- Home
- A-Z Publications
- Publications
Publications
Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method
Aug 2023
Publication
This paper presents a comparative analysis of two hydrogen station configurations during the refueling process: the conventional “directly pressurized refueling process” and the innovative “cascade refueling process.” The objective of the cascade process is to refuel vehicles without the need for booster compressors. The experiments were conducted at the Hydrogen Research and Fueling Facility located at California State University Los Angeles. In the cascade refueling process the facility buffer tanks were utilized as high-pressure storage enabling the refueling operation. Three different scenarios were tested: one involving the cascade refueling process and two involving compressor-driven refueling processes. On average each refueling event delivered 1.6 kg of hydrogen. Although the cascade refueling process using the high-pressure buffer tanks did not achieve the pressure target it resulted in a notable improvement in the nozzle outlet temperature trend reducing it by approximately 8 ◦C. Moreover the overall hydrogen chiller load for the two directly pressurized refuelings was 66 Wh/kg and 62 Wh/kg respectively whereas the cascading process only required 55 Wh/kg. This represents a 20% and 12% reduction in energy consumption compared to the scenarios involving booster compressors during fueling. The observed refueling range of 150–350 bar showed that the cascade process consistently required 12–20% less energy for hydrogen chilling. Additionally the nozzle outlet temperature demonstrated an approximate 8 ◦C improvement within this pressure range. These findings indicate that further improvements can be expected in the high-pressure region specifically above 350 bar. This research suggests the potential for significant improvements in the high-pressure range emphasizing the viability of the cascade refueling process as a promising alternative to the direct compression approach.
Examining Real-Road Fuel Consumption Performance of Hydrogen-Fueled Series Hybrid Vehicles
Oct 2023
Publication
The use of hydrogen fuel produced from renewable energy sources is an effective way to reduce well-to-wheel CO2 emissions from automobiles. In this study the performance of a hydrogen-powered series hybrid vehicle was compared with that of other powertrains such as gasoline-powered hybrid fuel cell and electric vehicles in a simulation that could estimate CO2 emissions under real-world driving conditions. The average fuel consumption of the hydrogenpowered series hybrid vehicle exceeded that of the gasoline-powered series hybrid vehicle under all conditions and was better than that of the fuel cell vehicle under urban and winding conditions with frequent acceleration and deceleration. The driving range was longer than that of the batterypowered vehicle but approximately 60% of that of the gasoline-powered series hybrid. Regarding the life-cycle assessment of CO2 emissions fuel cell and electric vehicles emitted more CO2 during the manufacturing process. Regarding fuel production CO2 emissions from hydrogen and electric vehicles depend on the energy source. However in the future this problem can be solved by using carbon-free energy sources for fuel production. Therefore hydrogen-powered series hybrid vehicles show a high potential to be environmentally friendly alternative fuel vehicles.
Multi-option Analytical Modeling of Levelised Costs Across Various Hydrogen Supply Chain Nodes
May 2024
Publication
Hydrogen is envisioned to become a fundamental energy vector for the decarbonization of energy systems. Two key factors that will define the success of hydrogen are its sustainability and competitiveness with alternative solutions. One of the many challenges for the proliferation of hydrogen is the creation of a sustainable supply chain. In this study a methodology aimed at assessing the economic feasibility of holistic hydrogen supply chains is developed. Based on the designed methodology a tool which calculates the levelized cost of hydrogen for the different stages of its supply chain: production transmission & distribution storage and conversion is proposed. Each stage is evaluated individually combining relevant technical and economic notions such as learning curves and scaling factors. Subsequently the findings from each stage are combined to assess the entire supply chain as a whole. The tool is then applied to evaluate case studies of various supply chains including large-scale remote and small-scale distributed green hydrogen supply chains as well as conventional steam methane reforming coupled with carbon capture and storage technologies. The results show that both green hydrogen supply chains and conventional methods can achieve a competitive LCOH of around €4/kg in 2030. However the key contribution of this study is the development of the tool which provides a foundation for a comprehensive evaluation of hydrogen supply chains that can be continuously improved through the inputs of additional users and further research on one or more of the interconnected stages.
Life Cycle Assessment and Economic Analysis of an Innovative Biogas Membrane Reformer for Hydrogen Production
Feb 2019
Publication
This work investigates the environmental and economic performances of a membrane reactor for hydrogen production from raw biogas. Potential benefits of the innovative technology are compared against reference hydrogen production processes based on steam (or autothermal) reforming water gas shift reactors and a pressure swing adsorption unit. Both biogas produced by landfill and anaerobic digestion are considered to evaluate the impact of biogas composition. Starting from the thermodynamic results the environmental analysis is carried out using environmental Life cycle assessment (LCA). Results show that the adoption of the membrane reactor increases the system efficiency by more than 20 percentage points with respect to the reference cases. LCA analysis shows that the innovative BIONICO system performs better than reference systems when biogas becomes a limiting factor for hydrogen production to satisfy market demand as a higher biogas conversion efficiency can potentially substitute more hydrogen produced by fossil fuels (natural gas). However when biogas is not a limiting factor for hydrogen production the innovative system can perform either similar or worse than reference systems as in this case impacts are largely dominated by grid electric energy demand and component use rather than conversion efficiency. Focusing on the economic results hydrogen production cost shows lower value with respect to the reference cases (4 €/kgH2 vs 4.2 €/kgH2) at the same hydrogen delivery pressure of 20 bar. Between landfill and anaerobic digestion cases the latter has the lower costs as a consequence of the higher methane content.
Minimizing Emissions from Grid-based Hydrogen Production in the United States
Jan 2023
Publication
Low-carbon hydrogen could be an important component of a net-zero carbon economy helping to mitigate emissions in a number of hard-to-abate sectors. The United States recently introduced an escalating production tax credit (PTC) to incentivize production of hydrogen meeting increasingly stringent embodied emissions thresholds. Hydrogen produced via electrolysis can qualify for the full subsidy under current federal accounting standards if the input electricity is generated by carbon-free resources but may fail to do so if emitting resources are present in the generation mix. While use of behind-the-meter carbon-free electricity inputs can guarantee compliance with this standard the PTC could also be structured to allow producers using grid-supplied electricity to qualify subject to certain clean energy procurement requirements. Herein we use electricity system capacity expansion modeling to quantitatively assess the impact of grid-connected electrolysis on the evolution of the power sector in the western United States through 2030 under multiple possible implementations of the clean hydrogen PTC. We find that subsidized grid-connected hydrogen production has the potential to induce additional emissions at effective rates worse than those of conventional fossil-based hydrogen production pathways. Emissions can be minimized by requiring grid-based hydrogen producers to match 100% of their electricity consumption on an hourly basis with physically deliverable ‘additional’ clean generation which ensures effective emissions rates equivalent to electrolysis exclusively supplied by behind-the-meter carbon-free generation. While these requirements cannot eliminate indirect emissions caused by competition for limited clean resources which we find to be a persistent result of large hydrogen production subsidies they consistently outperform alternative approaches relying on relaxed time matching or marginal emissions accounting. Added hydrogen production costs from enforcing an hourly matching requirement rather than no requirements are less than $1 kg−1 and can be near zero if clean firm electricity resources are available for procurement.
The Roadmap for a Green Hydrogen Economy in Trinidad & Tobago
Nov 2022
Publication
This publication presents the results of a pre-feasibility study to introduce a green hydrogen (GH2) market in Trinidad and Tobago (T&T). The study analyzed the potential supply and competitiveness of producing GH2 in T&T and the actions needed to build a foundation for producing green ammonia and methanol. The study updated previous estimates of renewable energy generation potential in the country. The study also highlighted Trinidad and Tobago's comparative advantage to produce GH2 with its ability to capitalize on existing infrastructure its know-how and capabilities and its long-standing trade relations. Lastly the study identifies demonstration projects and created a roadmap for developing a low carbon hydrogen economy in Trinidad and Tobago.
Exploring Hydrogen Embrittlement: Mechanisms, Consequences, and Advances in Metal Science
Jun 2024
Publication
Hydrogen embrittlement (HE) remains a pressing issue in materials science and engineering given its significant impact on the structural integrity of metals and alloys. This exhaustive review aims to thoroughly examine HE covering a range of aspects that collectively enhance our understanding of this intricate phenomenon. It proceeds to investigate the varied effects of hydrogen on metals illustrating its ability to profoundly alter mechanical properties thereby increasing vulnerability to fractures and failures. A crucial section of the review delves into how different metals and their alloys exhibit unique responses to hydrogen exposure shedding light on their distinct behaviors. This knowledge is essential for customizing materials to specific applications and ensuring structural dependability. Additionally the paper explores a diverse array of models and classifications of HE offering a structured framework for comprehending its complexities. These models play a crucial role in forecasting preventing and mitigating HE across various domains ranging from industrial settings to critical infrastructure.
Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues
Sep 2023
Publication
The perspective of natural hydrogen as a clear carbon-free and renewable energy source appears very promising. There have been many studies reporting significant concentrations of natural hydrogen in different countries. However natural hydrogen is being extracted to generate electricity only in Mali. This issue originates from the fact that global attention has not been dedicated yet to the progression and promotion of the natural hydrogen field. Therefore being in the beginning stage natural hydrogen science needs further investigation especially in exploration techniques and exploitation technologies. The main incentive of this work is to analyze the latest advances and challenges pertinent to the natural hydrogen industry. The focus is on elaborating geological origins ground exposure types extraction techniques previous detections of natural hydrogen exploration methods and underground hydrogen storage (UHS). Thus the research strives to shed light on the current status of the natural hydrogen field chiefly from the geoscience perspective. The data collated in this review can be used as a useful reference for the scientists engineers and policymakers involved in this emerging renewable energy source.
Benchmark Study for the Simulation of Underground Hydrogen Storage Operations
Aug 2022
Publication
While the share of renewable energy sources increased within the last years with an ongoing upward trend the energy sector is facing the problem of storing large amounts of electrical energy properly. To compensate daily and seasonal fluctuations a sufficient storage system has to be developed. The storage of hydrogen in the subsurface referred to as Underground Hydrogen Storage (UHS) shows potential to be a solution for this problem. Hydrogen produced from excess energy via electrolysis is injected into a subsurface reservoir and withdrawn when required. As hydrogen possesses unique thermodynamic properties many commonly used correlations can not be simply transferred to a system with a high hydrogen content. Mixing processes with the present fluids are essential to be understood to achieve high storage efficiencies. Additionally in the past microbial activity e.g. by methanogenic archaea was observed leading to a changing fluid composition over time. To evaluate the capability of reservoir simulators to cover these processes the present study establishes a benchmark scenario of an exemplary underground hydrogen storage scenario. The benchmark comprises of a generic sandstone gas reservoir and a typical gas storage schedule is defined. Based on this benchmark the present study assesses the capabilities of the commercial simulator Schlumberger ECLIPSE and the open-source simulator DuMux to mimic UHS related processes such as hydrodynamics but also microbial activity. While ECLIPSE offers a reasonable mix of user-friendliness and computation time DuMux allows for a better adjustment of correlations and the implementation of biochemical reactions. The corresponding input data (ECLIPSE format) and relevant results are provided in a repository to allow this simulation study’s reproduction and extension.
Hydrogen 4.0: A Cyber–Physical System for Renewable Hydrogen Energy Plants
May 2024
Publication
The demand for green hydrogen as an energy carrier is projected to exceed 350 million tons per year by 2050 driven by the need for sustainable distribution and storage of energy generated from sources. Despite its potential hydrogen production currently faces challenges related to cost efficiency compliance monitoring and safety. This work proposes Hydrogen 4.0 a cyber–physical approach that leverages Industry 4.0 technologies—including smart sensing analytics and the Internet of Things (IoT)—to address these issues in hydrogen energy plants. Such an approach has the potential to enhance efficiency safety and compliance through real-time data analysis predictive maintenance and optimised resource allocation ultimately facilitating the adoption of renewable green hydrogen. The following sections break down conventional hydrogen plants into functional blocks and discusses how Industry 4.0 technologies can be applied to each segment. The components benefits and application scenarios of Hydrogen 4.0 are discussed while how digitalisation technologies can contribute to the successful integration of sustainable energy solutions in the global energy sector is also addressed.
Implementation of Formic Acid as a Liquid Organic Hydrogen Carrier (LOHC): Techno-Economic Analysis and Life Cycle Assessment of Formic Acid Produced via CO2 Utilization
Sep 2022
Publication
To meet the global climate goals agreed upon regarding the Paris Agreement governments and institutions around the world are investigating various technologies to reduce carbon emissions and achieve a net-negative energy system. To this end integrated solutions that incorporate carbon utilization processes as well as promote the transition of the fossil fuel-based energy system to carbon-free systems such as the hydrogen economy are required. One of the possible pathways is to utilize CO2 as the base chemical for producing a liquid organic hydrogen carrier (LOHC) using CO2 as a mediating chemical for delivering H2 to the site of usage since gaseous and liquid H2 retain transportation and storage problems. Formic acid is a probable candidate considering its high volumetric H2 capacity and low toxicity. While previous studies have shown that formic acid is less competitive as an LOHC candidate compared to other chemicals such as methanol or toluene the results were based on out-of-date process schemes. Recently advances have been made in the formic acid production and dehydrogenation processes and an analysis regarding the recent process configurations could deem formic acid as a feasible option for LOHC. In this study the potential for using formic acid as an LOHC is evaluated with respect to the state-of-the-art formic acid production schemes including the use of heterogeneous catalysts during thermocatalytic and electrochemical formic acid production from CO2 . Assuming a hydrogen distribution system using formic acid as the LOHC each of the production transportation dehydrogenation and CO2 recycle sections are separately modeled and evaluated by means of techno-economic analysis (TEA) and life cycle assessment (LCA). Realistic scenarios for hydrogen distribution are established considering the different transportation and CO2 recovery options; then the separate scenarios are compared to the results of a liquefied hydrogen distribution scenario. TEA results showed that while the LOHC system incorporating the thermocatalytic CO2 hydrogenation to formic acid is more expensive than liquefied H2 distribution the electrochemical CO2 reduction to formic acid system reduces the H2 distribution cost by 12%. Breakdown of the cost compositions revealed that reduction of steam usage for thermocatalytic processes in the future can make the LOHC system based on thermocatalytic CO2 hydrogenation to formic acid to be competitive with liquefied H2 distribution if the production cost could be reduced by 23% and 32% according to the dehydrogenation mode selected. Using formic acid as a LOHC was shown to be less competitive compared to liquefied H2 delivery in terms of LCA but producing formic acid via electrochemical CO2 reduction was shown to retain the lowest global warming potential among the considered options.
Energy and Exergy-economic Performance Comparison of Wind, Solar Pond, and Ocean Thermal Energy Conversion Systems for Green Hydrogen Production
Jun 2024
Publication
The necessity of energy solutions that are economically viable ecologically sustainable and environmentally friendly has become fundamental to economic and societal advancement of nations. In this context renewable energy sources emerge as the most vital component. Furthermore hydrogen generation systems based on renewable energies are increasingly recognized as the most crucial strategies to mitigate global warming. In the present study a comparative analysis is conducted from an exergy-economic perspective to find the most efficient configuration among three different systems for renewable-based power to hydrogen production. These renewable sources are wind turbine salinity gradient solar pond (SGSP) and ocean thermal energy conversion (OTEC). SGSP and OTEC are coupled with a hydrogen production unit by a trilateral cycle (TLC) to improve the temperature match of the heating process. The heat waste energy within these systems is recovered by a thermoelectric generator (TEG) and a proton exchange membrane electrolyzer (PEME) is used for hydrogen production. Under base case input conditions the net power input of PEME is estimated to be approximately 327.8 kW across all configurations. Additionally the 3E (energy exergy and exergy-economic) performance of the three systems is evaluated by a parametric study and design optimization. The results of the best performance analysis reveal that the best exergy efficiency is achievable with the wind-based system in the range of 5.8–10.47% and for average wind speed of 8–12 m/s. Correspondingly the most favorable total cost rate is attributed to the wind-based system at a wind speed of 8 m/s equating to 66.08 USD/h. Subsequently the unit cost of hydrogen for the SGSP-based system is estimated to be the most economical ranging from 42.78 to 44.31 USD/GJ.
Global Land and Water Limits to Electrolytic Hydrogen Production Using Wind and Solar Resources
Sep 2023
Publication
Proposals for achieving net-zero emissions by 2050 include scaling-up electrolytic hydrogen production however this poses technical economic and environmental challenges. One such challenge is for policymakers to ensure a sustainable future for the environment including freshwater and land resources while facilitating low-carbon hydrogen production using renewable wind and solar energy. We establish a country-by-country reference scenario for hydrogen demand in 2050 and compare it with land and water availability. Our analysis highlights countries that will be constrained by domestic natural resources to achieve electrolytic hydrogen self-sufficiency in a net-zero target. Depending on land allocation for the installation of solar panels or wind turbines less than 50% of hydrogen demand in 2050 could be met through a local production without land or water scarcity. Our findings identify potential importers and exporters of hydrogen or conversely exporters or importers of industries that would rely on electrolytic hydrogen. The abundance of land and water resources in Southern and Central-East Africa West Africa South America Canada and Australia make these countries potential leaders in hydrogen export.
Conversion of a Small-Size Passenger Car to Hydrogen Fueling: 0D/1D Simulation of EGR and Related Flow Limitations
Jan 2024
Publication
Hydrogen is seen as a prime choice for complete replacement of gasoline so as to achieve zero-emissions energy and mobility. Combining the use of this alternative fuel with a circular economy approach for giving new life to the existing fleet of passenger cars ensures further benefits in terms of cost competitiveness. Transforming spark ignition (SI) engines to H2 power requires relatively minor changes and limited added components. Within this framework the conversion of a small-size passenger car to hydrogen fueling was evaluated based on 0D/1D simulation. One of the methods to improve efficiency is to apply exhaust gas recirculation (EGR) which also lowers NOx emissions. Therefore the previous version of the quasi-dimensional model was modified to include EGR and its effects on combustion. A dedicated laminar flame speed model was implemented for the specific properties of hydrogen and a purpose-built sub-routine was implemented to correctly model the effects of residual gas at the start of combustion. Simulations were performed in several operating points representative of urban and highway driving. One of the main conclusions was that highpressure recirculation was severely limited by the minimum flow requirements of the compressor. Low-pressure EGR ensured wider applicability and significant improvement of efficiency especially during partial-load operation specific to urban use. Another benefit of recirculation was that pressure rise rates were predicted to be more contained and closer to the values expected for gasoline fueling. This was possible due to the high tolerance of H2 to the presence of residual gas.
Green Hydrogen and Electrical Power Production through the Integration of CO2 Capturing from Biogas: Process Optimization and Dynamic Control
Jun 2021
Publication
This study describes the optimization of a modelling process concerning biogas’ use to generate green hydrogen and electrical power. The Aspen Plus simulation tool is used to model the procedure and the approach employed to limit the emissions of gas from the hydrogen production process will be the CO2 capture method. This technique uses slack lime (Ca(OH)2) to absorb CO2 capture since it is readily available. The study analyzes many critical parameters in the process including the temperature and pressure in the steam reforming (SR) and the water gas shift (WGS) reactions along with the steam to carbon ratio (S/C) to determine how the production of green hydrogen and electrical power will be influenced. Electricity generation is achieved by taking the residual water from the SR WGS carbonation reactions and converting it to the vapour phase allowing the steam to pass through the turbine to generate electricity. To examine the effects of the synchronized critical parameters response surface methodology (RSM) was used thus allowing the optimal operational conditions to be determined in the form of an optimized zone for operation. The result of parameter optimization gave the maximum green hydrogen production of 211.46 kmol/hr and electric power production of 2311.68 kWh representing increases of 34.86% and 5.62% respectively when using 100 kmol/hr of biogas. In addition control structures were also built to control the reactors’ temperature in the dynamic section. The tuning parameters can control the SR and WGS system’s reactor to maintain the system in approximately 0.29 h and 0.32 h respectively.
Inspection of Coated Hydrogen Transportation Pipelines
Sep 2023
Publication
The growing need for hydrogen indicates that there is likely to be a demand for transporting hydrogen. Hydrogen pipelines are an economical option but the issue of hydrogen damage to pipeline steels needs to be studied and investigated. So far limited research has been dedicated to determining how the choice of inspection method for pipeline integrity management changes depending on the presence of a coating. Thus this review aims to evaluate the effectiveness of inspection methods specifically for detecting the defects formed uniquely in coated hydrogen pipelines. The discussion will begin with a background of hydrogen pipelines and the common defects seen in these pipelines. This will also include topics such as blended hydrogen-natural gas pipelines. After which the focus will shift to pipeline integrity management methods and the effectiveness of current inspection methods in the context of standards such as ASME B31.12 and BS 7910. The discussion will conclude with a summary of newly available inspection methods and future research directions.
Experimental Study on the Performance of Controllers for the Hydrogen Gas Production Demanded by an Internal Combustion Engine
Aug 2018
Publication
This work presents the design and application of two control techniques—a model predictive control (MPC) and a proportional integral derivative control (PID) both in combination with a multilayer perceptron neural network—to produce hydrogen gas on-demand in order to use it as an additive in a spark ignition internal combustion engine. For the design of the controllers a control-oriented model identified with the Hammerstein technique was used. For the implementation of both controllers only 1% of the overall air entering through the throttle valve reacted with hydrogen gas allowing maintenance of the hydrogen–air stoichiometric ratio at 34.3 and the air–gasoline ratio at 14.6. Experimental results showed that the average settling time of the MPC controller was 1 s faster than the settling time of the PID controller. Additionally MPC presented better reference tracking error rates and standard deviation of 1.03 × 10−7 and 1.06 × 10−14 and had a greater insensitivity to measurement noise resulting in greater robustness to disturbances. Finally with the use of hydrogen as an additive to gasoline there was an improvement in thermal and combustion efficiency of 4% and 0.6% respectively and an increase in power of 545 W translating into a reduction of fossil fuel use.
Numerical Simulation of Liquid Hydrogen Evaporation in the Pressurized Tank During Venting
Sep 2023
Publication
CFD modelling of liquified hydrogen boiling and evaporation during the pressurised tank venting is presented. The model is based on the volume-of-fluid method for tracking liquid and gas phases and Lee’s model for phase change. The simulation results are compared against the liquid hydrogen evaporation experiment performed by Tani et al. (2021) in a large-scale pressurised storage tank using experimental pressure dynamics and temperatures measured in gas and liquid phases. The study focuses on tank pressure decrease and recovery phenomena during the first 15 s of the venting process. The model sensitivity have been studied applying different Lee’s model evaporisation-condensation coefficients. The CFD model provided reasonable agreement with the observed pressure and gas phase temperature dynamics during the liquid hydrogen storage depressurisation using Lee’s model coefficient =0.05 s-1. Experimentalists’ hypothesis about particularly intensive boiling in the proximity of thermocouples was supported by close agreement between simulated and experimental saturation temperatures obtained from pressure dynamics.
Proton Exchange Membrane Electrolyzer Modeling for Power Electronics Control: A Short Review
May 2020
Publication
The main purpose of this article is to provide a short review of proton exchange membrane electrolyzer (PEMEL) modeling used for power electronics control. So far three types of PEMEL modeling have been adopted in the literature: resistive load static load (including an equivalent resistance series-connected with a DC voltage generator representing the reversible voltage) and dynamic load (taking into consideration the dynamics both at the anode and the cathode). The modeling of the load is crucial for control purposes since it may have an impact on the performance of the system. This article aims at providing essential information and comparing the different load modeling.
Factors Driving the Decarbonisation of Industrial Clusters: A Rapid Evidence Assessment of International Experience
Sep 2023
Publication
Reducing industrial emissions to achieve net-zero targets by the middle of the century will require profound and sustained changes to how energy intensive industries operate. Preliminary activity is now underway with governments of several developed economies starting to implement policy and providing funding to support the deployment of low carbon infrastructure into high emitting industrial clusters. While clusters appear to offer the economies of scale and institutional capacity needed to kick-start the industrial transition to date there has been little systematic assessment of the factors that may influence the success of these initiatives. Drawing from academic and grey literature this paper presents a rapid evidence assessment of the approaches being used to drive the development of low carbon industrial clusters internationally. Many projects are still at the scoping stage but it is apparent that current initiatives focus on the deployment of carbon capture technologies alongside hydrogen as a future secondary revenue stream. This model of decarbonisation funnels investment into large coastal clusters with access to low carbon electricity and tends to obscure questions about the integration of these technologies with other decarbonisation interventions such as material efficiency and electrification. The technology focus also omits the importance that a favourable location and shared history and culture appears to have played in helping progress the most advanced initiatives; factors that cannot be easily replicated elsewhere. If clusters are to kick-start the low-carbon industrial transition then greater attention is needed to the social and political dimensions of this process and to a broader range of decarbonisation interventions and cluster types than represented by current projects.
No more items...