- Home
- A-Z Publications
- Publications
Publications
Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen
Jan 2022
Publication
Effective global decarbonization will require an array of solutions across a portfolio of low-carbon resources. One such solution is developing clean hydrogen. This unique fuel has the potential to minimize climate change impacts helping decarbonize hard-to-abate sectors such as heavy industry and global transport while also promoting energy security sustainable growth and job creation. The authors estimate suggest that hydrogen needs to grow seven-fold to support the global energy transition eventually accounting for ten percent of total energy consumption by 2050. A scaleup of this magnitude will increase demand for materials such as aluminum copper iridium nickel platinum vanadium and zinc to support hydrogen technologies - renewable electricity technologies and the electrolyzers for renewable hydrogen carbon storage for low-carbon hydrogen or fuel cells using hydrogen to power transport. This report a joint product of the World Bank and the Hydrogen Council examines these three critical areas. Using new data on the material intensities of key technologies the report estimates the amount of critical minerals needed to scale clean hydrogen. In addition it shows how incorporating sustainable practices and policies for mining and processing materials can help minimize environmental impacts. Key among these approaches is the use of recycled materials innovations in design in order to reduce material intensities and adoption of policies from the Climate Smart Mining (CSM) Framework to reduce impacts to greenhouse gas emissions and water footprint.
Towards the Integration of Flexible Green Hydrogen Demand and Production in Ireland: Opportunities, Barriers, and Recommendations
Dec 2022
Publication
Ireland’s Climate Action Plan 2021 has set out ambitious targets for decarbonization across the energy transport heating and agriculture sectors. The Climate Action Plan followed the Climate Act 2021 which committed Ireland to a legally binding target of net-zero greenhouse gas emissions no later than 2050 and a reduction of 51% by 2030. Green hydrogen is recognized as one of the most promising technologies for enabling the decarbonization targets of economies across the globe but significant challenges remain to its large-scale adoption. This research systematically investigates the barriers and opportunities to establishing a green hydrogen economy by 2050 in Ireland by means of an analysis of the policies supporting the optimal development of an overall green hydrogen eco-system in the context of other decarbonizing technologies including green hydrogen production using renewable generation distribution and delivery and final consumption. The outcome of this analysis is a set of clear recommendations for the policymaker that will appropriately support the development of a green hydrogen market and eco-system in parallel with the development of other more mature low-carbon technologies. The analysis has been supplemented by an open “call for evidence” which gathered relevant information about the future policy and roles of hydrogen involving the most prominent stakeholders of hydrogen in Ireland. Furthermore the recommendations and conclusions from the research have been validated by this mechanism.
Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry
Apr 2023
Publication
The European steel industry is experiencing new challenges related to the market situation and climate policy. Experience from the period of pandemic restrictions and the effects of Russia’s armed invasion of Ukraine has given many countries a basis for including steel along with raw materials (coke iron ore electricity) in economic security products (CRMA). Steel is needed for economic infrastructure and construction development as well as a material for other industries (without steel factories will not produce cars machinery ships washing machines etc.). In 2022 steelmakers faced a deepening energy crisis and economic slowdown. The market situation prompted steelmakers to impose restrictions on production volumes (worldwide production fell by 4% compared to the previous year). Despite the difficult economic situation of the steel industry (production in EU countries fell by 11% in 2022 compared to the previous year) the EU is strengthening its industrial decarbonisation policy (“Fit for 55”). The decarbonisation of steel production is set to accelerate by 2050. To sharply reduce carbon emissions steel mills need new steelmaking technologies. The largest global steelmakers are already investing in new technologies that will use green hydrogen (produced from renewable energy sources). Reducing iron ore with hydrogen plasma will drastically reduce CO2 emissions (steel production using hydrogen could emit up to 95% less CO2 than the current BF + BOF blast furnace + basic oxygen furnace integrated method). Investments in new technologies must be tailored to the steel industry. A net zero strategy (deep decarbonisation goal) may have different scenarios in different EU countries. The purpose of this paper was to introduce the conditions for investing in low-carbon steelmaking technologies in the Polish steel market and to develop (based on expert opinion) scenarios for the decarbonisation of the Polish steel industry.
Comparative TCO Analysis of Battery Electric and Hydrogen Fuel Cell Buses for Public Transport System in Small to Midsize Cities
Jul 2021
Publication
This paper shows the results of an in-depth techno-economic analysis of the public transport sector in a small to midsize city and its surrounding area. Public battery-electric and hydrogen fuel cell buses are comparatively evaluated by means of a total cost of ownership (TCO) model building on historical data and a projection of market prices. Additionally a structural analysis of the public transport system of a specific city is performed assessing best fitting bus lines for the use of electric or hydrogen busses which is supported by a brief acceptance evaluation of the local citizens. The TCO results for electric buses show a strong cost decrease until the year 2030 reaching 23.5% lower TCOs compared to the conventional diesel bus. The optimal electric bus charging system will be the opportunity (pantograph) charging infrastructure. However the opportunity charging method is applicable under the assumption that several buses share the same station and there is a “hotspot” where as many as possible bus lines converge. In the case of electric buses for the year 2020 the parameter which influenced the most on the TCO was the battery cost opposite to the year 2030 in where the bus body cost and fuel cost parameters are the ones that dominate the TCO due to the learning rate of the batteries. For H2 buses finding a hotspot is not crucial because they have a similar range to the diesel ones as well as a similar refueling time. H2 buses until 2030 still have 15.4% higher TCO than the diesel bus system. Considering the benefits of a hypothetical scaling-up effect of hydrogen infrastructures in the region the hydrogen cost could drop to 5 €/kg. In this case the overall TCO of the hydrogen solution would drop to a slightly lower TCO than the diesel solution in 2030. Therefore hydrogen buses can be competitive in small to midsize cities even with limited routes. For hydrogen buses the bus body and fuel cost make up a large part of the TCO. Reducing the fuel cost will be an important aspect to reduce the total TCO of the hydrogen bus.
Fuelling the Transition Podcast: How Will Hydrogen Heat and Safety in the Home?
Jan 2022
Publication
In this episode Angela Needle Director of Strategy at Cadent and John Williams Head of Hydrogen Expertise Cluster at AFRY Management Consulting join us to discuss a range of topics concerning hydrogen and the energy transition. This includes Cadent’s involvement in hydrogen through HyNet the role of hydrogen in heat safety and plans for the first hydrogen village. They also explore Angela’s role as co-founder of the Women’s Utilities Network a group focussed on helping women develop their skills within the energy space.
The podcast can be found on their website.
The podcast can be found on their website.
Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool
Apr 2023
Publication
The use of fossil fuels has caused many environmental issues including greenhouse gas emissions and associated climate change. Several studies have focused on mitigating this problem. One dynamic direction for emerging sources of future renewable energy is the use of hydrogen energy. In this research we evaluate the sourcing decision for a hydrogen supply chain in the context of a case study in Thailand using group decision making analysis for policy implications. We use an integrative multi-criteria decision analysis (MCDA) tool which includes an analytic hierarchy process (AHP) fuzzy AHP (FAHP) and data envelopment analysis (DEA) to analyze weighted criteria and sourcing alternatives using data collected from a group of selected experts. A list of criteria related to sustainability paradigms and sourcing decisions for possible use of hydrogen energy including natural gas coal biomass and water are evaluated. Our results reveal that political acceptance is considered the most important criterion with a global weight of 0.514 in the context of Thailand. Additionally natural gas is found to be the foreseeable source for hydrogen production in Thailand with a global weight of 0.313. We also note that the analysis is based on specific data inputs and that an alternative with a lower score does not imply that the source is not worth exploring.
Analysis and Design of Fuel Cell Systems for Aviation
Feb 2018
Publication
In this paper the design of fuel cells for the main energy supply of passenger transportation aircraft is discussed. Using a physical model of a fuel cell general design considerations are derived. Considering different possible design objectives the trade-off between power density and efficiency is discussed. A universal cost–benefit curve is derived to aid the design process. A weight factor wP is introduced which allows incorporating technical (e.g. system mass and efficiency) as well as non-technical design objectives (e.g. operating cost emission goals social acceptance or technology affinity political factors). The optimal fuel cell design is not determined by the characteristics of the fuel cell alone but also by the characteristics of the other system components. The fuel cell needs to be designed in the context of the whole energy system. This is demonstrated by combining the fuel cell model with simple and detailed design models of a liquid hydrogen tank. The presented methodology and models allows assessing the potential of fuel cell systems for mass reduction of future passenger aircraft.
Technology Roadmap for Hydrogen-fuelled Transportation in the UK
Apr 2023
Publication
Transportation is the sector responsible for the largest greenhouse gas emission in the UK. To mitigate its impact on the environment and move towards net-zero emissions by 2050 hydrogen-fuelled transportation has been explored through research and development as well as trials. This article presents an overview of relevant technologies and issues that challenge the supply use and marketability of hydrogen for transportation application in the UK covering on-road aviation maritime and rail transportation modes. The current development statutes of the different transportation modes were reviewed and compared highlighting similarities and differences in fuel cells internal combustion engines storage technologies supply chains and refuelling characteristics. In addition common and specific future research needs in the short to long term for the different transportation modes were suggested. The findings showed the potential of using hydrogen in all transportation modes although each sector faces different challenges and requires future improvements in performance and cost development of innovative designs refuelling stations standards and codes regulations and policies to support the advancement of the use of hydrogen.
Hydrogen Recombiners for Non-nuclear Hydrogen Safety Applications
Sep 2023
Publication
Hydrogen recombiners are catalyst-based hydrogen mitigation systems that have been successfully implemented in the nuclear industry but have not yet received serious interest from the hydrogen industry. Recombiners have been installed in the containment buildings of many nuclear power plants to prevent the accumulation of hydrogen in potential accidents. The attractiveness of hydrogen recombiners for the nuclear industry is due to the confined state of the containment building where hydrogen cannot be vented easily and its passive design where no power or actions are needed for the unit to operate. Alternatively in the hydrogen industry most applications utilize ventilation to mitigate potential hydrogen accumulation in confined areas and passive safety is not essential. However many applications in the hydrogen industry may utilize hydrogen recombiners from a different approach. For instance recombiners could be utilized in emerging hydrogen areas to minimize the costs of ventilation upgrades or built into hydrogen appliances to avoid vent connections. The potential applications for recombiners in the hydrogen industry have different atmospheric conditions than the nuclear industry which may impact the catalyst in the units and render them less effective. Thus experiments have been performed to investigate the limits of the recombiner catalyst and if modifications to the catalyst can extend their use to the hydrogen industry. This paper will present and discuss the applications of interest conditions that may affect the catalyst and results from experiments investigating the catalyst behaviour at temperatures less than 0 °C and carbon monoxide concentrations up to 1000 ppm.
Tourist Preferences for Fuel Cell Vehicle Rental: Going Green with Hydrogen on the Island of Tenerife
Mar 2023
Publication
Using a discrete choice experiment (DCE) a survey of international tourists on the island of Tenerife is conducted to examine preferences for fuel cell vehicle (FCV) rental while on vacation. Survey respondents were generally supportive of FCVs and willing to hire one as part of their trip but for most individuals this is contingent on an adequate fuel station infrastructure. A latent class model was used to identify three distinct groups; one of which potentially represent early adopters e they have a high willingness-to-pay (WTP) for green hydrogen and are more likely to accept a low number of fuel stations but it could be challenging to convince them to use FCVs if they are not run on green hydrogen.
An Integrated Demand Response Dispatch Strategy for Low-carbon Energy Supply Park Considering Electricity-Hydrogen-Carbon Coordination
Apr 2023
Publication
Driven by the goal of ‘carbon peak carbon neutrality’ an integrated demand response strategy for integrated electricity– hydrogen energy systems is proposed for low-carbon energy supply parks considering the multi-level and multi-energy characteristics of campus-based microgrids. Firstly considering the spatial and temporal complementary nature of wind and photovoltaic generation and energy utilization the energy flow framework of the park is built based on the electricity and hydrogen energy carriers. Clean energy is employed as the main energy supply and power heat cooling and gas loads are considered energy consumption. Secondly the operation mechanism of coupled hydrogen storage hydrogen fuel cell and carbon capture equipment is analyzed in the two-stage power-to-gas conversion process. Thirdly considering the operating costs and environmental costs of the park an integrated demand response dispatch model is constructed for the coupled electricity– hydrogen–carbon system while satisfying the system equipment constraints network constraints and energy balance constraints of the park system. Finally Case study in an energy supply park system is implemented. The dispatch results of the integrated demand response with customer participation in the conventional electricity–hydrogen and electricity–hydrogen–carbon modes are compared to verify the effectiveness of the proposed strategy in renewable accommodation environmental protection and economic benefits.
Preliminary Study for the Commercialization of a Electrochemical Hydrogen Compressor
Mar 2023
Publication
A global energy shift to a carbon‐neutral society requires clean energy. Hydrogen can accelerate the process of expanding clean and renewable energy sources. However conventional hydrogen compression and storage technology still suffers from inefficiencies high costs and safety concerns. An electrochemical hydrogen compressor (EHC) is a device similar in structure to a water electrolyzer. Its most significant advantage is that it can accomplish hydrogen separation and compression at the same time. With no mechanical motion and low energy consumption the EHC is the key to future hydrogen compression and purification technology breakthroughs. In this study the compression performance efficiency and other related parameters of EHC are investigated through experiments and simulation calculations. The experimental results show that under the same experimental conditions increasing the supply voltage and the pressure in the anode chamber can improve the reaction rate of EHC and balance the pressure difference between the cathode and anode. The presence of residual air in the anode can impede the interaction between hydrogen and the catalyst as well as the proton exchange membrane (PEM) resulting in a decrease in performance. In addition it was found that a single EHC has a better compression ratio and reaction rate than a double EHC. The experimental results were compatible with the theoretical calculations within less than a 7% deviation. Finally the conditions required to reach commercialization were evaluated using the theoretical model.
Process Reconfiguration and Intensification: An Emerging Opportunity Enabling Efficient Carbon Capture and Low-cost Blue Hydrogen Production
Mar 2023
Publication
Low-carbon hydrogen can play a significant role in decarbonizing the world. Hydrogen is currently mainly produced from fossil sources requiring additional CO2 capture to decarbonize which energy intense and costly. In a recent Green Energy & Environment paper Cheng and Di et al. proposed a novel integration process referred to as SECLRHC to generate high-purity H2 by in-situ separation of H2 and CO without using any additional separation unit. Theoretically the proposed process can essentially achieve the separation of C and H in gaseous fuel via a reconfigured reaction process and thus attaining high-purity hydrogen of ∼99% as well as good carbon and hydrogen utilization rates and economic feasibility. It displays an optimistic prospect that industrial decarbonization is not necessarily expensive as long as a suitable CCS measure can be integrated into the industrial manufacturing process.
2022 EU and National Policies Report
Mar 2022
Publication
Purpose: The policy module of the FCHO presents an overview of EU and national policies across various hydrogen and fuel cell related sectors. It provides a snapshot of the current state of hydrogen legislation and policy. Scope: This report covers 34 entities and it reflects data collected January 2022 – February 2022. Key Findings: Hydrogen policies are relatively commonplace among European countries but with large differences between member states. Mobility policies for FCEVs are the most common policy types. EU hydrogen leaders do not lag behind global outliers such as South Korea or Japan.
OIES Podcast - The EU Hydrogen and Gas Decarbonisation Package
Mar 2023
Publication
David Ledesma discusses with Alex Barnes the European Commission’s decision to make hydrogen a key part of its decarbonisation strategy. The 2022 REPowerEU Strategy set a target of 20MT consumption of renewable hydrogen by 2030. The Commission is keen to promote a single European market in hydrogen similar to the current one for natural gas. To this end it has published proposals on the regulation of future European hydrogen infrastructure (pipelines storage facilities and import terminals). The EU Council (representing Member States) and the EU Parliament are finalising their amendments to the Commission proposals prior to ‘trilogue’ negotiations and final agreement later this year. The OIES’s paper ‘The EU Hydrogen and Gas Decarbonisation Package: help or hindrance for the development of a European hydrogen market?’ published in March 2023 examines the EU Commission proposals and their suitability for a developing hydrogen market.
The podcast can be found on their website.
The podcast can be found on their website.
Assessing the Performance of Fuel Cell Electric Vehicles Using Synthetic Hydrogen Fuel
Mar 2024
Publication
The deployment of hydrogen fuel cell electric vehicles (FCEVs) is critical to achieve zero emissions. A key parameter influencing FCEV performance and durability is hydrogen fuel quality. The real impact of contaminants on FCEV performance is not well understood and requires reliable measurements from real-life events (e.g. hydrogen fuel in poor-performing FCEVs) and controlled studies on the impact of synthetic hydrogen fuel on FCEV performance. This paper presents a novel methodology to flow traceable hydrogen synthetic fuel directly into the FCEV tank. Four different synthetic fuels containing N2 (90–200 µmol/mol) CO (0.14–5 µmol/mol) and H2S (4–11 nmol/mol) were supplied to an FCEV and subsequently sampled and analyzed. The synthetic fuels containing known contaminants powered the FCEV and provided real-life performance testing of the fuel cell system. The results showed for the first time that synthetic hydrogen fuel can be used in FCEVs without the requirement of a large infrastructure. In addition this study carried out a traceable H2 contamination impact study with an FCEV. The impact of CO and H2S at ISO 14687:2019 threshold levels on FCEV performance showed that small exceedances of the threshold levels had a significant impact even for short exposures. The methodology proposed can be deployed to evaluate the composition of any hydrogen fuel.
Metallic Materials for Hydrogen Storage—A Brief Overview
Nov 2022
Publication
The research and development of materials suitable for hydrogen storage has received a great deal of attention worldwide. Due to the safety risks involved in the conventional storage of hydrogen in its gaseous or liquid phase in containers and tanks development has focused on solid-phase hydrogen storage including metals. Light metal alloys and high-entropy alloys which have a high potential for hydrogen absorption/desorption at near-standard ambient conditions are receiving interest. For the development of these alloys due to the complexity of their compositions a computational approach using CALPHAD (Calculation of Phases Diagrams) and machine learning (ML) methods that exploit thermodynamic databases of already-known and experimentally verified systems are being increasingly applied. In order to increase the absorption capacity or to decrease the desorption temperature and to stabilize the phase composition specific material preparation methods (HEBM—high-energy milling HPT—high-pressure torsion) referred to as activation must be applied for some alloys.
Economic Evaluation of an Ammonia-Fueled Ammonia Carrier Depending on Methods of Ammonia Fuel Storage
Dec 2021
Publication
This study proposed two concepts for ammonia fuel storage for an ammonia-fueled ammonia carrier and evaluated these concepts in terms of economics. The first concept was to use ammonia in the cargo tank as fuel and the second concept was to install an additional independent fuel tank in the vessel. When more fuel tanks were installed there was no cargo loss. However there were extra costs for fuel tanks. The target ship was an 84000 m3 ammonia carrier (very large gas carrier VLGC). It traveled from Kuwait to South Korea. The capacity of fuel tanks was 4170 m3 which is the required amount for the round trip. This study conducted an economic evaluation to compare the two proposed concepts. Profits were estimated based on sales and life cycle cost (LCC). Results showed that sales were USD 1223 million for the first concept and USD 1287 million for the second concept. Profits for the first and second concepts were USD 684.3 million and USD 739.5 million respectively. The second concept showed a USD 53.1 million higher profit than the first concept. This means that the second concept which installed additional independent fuel tanks was better than the first concept in terms of economics. Sensitivity analysis was performed to investigate the influence of given parameters on the results. When the ammonia fuel price was changed by ±25% there was a 15% change in the profits and if the ammonia (transport) fee was changed by ±25% there was a 45% change in the profits. The ammonia fuel price and ammonia (cargo) transport fee had a substantial influence on the business of ammonia carriers.
Risk Analysis of Fire and Explosion of Hydrogen-Gasoline Hybrid Refueling Station Based on Accident Risk Assessment Method for Industrial System
Apr 2023
Publication
Hydrogen–gasoline hybrid refueling stations can minimize construction and management costs and save land resources and are gradually becoming one of the primary modes for hydrogen refueling stations. However catastrophic consequences may be caused as both hydrogen and gasoline are flammable and explosive. It is crucial to perform an effective risk assessment to prevent fire and explosion accidents at hybrid refueling stations. This study conducted a risk assessment of the refueling area of a hydrogen–gasoline hybrid refueling station based on the improved Accident Risk Assessment Method for Industrial Systems (ARAMIS). An improved probabilistic failure model was used to make ARAMIS more applicable to hydrogen infrastructure. Additionally the accident consequences i.e. jet fires and explosions were simulated using Computational Fluid Dynamics (CFD) methods replacing the traditional empirical model. The results showed that the risk levels at the station house and the road near the refueling area were 5.80 × 10−5 and 3.37 × 10−4 respectively and both were within the acceptable range. Furthermore the hydrogen dispenser leaked and caused a jet fire and the flame ignited the exposed gasoline causing a secondary accident considered the most hazardous accident scenario. A case study was conducted to demonstrate the practicability of the methodology. This method is believed to provide trustworthy decisions for establishing safe distances from dispensers and optimizing the arrangement of the refueling area.
Future Pathways for Energy Networks: A Review of International Experiences in High Income Countries
Oct 2022
Publication
Energy networks are the systems of pipes and wires by which different energy vectors are transported from where they are produced to where they are needed. As such these networks are central to facilitating countries’ moves away from a reliance on fossil fuels to a system based around the efficient use of renewable and other low carbon forms of energy. In this review we highlight the challenges facing energy networks from this transition in a sample of key high income countries. We identify the technical and other innovations being implemented to meet these challenges and describe some of the new policy and regulatory developments that are incentivising the required changes. We then review evidence from the literature about the benefits of moving to a more integrated approach based on the concept of a Multi-Vector Energy Network (MVEN). Under this approach the different networks are planned and operated together to achieve greater functionality and performance than simply the sum of the individual networks. We find that most studies identify a range of benefits from an MVEN approach but that these findings are based on model simulations. Further work is therefore needed to verify whether the benefits can be realised in practice and to identify how any risks can be mitigated.
No more items...