- Home
- A-Z Publications
- Publications
Publications
Solar Fuel Processing: Comparative Mini-review on Research, Technology Development, and Scaling
Oct 2022
Publication
Solar energy provides an unprecedented potential as a renewable and sustainable energy resource and will substantially reshape our future energy economy. It is not only useful in producing electricity but also (hightemperature) heat and fuel both required for non-electrifiable energy services. Fuels are particularly valuable as they are energy dense and storable and they can also act as a feedstock for the chemical industry. Technical pathways for the processing of solar fuels include thermal pathways (e.g. solar thermochemistry) photo pathways (e.g. photoelectrochemistry) and combinations thereof. A review of theoretical limits indicates that all technical solar fuel processing pathways have the potential for competitive solar-to-fuel efficiencies (>10 %) but require very different operating conditions (e.g. temperature levels or oxygen partial pressures) making them complementary and highly versatile for process integration. Progress in photoelectrochemical devices and solar thermochemical reactors over the last 50 + years are summarized showing encouraging trends in terms of performance technological viability and scaling.
Interaction of Hydrogen Infrastructures with other Sector Coupling Options Towards a Zero-emission Energy System in Germany
Aug 2021
Publication
The flexible coupling of sectors in the energy system for example via battery electric vehicles electric heating or electric fuel production can contribute significantly to the integration of variable renewable electricity generation. For the implementation of the energy system transformation however there are numerous options for the design of sector coupling each of which is accompanied by different infrastructure requirements. This paper presents the extension of the REMix energy system modelling framework to include the gas sector and its application for investigating the cost-optimal design of sector coupling in Germany's energy system. Considering an integrated optimisation of all relevant technologies in their capacities and hourly use a path to a climate-neutral system in 2050 is analysed. We show that the different options for flexible sector coupling are all needed and perform different functions. Even though flexible electrolytic production of hydrogen takes on a very dominant role in 2050 it does not displace other technologies. Hydrogen also plays a central role in the seasonal balancing of generation and demand. Thus large-scale underground storage is part of the optimal system in addition to a hydrogen transport network. These results provide valuable guidance for the implementation of the energy system transformation in Germany.
Experimental Study on Flame Characteristics of Cryogenic Hydrogen Jet Fire
Sep 2021
Publication
In this work cryogenic hydrogen fires at fixed pressures and various initial temperatures were investigated experimentally. Flame length width heat fluxes and temperatures in down-stream regions were measured for the scenarios with 1.6-3 mm jet nozzle 106 to 273 K 2-5 barabs. The results show that the flame size is related to not only the jet nozzle diameter but also the release pressure and initial temperature. The correlations of normalized flame length and width are proposed with the stagnation pressure and the ratio of ambient and stagnation temperatures. Under constant pressure the flame size total radiative power and radiation fraction increase with the decrease of temperature due to lower choked flow velocity and higher density of cryogenic hydrogen. The correlation of radiation fraction proposed by Molina et al. at room temperature is not suitable to predict the cryogenic hydrogen jet fires. Based on piecewise polynomial law
The Role of Natural Gas and its Infrastructure in Mitigating Greenhouse Gas Emissions, Improving Regional Air Quality, and Renewable Resource Integration
Nov 2017
Publication
The pursuit of future energy systems that can meet electricity demands while supporting the attainment of societal environment goals including mitigating climate change and reducing pollution in the air has led to questions regarding the viability of continued use of natural gas. Natural gas use particularly for electricity generation has increased in recent years due to enhanced resource availability from non-traditional reserves and pressure to reduce greenhouse gasses (GHG) from higher-emitting sources including coal generation. While lower than coal emissions current natural gas power generation strategies primarily utilize combustion with higher emissions of GHG and criteria pollutants than other low-carbon generation options including renewable resources. Furthermore emissions from life cycle stages of natural gas production and distribution can have additional detrimental GHG and air quality (AQ) impacts. On the other hand natural gas power generation can play an important role in supporting renewable resource integration by (1) providing essential load balancing services and (2) supporting the use of gaseous renewable fuels through the existing infrastructure of the natural gas system. Additionally advanced technologies and strategies including fuel cells and combined cooling heating and power (CCHP) systems can facilitate natural gas generation with low emissions and high efficiencies. Thus the role of natural gas generation in the context of GHG mitigation and AQ improvement is complex and multi-faceted requiring consideration of more than simple quantification of total or net emissions. If appropriately constructed and managed natural gas generation could support and advance sustainable and renewable energy. In this paper a review of the literature regarding emissions from natural gas with a focus on power generation is conducted and discussed in the context of GHG and AQ impacts. In addition a pathway forward is proposed for natural gas generation and infrastructure to maximize environmental benefits and support renewable resources in the attainment of emission reductions.
Parametric Study and Electrocatalyst of Polymer Electrolyte Membrane (PEM) Electrolysis Performance
Jan 2023
Publication
An investigation was conducted to determine the effects of operating parameters for various electrode types on hydrogen gas production through electrolysis as well as to evaluate the efficiency of the polymer electrolyte membrane (PEM) electrolyzer. Deionized (DI) water was fed to a single-cell PEM electrolyzer with an active area of 36 cm2 . Parameters such as power supply (50–500 mA/cm2 ) feed water flow rate (0.5–5 mL/min) water temperature (25−80 ◦C) and type of anode electrocatalyst (0.5 mg/cm2 PtC [60%] 1.5 mg/cm2 IrRuOx with 1.5 mg/cm2 PtB 3.0 mg/cm2 IrRuOx and 3.0 mg/cm2 PtB) were varied. The effects of these parameter changes were then analyzed in terms of the polarization curve hydrogen flowrate power consumption voltaic efficiency and energy efficiency. The best electrolysis performance was observed at a DI water feed flowrate of 2 mL/min and a cell temperature of 70 ◦C using a membrane electrode assembly that has a 3.0 mg/cm2 IrRuOx catalyst at the anode side. This improved performance of the PEM electrolyzer is due to the reduction in activation as well as ohmic losses. Furthermore the energy consumption was optimal when the current density was about 200 mA/cm2 with voltaic and energy efficiencies of 85% and 67.5% respectively. This result indicates low electrical energy consumption which can lower the operating cost and increase the performance of PEM electrolyzers. Therefore the optimal operating parameters are crucial to ensure the ideal performance and durability of the PEM electrolyzer as well as lower its operating costs.
Performance of Common Rail Direct Injection (CRDi) Engine Using Ceiba Pentandra Biodiesel and Hydrogen Fuel Combination
Nov 2021
Publication
An existing diesel engine was fitted with a common rail direct injection (CRDi) facility to inject fuel at higher pressure in CRDi mode. In the current work rotating blades were incorporated in the piston cavity to enhance turbulence. Pilot fuels used are diesel and biodiesel of Ceiba pentandra oil (BCPO) with hydrogen supply during the suction stroke. Performance evaluation and emission tests for CRDi mode were carried out under different loading conditions. In the first part of the work maximum possible hydrogen substitution without knocking was reported at an injection timing of 15◦ before top dead center (bTDC). In the second part of the work fuel injection pressure (IP) was varied with maximum hydrogen fuel substitution. Then in the third part of the work exhaust gas recirculation (EGR) was varied to study the nitrogen oxides (NOx) generated. At 900 bar HC emissions in the CRDi engine were reduced by 18.5% and CO emissions were reduced by 17% relative to the CI mode. NOx emissions from the CRDi engine were decreased by 28% relative to the CI engine mode. At 20% EGR lowered the BTE by 14.2% and reduced hydrocarbons nitrogen oxide and carbon monoxide by 6.3% 30.5% and 9% respectively compared to the CI mode of operation.
Everything About Hydrogen Podcast: Global Energy Majors in the Hydrogen Space
Jul 2022
Publication
On today’s episode of Everything About Hydrogen we are speaking with Paul Bogers Vice President for Hydrogen at Shell. As a company Shell needs no introduction but the company’s work and investments in the hydrogen space make it a global leader in the energy transition especially when it comes to the hydrogen component. Paul is amongst the executives at Shell that are working to bring their hydrogen vision to fruition and it is great to have him with us on the show today.
The podcast can be found on their website
The podcast can be found on their website
The Potential Role of Ammonia as Marine Fuel—Based on Energy Systems Modeling and Multi-Criteria Decision Analysis
Apr 2020
Publication
To reduce the climate impact of shipping the introduction of alternative fuels is required. There is a range of different marine fuel options but ammonia a potential zero carbon fuel has recently received a lot of attention. The purpose of this paper is to assess the prospects for ammonia as a future fuel for the shipping sector in relation to other marine fuels. The assessment is based on a synthesis of knowledge in combination with: (i) energy systems modeling including the cost-effectiveness of ammonia as marine fuel in relation to other fuels for reaching global climate targets; and (ii) a multi-criteria decision analysis (MCDA) approach ranking marine fuel options while considering estimated fuel performance and the importance of criteria based on maritime stakeholder preferences. In the long-term and to reach global GHG reduction the energy systems modeled indicate that the use of hydrogen represents a more cost-effective marine fuel option than ammonia. However in the MCDA covering more aspects we find that ammonia may be almost as interesting for shipping related stakeholders as hydrogen and various biomass-based fuels. Ammonia may to some extent be an interesting future marine fuel option but many issues remain to be solved before large-scale introduction.
Numerical Analysis on the Mechanism of Blast Mitigation by Water Droplets
Sep 2021
Publication
Hydrogen has a high risk of ignition owing to its extremely low ignition energy and wide range of flammability. Therefore acquiring parameters relating to safe usage is of particular interest. The ignition of hydrogen generates combustion processes such as detonation and deflagration which may produce a blast wave. The severity of injuries sustained from a blast wave is determined by its strength. To reduce the physical hazards caused by explosion there is a need for some concepts for attenuating explosions and blast waves. In the present study we used water droplets as a material to reduce the blast wave strength. Numerical analysis of the interaction between blast waves and water droplets in a shock tube was conducted to understand the mitigation mechanism of blast wave. In this report we numerically modelled the experiment conducted by Mataradze et al. [1] to understand the main factor of blast mitigation by water droplets. In order to quantitatively clarify the mitigation effect of water droplets on the blast wave especially by quasi-steady drag here we conducted parameter studies on water droplet sprayed region. From this calculation it was suggested that the location of water droplet sprayed layer did not affect the blast mitigation effect at far side of the high explosives.
Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons—Numerical and Experimental Perspective
Aug 2021
Publication
Nanoporous carbons remain the most promising candidates for effective hydrogen storage by physisorption in currently foreseen hydrogen-based scenarios of the world’s energy future. An optimal sorbent meeting the current technological requirement has not been developed yet. Here we first review the storage limitations of currently available nanoporous carbons then we discuss possible ways to improve their storage performance. We focus on two fundamental parameters determining the storage (the surface accessible for adsorption and hydrogen adsorption energy). We define numerically the values nanoporous carbons have to show to satisfy mobile application requirements at pressures lower than 120 bar. Possible necessary modifications of the topology and chemical compositions of carbon nanostructures are proposed and discussed. We indicate that pore wall fragmentation (nano-size graphene scaffolds) is a partial solution only and chemical modifications of the carbon pore walls are required. The positive effects (and their limits) of the carbon substitutions by B and Be atoms are described. The experimental ‘proof of concept’ of the proposed strategies is also presented. We show that boron substituted nanoporous carbons prepared by a simple arc-discharge technique show a hydrogen adsorption energy twice as high as their pure carbon analogs. These preliminary results justify the continuation of the joint experimental and numerical research effort in this field.
From Microcars to Heavy-Duty Vehicles: Vehicle Performance Comparison of Battery and Fuel Cell Electric Vehicles
Oct 2021
Publication
Low vehicle occupancy rates combined with record conventional vehicle sales justify the requirement to optimize vehicle type based on passengers and a powertrain with zero-emissions. This study compares the performance of different vehicle types based on the number of passengers/payloads powertrain configuration (battery and fuel cell electric configurations) and drive cycles to assess range and energy consumption. An adequate choice of vehicle segment according to the real passenger occupancy enables the least energy consumption. Vehicle performance in terms of range points to remarkable results for the FCEV (fuel cell electric vehicle) compared to BEV (battery electric vehicle) where the former reached an average range of 600 km or more in all different drive cycles while the latter was only cruising nearly 350 km. Decisively the cost analysis indicated that FCEV remains the most expensive option with base cost three-fold that of BEV. The FCEV showed notable results with an average operating cost of less than 7 cents/km where BEV cost more than 10 €/km in addition to the base cost for light-duty vehicles. The cost analysis for a bus and semi-truck showed that with a full payload FCPT (fuel cell powertrain) would be more economical with an average energy cost of ~1.2 €/km while with BPT the energy cost is more than 300 €/km
Enabling the Scale Up of Green Hydrogen in Ireland by Decarbonising the Haulage Sector
Jul 2022
Publication
The current research on green hydrogen can focus from the perspective of production but understanding the demand side is equally important to the initial creation of a hydrogen ecosystem in countries with low industrial activities that can utilise large amounts of hydrogen in the short term. Early movers in these countries must create a demand market in parallel with the green hydrogen plant commissioning. This paper presents research that explores the heavy-duty transport sector as a market-of-interest for early deployment of green hydrogen in Ireland. Conducting a survey-based market research amongst this sector indicate significant interest in hydrogen on the island of Ireland and the barriers the participants presented have been overcome in other jurisdictions. The study develops a model to estimate 1.) the annual hydrogen demand and 2.) the corresponding delivery cost to potential hydrogen consumers either directly or to central hydrogen fuelling hubs.
Combination of b-Fuels and e-Fuels—A Technological Feasibility Study
Aug 2021
Publication
The energy supply in Austria is significantly based on fossil natural gas. Due to the necessary decarbonization of the heat and energy sector a switch to a green substitute is necessary to limit CO2 emissions. Especially innovative concepts such as power-to-gas establish the connection between the storage of volatile renewable energy and its conversion into green gases. In this paper different methanation strategies are applied on syngas from biomass gasification. The investigated syngas compositions range from traditional steam gasification sorption-enhanced reforming to the innovative CO2 gasification. As the producer gases show different compositions regarding the H2/COx ratio three possible methanation strategies (direct sub-stoichiometric and over-stoichiometric methanation) are defined and assessed with technological evaluation tools for possible future large-scale set-ups consisting of a gasification an electrolysis and a methanation unit. Due to its relative high share of hydrogen and the high technical maturity of this gasification mode syngas from steam gasification represents the most promising gas composition for downstream methanation. Sub-stoichiometric operation of this syngas with limited H2 dosage represents an attractive methanation strategy since the hydrogen utilization is optimized. The overall efficiency of the sub-stoichiometric methanation lies at 59.9%. Determined by laboratory methanation experiments a share of nearly 17 mol.% of CO2 needs to be separated to make injection into the natural gas grid possible. A technical feasible alternative avoiding possible carbon formation in the methanation reactor is the direct methanation of sorption-enhanced reforming syngas with an overall process efficiency in large-scale applications of 55.9%.
An Adaptive Renewable Energy Plant (AREP) - To Power Local Premises and Vehicles with 100% Renewables
Aug 2021
Publication
An adaptive response renewable energy plant (AREP) that provides grid balancing services and XeV station fuelling services (where “X” is any type) using renewable energy located in urban centres is described. The AREP has its own primary renewable energy sources and adapts operation in the short term to changing levels of excess or deficient energy on LV and MV electricity grids. The AREP adaptively responds by (1) storing excess energy in batteries for the short term and in hydrogen tanks after energy conversion by electrolysers for the long term; (2) returning power to the grid from either the AREP’s own primary (electron-based) energy sources or batteries and/or from hydrogen via conversion in fuel cells; (3) providing electricity for fast charging BeVs and PHeVs and hydrogen for FCeVs; and (4) exporting excess stored energy as hydrogen to domestic markets. The AREP also adapts over the long term by predictive planning of charging capacity such that the type and capacity of renewable energy equipment is optimised for future operations. A key advantage of this AREP configuration is a flexible “plug and play” capability with modular extension of energy assets. If the AREP footprint is constrained interaction with neighbouring AREPs as a mini-VPP-AREP network can assist in balancing short-term operating requirements. The benefits of this grid balancing and XeV renewable energy filling station or AREP are environmental social and economic through efficient functionality of appropriately sized components. AREPs provide a net zero emissions electricity solution to an existing network with short and long-term storage options as well as a net zero emissions fuel alternative to the transport sector while leveraging existing infrastructure with minimal upfront CAPEX. AREPs can give the flexibility a grid needs to enable high levels of renewable installations while developing green hydrogen production.
Optimal Configuration of Multi-Energy Storage in an Electric–Thermal–Hydrogen Integrated Energy System Considering Extreme Disaster Scenarios
Mar 2024
Publication
Extreme disasters have become increasingly common in recent years and pose significant dangers to the integrated energy system’s secure and dependable energy supply. As a vital part of an integrated energy system the energy storage system can help with emergency rescue and recovery during major disasters. In addition it can improve energy utilization rates and regulate fluctuations in renewable energy under normal conditions. In this study the sizing scheme of multienergy storage equipment in the electric–thermal–hydrogen integrated energy system is optimized; economic optimization in the regular operating scenario and resilience enhancement in extreme disaster scenarios are also considered. A refined model of multi-energy storage is constructed and a two-layer capacity configuration optimization model is proposed. This model is further enhanced by the integration of a Markov two-state fault transmission model which simulates equipment defects and improves system resilience. The optimization process is solved using the tabu chaotic quantum particle swarm optimization (TCQPSO) algorithm to provide reliable and accurate optimization results. The results indicate that addressing severe disaster situations in a capacity configuration fully leverages the reserve energy function of energy storage and enhances system resilience while maintaining economic efficiency; furthermore adjusting the load loss penalty coefficients offers a more targeted approach to the balancing of the system economy and resilience. Thus new algorithmic choices and planning strategies for future research on enhancing the resilience of integrated energy systems under extreme disaster scenarios are provided.
An Investigation into the Change Leakage when Switching from Natural Gas to Hydrogen in the UK Gas Distribution Network
Sep 2021
Publication
The H21 National Innovation Competition project is examining the feasibility of repurposing the existing GB natural gas distribution network for transporting 100% hydrogen. It aims to undertake an experimental testing programme that will provide the necessary data to quantify the comparative risk between a 100% hydrogen network and the natural gas network. The first phase of the project focuses on leakage testing of a strategic set of assets that have been removed from service which provide a representative sample of assets across the network. This paper presents the work undertaken for Phase 1A (background testing) where HSE and industry partners have tested a range of natural gas pipework assets of varying size material age and pressure-rating in a new bespoke open-air testing facility at the HSE Science and Research Centre Buxton. The assets have been pressurised with hydrogen and then methane and the leakage rate from the assets measured in both cases. The main finding of this work is that the assets tested which leak hydrogen also leak methane. None of the assets were found to leak hydrogen but not methane. In addition repair techniques that were effective at stopping methane leaks were also effective at stopping hydrogen leaks. The data from the experiments have been interpreted to obtain a range of leakage ratios between the two gases for releases under different conditions. This has been compared to the predicted ratio of hydrogen to methane volumetric leak rates for laminar (1.2:1) and turbulent (2.9:1) releases and good agreement was observed.
Coupling Combustion Simulation and Primary Evaluation of an Asymmetric Motion Diesel Pilot Hydrogen Engine
Jul 2022
Publication
The thermal efficiency and combustion of conventional hydrogen engines cannot be optimized and improved by its symmetric reciprocating. This article introduces an asymmetric motion hydrogen engine (AHE) and investigates its combustion characteristics using diesel pilot ignition. A dynamic model is firstly proposed to describe the asymmetric motion of the AHE and then it is coupled into a multidimensional model for combustion simulation. The effect of asymmetric motion on the AHE combustion is also analyzed by comparing with a corresponding conventional symmetric hydrogen engine (SHE). The results show that the AHE moves slower in compression and faster in expansion than the SHE which brings about higher hydrogen-air mixing level for combustion. The asymmetric motion delays diesel injection to ignite the AHE and its combustion appears later than the SHE which leads to lower pressure and temperature for reducing NO formation. However the AHE faster expansion has a more severe post-combustion effect to reduce isovolumetric heat release level and decrease the energy efficiency.
Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios
Oct 2022
Publication
The steel industry is focused on reducing its environmental impact. Using the life cycle assessment (LCA) methodology the impacts of the primary steel production via the blast furnace route and the scrap-based secondary steel production via the EAF route are assessed. In order to achieve environmentally friendly steel production breakthrough technologies have to be implemented. With a shift from primary to secondary steel production the increasing steel demand is not met due to insufficient scrap availability. In this paper special focus is given on recycling methodologies for metals and steel. The decarbonization of the steel industry requires a shift from a coal-based metallurgy towards a hydrogen and electricity-based metallurgy. Interim scenarios like the injection of hydrogen and the use of pre-reduced iron ores in a blast furnace can already reduce the greenhouse gas (GHG) emissions up to 200 kg CO2/t hot metal. Direct reduction plants combined with electrical melting units/furnaces offer the opportunity to minimize GHG emissions. The results presented give guidance to the steel industry and policy makers on how much renewable electric energy is required for the decarbonization of the steel industry
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Report on the Impact of Renewable Gases, and Mixtures with Natural Gas, on the Accuracy, Cost and Lifetime of Gas Meters
May 2022
Publication
For the usage of domestic gas meters with combustible gases like hydrogen natural gas or mixtures of hydrogen and natural gas in public grids the metrological behaviour of the gas meters has to fulfil the requirements described in the Measuring Instrument Directive (MID). The MID requires also that a measuring instrument shall be suitable for the application. The tightness of a meter is required in order to obtain correct results in case of accuracy tests but also for an application in the grid or for durability tests to avoid risks such as explosive gas mixtures. Due to the different properties of renewable gases leak tightness to one gas mixtures does not necessarily imply leak tightness for other gases. Hydrogen molecules are smaller than those in conventional natural gas which can more easily result in a gas leakage. The EMPIR project NEWGASMET includes beside metrological investigations also a durability test with hydrogen. In order to carry out these activities but also for further hydrogen leakage investigations for instance the investigation of proper seal materials used in the gas meter installation a reliable gas tightness test was developed.
Coal Decarbonization: A State-of-the-art Review of Enhanced Hydrogen Production in Underground Coal Gasification
Aug 2022
Publication
The world is endowed with a tremendous amount of coal resources which are unevenly distributed in a few nations. While sustainable energy resources are being developed and deployed fossil fuels dominate the current world energy consumption. Thus low-carbon clean technologies like underground coal gasification (UCG) ought to play a vital role in energy supply and ensuring energy security in the foreseeable future. This paper provides a state-of-the-art review of the world's development of UCG for enhanced hydrogen production. It is revealed that the world has an active interest in decarbonizing the coal industry for hydrogen-oriented research in the context of UCG. While research is ongoing in multiple coal-rich nations China dominates the world's efforts in both industrial-scale UCG pilots and laboratory experiments. A variety of coal ranks were tested in UCG for enhanced hydrogen output and the possibilities of linking UCG with other prospective technologies had been proposed and critically scrutinized. Moreover it is found that transborder collaborations are in dire need to propel a faster commercialization of UCG in an ever-more carbon-conscious world. Furthermore governmental and financial support is necessary to incentivize further UCG development for large-scale hydrogen production.
No more items...