: Sensitivity to Turbulence Model and Grid Resolution
Dec 2023
Publication
CFD modelling of compressed hydrogen fuelling provides information on the hydrogen and tank structure temperature dynamics required for onboard storage tank design and fuelling protocol development. This study compares five turbulence models to develop a strategy for costeffective CFD simulations of hydrogen fuelling while maintaining a simulation accuracy acceptable for engineering analysis: RANS models k-ε and RSM; hybrid models SAS and DES; and LES model. Simulations were validated against the fuelling experiment of a Type IV 29 L tank available in the literature. For RANS with wall functions and blended models with near-wall treatment the simulated average hydrogen temperatures deviated from the experiment by 1–3% with CFL ≈ 1–3 and dimensionless wall distance y + ≈ 50–500 in the tank. To provide a similar simulation accuracy the LES modelling approach with near-wall treatment requires mesh with wall distance y + ≈ 2–10 and demonstrates the best-resolved flow field with larger velocity and temperature gradients. LES simulation on this mesh however implies a ca. 60 times longer CPU time compared to the RANS modelling approach and 9 times longer compared to the hybrid models due to the time step limit enforced by the CFL ≈ 1.0 criteria. In all cases the simulated pressure histories and inlet mass flow rates have a difference within 1% while the average heat fluxes and maximum hydrogen temperature show a difference within 10%. Compared to LES the k-ε model tends to underestimate and DES tends to overestimate the temperature gradient inside the tank. The results of RSM and SAS are close to those of LES albeit of 8–9 times faster simulations.
Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process
Sep 2022
Publication
Green hydrogen is considered to be one of the best candidates for fossil fuels in the near future. Bio-hydrogen production from the dark fermentation of organic materials including organic wastes is one of the most cost-effective and promising methods for hydrogen production. One of the main challenges posed by this method is the low production rate. Therefore optimizing the operating parameters such as the initial pH value operating temperature N/C ratio and organic concentration (xylose) plays a significant role in determining the hydrogen production rate. The experimental optimization of such parameters is complex expensive and lengthy. The present research used an experimental data asset adaptive network fuzzy inference system (ANFIS) modeling and particle swarm optimization to model and optimize hydrogen production. The coupling between ANFIS and PSO demonstrated a robust effect which was evident through the improvement in the hydrogen production based on the four input parameters. The results were compared with the experimental and RSM optimization models. The proposed method demonstrated an increase in the biohydrogen production of 100 mL/L compared to the experimental results and a 200 mL/L increase compared to the results obtained using ANOVA.
Hydrogen Equipment Enclosure Risk Reduction through Earlier Detection of Component Failures
Sep 2023
Publication
Hydrogen component reliability and the hazard associated with failure rates is a critical area of research for the successful implementation and growth of hydrogen technology across the globe. The research team has partnered to quantify system risk reduction through earlier detection of hydrogen component failures. A model of hydrogen dispersion in a hydrogen equipment enclosure has been developed utilizing experimentally quantified hydrogen component leak rates as inputs. This model provides insight into the impact of hydrogen safety sensors and ventilation on the flammable mass within a hydrogen equipment enclosure. This model also demonstrates the change in safety sensor response time due to detector placement under various leak scenarios. The team looks to improve overall hydrogen system safety through an improved understanding of hydrogen component reliability and risk mitigation methods. This collaboration fits under the work program of IEA Hydrogen Task 43 Subtask E Hydrogen System Safety.
Technical and Economic Viability of Underground Hydrogen Storage
Nov 2023
Publication
Considering the mismatch between the renewable source availability and energy demand energy storage is increasingly vital for achieving a net-zero future. The daily/seasonal disparities produce a surplus of energy at specific moments. The question is how can this “excess” energy be stored? One promising solution is hydrogen. Conventional hydrogen storage relies on manufactured vessels. However scaling the technology requires larger volumes to satisfy peak demands enhance the reliability of renewable energies and increase hydrogen reserves for future technology and infrastructure development. The optimal solution may involve leveraging the large volumes of underground reservoirs like salt caverns and aquifers while minimizing the surface area usage and avoiding the manufacturing and safety issues inherent to traditional methods. There is a clear literature gap regarding the critical aspects of underground hydrogen storage (UHS) technology. Thus a comprehensive review of the latest developments is needed to identify these gaps and guide further R&D on the topic. This work provides a better understanding of the current situation of UHS and its future challenges. It reviews the literature published on UHS evaluates the progress in the last decades and discusses ongoing and carried-out projects suggesting that the technology is technically and economically ready for today’s needs.
Flame Acceleration, Detonation Limit and Heat Loss for Hydrogen-Oxygen Mixture at Cryogenic Temperature of 77 K
Sep 2023
Publication
Experiments are performed in hydrogen-oxygen mixtures at the cryogenic temperature of 77 K with the equivalence ratio of 1.5 and 2.0. The optical fibers pressure sensors and the smoked foils are used to record the flame velocity overpressure evolution curve and detonation cells respectively. The 1st and 2nd shock waves are captured and they finally merge to form a stronger precursor shock wave prior to the onset of detonation. The cryogenic temperature will cause the larger expansion ratio which results in the occurrence of strong flame acceleration. The stuttering mode the galloping mode and the deflagration mode are observed when the initial pressure decreases from 0.50 atm to 0.20 atm with the equivalence ratio of 1.5 and the detonation limit is within 0.25-0.30 atm. The heat loss effect on the detonation limit is analysed. In addition the regularity of detonation cell is investigated and the larger post-shock specific heat ratio !"" and the lower normalized activation energy # at lower initial pressure will cause the more regular detonation cell. Also the detonation cell width is predicted by a model of = ($) ⋅ Δ# and the prediction results are mainly consistent with the experimental results.
A Review of Hydrogen-based Hybrid Renewable Energy Systems: Simulation and Optimization with Artificial Intelligence
Nov 2021
Publication
With the massive use of traditional fossil fuels greenhouse gas emissions are increasing and environmental pollution is becoming an increasingly serious problem which led to an imminent energy transition. Therefore the development and application of renewable energy are particularly important. This paper reviews a wide range of issues associated with hybrid renewable energy systems (HRESs). The issues concerning system configurations energy storage options simulation and optimization with artificial intelligence are discussed in detail. Storage technology options are introduced for stand-alone (off-grid) and grid-connected (on-grid) HRESs. Different optimization methodologies including classical techniques intelligent techniques hybrid techniques and software tools for sizing system components are presented. Besides the artificial intelligence methods for optimizing the solar/wind HRESs are discussed in detail.
Energy Storage in Urban Areas: The Role of Energy Storage Facilities, a Review
Feb 2024
Publication
Positive Energy Districts can be defined as connected urban areas or energy-efficient and flexible buildings which emit zero greenhouse gases and manage surpluses of renewable energy production. Energy storage is crucial for providing flexibility and supporting renewable energy integration into the energy system. It can balance centralized and distributed energy generation while contributing to energy security. Energy storage can respond to supplement demand provide flexible generation and complement grid development. Photovoltaics and wind turbines together with solar thermal systems and biomass are widely used to generate electricity and heating respectively coupled with energy system storage facilities for electricity (i.e. batteries) or heat storage using latent or sensible heat. Energy storage technologies are crucial in modern grids and able to avoid peak charges by ensuring the reliability and efficiency of energy supply while supporting a growing transition to nondepletable power sources. This work aims to broaden the scientific and practical understanding of energy storage in urban areas in order to explore the flexibility potential in adopting feasible solutions at district scale where exploiting the space and resource-saving systems. The main objective is to present and critically discuss the available options for energy storage that can be used in urban areas to collect and distribute stored energy. The concerns regarding the installation and use of Energy Storage Systems are analyzed by referring to regulations and technical and environmental requirements as part of broader distribution systems or as separate parts. Electricity heat energy and hydrogen are the most favorable types of storage. However most of them need new regulations technological improvement and dissemination of knowledge to all people with the aim of better understanding the benefits provided.
Life Cycle Assessment of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Aug 2023
Publication
In recent years there has been a significant increase in the adoption of autonomous vehicles for marine and submarine missions. The advancement of emerging imaging navigation and communication technologies has greatly expanded the range of operational capabilities and opportunities available. The ENDURUNS project is a European research endeavor focused on identifying strategies for achieving minimal environmental impact. To measure these facts this article evaluates the product impacts employing the Life Cycle Assessment methodology for the first time following the ISO 14040 standard. In this analysis the quantitative values of Damage and Environmental Impact using the Eco-Indicator 99 methodology in SimaPro software are presented. The results report that the main contributors in environmental impact terms have been placed during the manufacturing phase. Thus one of the challenges is accomplished avoiding the use phase emissions that are the focus to reduce nowadays in the marine industry.
A Numerial Study on Hydrogen Blending in Natural Gas Pipeline by a T-pipe
Mar 2024
Publication
In order to study the flow blending and transporting process of hydrogen that injects into the natural gas pipelines a three-dimensional T-pipe blending model is established and the flow characteristics are investigated systematically by the large eddy simulation (LES). Firstly the mathematical formulation of hydrogen-methane blending process is provided and the LES method is introduced and validated by a benchmark gas blending model having experimental data. Subsequently the T-pipe blending model is presented and the effects of key parameters such as the velocity of main pipe hydrogen blending ratio diameter of hydrogen injection pipeline diameter of main pipe and operating pressure on the hydrogen-methane blending process are studied systematically. The results show that under certain conditions the gas mixture will be stratified downstream of the blending point with hydrogen at the top of the pipeline and methane at the bottom of the pipeline. For the no-stratified scenarios the distance required for uniformly mixing downstream the injection point increases when the hydrogen mixing ratio decreases the diameter of the hydrogen injection pipe and the main pipe increase. Finally based on the numerical results the underlying physics of the stratification phenomenon during the blending process are explored and an indicator for stratification is proposed using the ratio between the Reynolds numbers of the natural gas and hydrogen.
Inspection of Hydrogen Transport Equipment: A Data-driven Approach to Predict Fatigue Degradation
Jul 2024
Publication
Hydrogen is an environmentally friendly fuel that can facilitate the upcoming energy transition. The development of an extensive infrastructure for hydrogen transport and storage is crucial. However the mechanical properties of structural materials are significantly degraded in H2 environments leading to early component failures. Pipelines are designed following defect-tolerant principles and are subjected to periodic pressure fluctuations. Hence these systems are potentially prone to fatigue degradation often accelerated in pressurized hydrogen gas. Inspection and maintenance activities are crucial to guarantee the integrity and fitness for service of this infrastructure. This study predicts the severity of hydrogen-enhanced fatigue in low-alloy steels commonly employed for H2 transport and storage equipment. Three machine-learning algorithms i.e. Linear Model Deep Neural Network and Random Forest are used to categorize the severity of the fatigue degradation. The models are critically compared and the best-performing algorithm are trained to predict the Fatigue Acceleration Factor. This approach shows good prediction capability and can estimate the fatigue crack propagation in lowalloy steels. These results allow for estimating the probability of failure of hydrogen pipelines thus facilitating the inspection and maintenance planning.
Potential Capacity and Cost Assessments for Hydrogen Production from Marine Sources
May 2024
Publication
The current study comprehensively examines the application of wave tidal and undersea current energy sources of Turkiye for green hydrogen fuel production and cost analysis. The estimated potential capacity of each city is derived from official data and acceptable assumptions and is subject to discussion and evaluation in the context of a viable hydrogen economy. According to the findings the potential for green hydrogen generation in Turkiye is projected to be 7.33 million tons using a proton exchange membrane electrolyser (PEMEL). Cities with the highest hydrogen production capacities from marine applications are Mugla Izmir Antalya and Canakkale with 998.10 kt 840.31 kt 605.46 kt and 550.42 kt respectively. The study calculations obviously show that there is a great potential by using excess power in producing hydrogen which will result in an economic value of 3.01 billion US dollars. This study further helps develop a detailed hydrogen map for every city in Turkiye using the identified potential capacities of renewable energy sources and the utilization of electrolysers to make green hydrogen by green power. The potentials and specific capacities for every city are also highlighted. Furthermore the study results are expected to provide clear guidance for government authorities and industries to utilize such a potential of renewable energy for investment and promote clean energy projects by further addressing concerns caused by the usage of carbon-based (fossil fuels dependent) energy options. Moreover green hydrogen production and utilization in every sector will help achieve the national targets for a net zero economy and cope with international targets to achieve the United Nation's sustainable development goals.
Lower-Carbon Hydrogen Production from Wastewater: A Comprehensive Review
Oct 2024
Publication
Hydrogen has the capability of being a potential energy carrier and providing a long-term solution for sustainable lower-carbon and ecologically benign fuel supply. Because lower-carbon hydrogen is widely used in chemical synthesis it is regarded as a fuel with no emissions for transportation. This review paper offers a novel technique for producing hydrogen using wastewater in a sustainable manner. The many techniques for producing hydrogen with reduced carbon emissions from wastewater are recognized and examined in detail taking into account the available prospects significant obstacles and potential future paths. A comparison of the assessment showed that water electrolysis and dark fermentation technologies are the most effective methods for hydrogen generation from wastewater with microbial electrolysis and photofermentation. Thus the incorporation of systems that are simultaneously producing lower-carbon hydrogen and meant for wastewater treatment is important for the minimization of emissions from greenhouse gases and recovering the energy utilized in the treatment of wastewater.
Towards Sustainable Hydrogen Production: An Integrated Approach for Sustainability, Complexity, and Systems Thinking in the Energy Sector
Mar 2024
Publication
The energy sector constitutes a dynamic and complex system indicating that its actions are influenced not just by its individual components but also by the emergent behavior resulting from interactions among them. Moreover there are crucial limitations of previous approaches for addressing the sustainability challenge of the energy sector. Changing transforming and integrating paradigms are the most relevant leverage points for transforming a given system. In other words nowadays the integration of new predominant paradigms in order to provide a unified framework could aim at this actual transformation looking for a sustainable future. This research aims to develop a new unified framework for the integration of the following three paradigms: (1) Sustainability (2) Complexity and (3) Systems Thinking which will be applied to achieving sustainable energy production (using hydrogen production as a case study). The novelty of this work relies on providing a holistic perspective through the integration of the aforementioned paradigms considering the multiple and complex interdependencies among the economy the environment and the economy. For this purpose an integrated seven-stage approach is introduced which explores from the starting point of the integration of paradigms to the application of this integration to sustainable energy production. After applying the Three-Paradigm approach for sustainable hydrogen production as a case study 216 feedback loops are identified due to the emerged complexity linked to the analyzed system. Additionally three system dynamics-based models are developed (by increasing the level of complexity) as part of the application of the Three-Paradigm approach. This research can be of interest to a broad professional audience (e.g. engineers policymakers) as looks into the sustainability of the energy sector from a holistic perspective considering a newly developed Three-Paradigm model considering complexity and using a Systems Thinking approach.
Above-ground Hydrogen Storage: A State-of-the-art Review
Nov 2024
Publication
Hydrogen is increasingly recognized as a clean energy alternative offering effective storage solutions for widespread adoption. Advancements in storage electrolysis and fuel cell technologies position hydrogen as a pathway toward cleaner more efficient and resilient energy solutions across various sectors. However challenges like infrastructure development cost-effectiveness and system integration must be addressed. This review comprehensively examines above-ground hydrogen storage technologies and their applications. It highlights the importance of established hydrogen fuel cell infrastructure particularly in gaseous and LH2 systems. The review favors material-based storage for medium- and long-term needs addressing challenges like adverse thermodynamics and kinetics for metal hydrides. It explores hydrogen storage applications in mobile and stationary sectors including fuel-cell electric vehicles aviation maritime power generation systems off-grid stations power backups and combined renewable energy systems. The paper underscores hydrogen’s potential to revolutionize stationary applications and co-generation systems highlighting its significant role in future energy landscapes.
Safety of Hydrogen Storage Technologies
Oct 2024
Publication
While hydrogen is regularly discussed as a possible option for storing regenerative energies its low minimum ignition energy and broad range of explosive concentrations pose safety challenges regarding hydrogen storage and there are also challenges related to hydrogen production and transport and at the point of use. A risk assessment of the whole hydrogen energy system is necessary to develop hydrogen utilization further. Here we concentrate on the most important hydrogen storage technologies especially high-pressure storage liquid hydrogen in cryogenic tanks methanol storage and salt cavern storage. This review aims to study the most recent research results related to these storage techniques by describing typical sensors and explosion protection measures thus allowing for a risk assessment of hydrogen storage through these technologies.
Drifting toward Alliance Innovation: Patent Collaboration Relationships and Development in China’s Hydrogen Energy Industry from a Network Perspective
Mar 2024
Publication
The hydrogen energy industry as one of the most important directions for future energy transformation can promote the sustainable development of the global economy and of society. China has raised the development of hydrogen energy to a strategic position. Based on the patent data in the past two decades this study investigates the collaborative innovation relationships in China’s hydrogen energy field using complex network theory. Firstly patent data filed between 2003 and 2023 are analyzed and compared in terms of time geography and institutional and technological dimensions. Subsequently a patent collaborative innovation network is constructed to explore the fundamental characteristics and evolutionary patterns over five stages. Furthermore centrality measures and community detection algorithms are utilized to identify core entities and innovation alliances within the network which reveal that China’s hydrogen energy industry is drifting toward alliance innovation. The study results show the following: (1) the network has grown rapidly in size and scope over the last two decades and evolved from the initial stage to the multi-center stage before forming innovation alliances; (2) core innovative entities are important supports and bridges for China’s hydrogen energy industry and control most resources and maintain the robustness of the whole network; (3) innovation alliances reveal the closeness of the collaborative relationships between innovative entities and the potential landscape of China’s hydrogen energy industry; and (4) most of the innovation alliances cooperate only on a narrow range of technologies which may hinder the overall sustainable growth of the hydrogen energy industry. Thereafter some suggestions are put forward from the perspective of an industrial chain and innovation chain which may provide a theoretical reference for collaborative innovation and the future development and planning in the field of hydrogen energy in China.
Comprehensive Review of Carbon Capture and Storage Integration in Hydrogen Production: Opportunities, Challenges, and Future Perspectives
Oct 2024
Publication
The growing emphasis on renewable energy highlights hydrogen’s potential as a clean energy carrier. However traditional hydrogen production methods contribute significantly to carbon emissions. This review examines the integration of carbon capture and storage (CCS) technologies with hydrogen production processes focusing on their ability to mitigate carbon emissions. It evaluates various hydrogen production techniques including steam methane reforming electrolysis and biomass gasification and discusses how CCS can enhance environmental sustainability. Key challenges such as economic technical and regulatory obstacles are analyzed. Case studies and future trends offer insights into the feasibility of CCS–hydrogen integration providing pathways for reducing greenhouse gases and facilitating a clean energy transition.
The Impact of the Configuration of a Hydrogen Refueling Station on Risk Level
Nov 2024
Publication
The paper discusses potential hazards at hydrogen refueling stations for transportation vehicles: cars and trucks. The main hazard analyzed here is an uncontrolled gas release due to a failure in one of the structures in the station: storage tanks of different pressure levels or a dispenser. This may lead to a hydrogen cloud occurring near the source of the release or at a given distance. The range of the cloud was analyzed in connection to the amount of the released gas and the wind velocity. The results of the calculations were compared for chosen structures in the station. Then potential fires and explosions were investigated. The hazard zones were calculated with respect to heat fluxes generated in the fires and the overpressure generated in explosions. The maximum ranges of these zones vary from about 14 to 30 m and from about 9 to 14 m for a fires and an explosions of hydrogen respectively. Finally human death probabilities are presented as functions of the distance from the sources of the uncontrolled hydrogen releases. These are shown for different amounts and pressures of the released gas. In addition the risk of human death is determined along with the area where it reaches the highest value in the whole station. The risk of human death in this area is 1.63 × 10−5 [1/year]. The area is approximately 8 square meters.
No more items...