- Home
- A-Z Publications
- Publications
Publications
Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles
Mar 2022
Publication
Concerns about climate change air pollution and the depletion of oil resources have prompted authorities to enforce increasingly strict rules in the automotive sector. There are several benefits to implementing fuel cell hybrid vehicles (FCHV) in the transportation sector including the ability to assist in reducing greenhouse gas emissions by replacing fossil fuels with hydrogen as energy carriers. This paper examines different control strategies for optimizing the power split between the battery and PEM fuel cell in order to maximize the PEM fuel cell system efficiency and reduce fuel consumption. First the vehicle and fuel cell system models are described. A forward approach is considered to model the vehicle dynamics while a semi-empirical and quasi-static model is used for the PEM fuel cell. Then different rule-based control strategies are analyzed with the aim of maximizing fuel cell system efficiency while ensuring a constant battery state of charge (SOC). The different methods are evaluated while the FCHV is performing both low-load and high-load drive cycles. The hydrogen consumption and the overall fuel cell system efficiency are considered for all testing conditions. The results highlight that in both low-load cycles and high-load cycles the best control strategies achieve a fuel cell system efficiency equal or greater to 33% while achieving a fuel consumption 30% less with respect to the baseline control strategy in low-load drive cycles.
Challenges in the Decarbonization of the Energy Sector
Jun 2020
Publication
In order to limit the effects of climate change the carbon dioxide emissions associated with the energy sector need to be reduced. Significant reductions can be achieved by using appropriate technologies and policies. In the context of recent discussions about climate change and energy transition this article critically reviews some technologies policies and frequently discussed solutions. The options for carbon emission reductions are grouped into (1) generation of secondary energy carriers (2) end-use energy sectors and (3) sector interdependencies. The challenges on the way to a decarbonized energy sector are identified with respect to environmental sustainability security of energy supply economic stability and social aspects. A global carbon tax is the most promising instrument to accelerate the process of decarbonization. Nevertheless this process will be very challenging for humanity due to high capital requirements the competition among energy sectors for decarbonization options inconsistent environmental policies and public acceptance of changes in energy use.
Everything About Hydrogen Podcast: Could Electrolysers Replicate Moore's Law?
Apr 2020
Publication
On this weeks episode the team are talking all things hydrogen with Sebastian-Justus Schmidt Chairman of Enapter and Thomas Chrometzka Head of Strategy at Enapter. On the show we discuss Enapter’s Anion Exchange Membrane (AEM) electrolyser and why Enapter believe that their modular electrolyser approach will revolutionise the cost of green hydrogen. We also discuss the wide array of use cases and sectors that Enapter are already working with to provide their solution as well as their view on where the current barriers exist for the hydrogen market. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Renewable Hydrogen Economy Outlook in Africa
Jun 2022
Publication
Hydrogen presents an opportunity for Africa to not only decarbonise its own energy use and enable clean energy access for all but also to export renewable energy. This paper developed a framework for assessing renewable resources for hydrogen production and provides a new critical analysis as to how and what role hydrogen can play in the complex African energy landscape. The regional solar wind CSP and bio hydrogen potential ranges from 366 to 1311 Gt/year 162 to 1782 Gt/year 463 to 2738 Gt/year and 0.03 to 0.06 Gt/year respectively. The water availability and sensitivity results showed that the water shortages in some countries can be abated by importing water from regions with high renewable water resources. A techno-economic comparative analysis indicated that a high voltage direct current (HVDC) system presents the most cost-effective transportation system with overall costs per kg hydrogen of 0.038 $/kg followed by water pipeline with 0.084 $/kg seawater desalination 0.1 $/kg liquified hydrogen tank truck 0.12 $/kg compressed hydrogen pipeline 0.16 $/kg liquefied ammonia pipeline 0.38 $/kg liquefied ammonia tank truck 0.60 $/kg and compressed hydrogen tank truck with 0.77 $/kg. The results quantified the significance of economies of scale due to cost effectiveness of systems such as compressed hydrogen pipeline and liquefied hydrogen tank truck systems when hydrogen production is scaled up. Decentralization is favorable under some constraints e.g. compressed hydrogen and liquefied ammonia tank truck systems will be more cost effective below 800 km and 1400 km due to lower investment and operation costs.
Techno-Economic Analysis of the Hybrid Solar PV/H/Fuel Cell Based Supply Scheme for Green Mobile Communication
Nov 2021
Publication
Hydrogen has received tremendous global attention as an energy carrier and an energy storage system. Hydrogen carrier introduces a power to hydrogen (P2H) and power to hydrogen to power (P2H2P) facility to store the excess energy in renewable energy storage systems with the facts of large-scale storage capacity transportability and multiple utilities. This work examines the techno-economic feasibility of hybrid solar photovoltaic (PV)/hydrogen/fuel cell-powered cellular base stations for developing green mobile communication to decrease environmental degradation and mitigate fossil-fuel crises. Extensive simulation is carried out using a hybrid optimization model for electric renewables (HOMER) optimization tool to evaluate the optimal size energy production total production cost per unit energy production cost and emission of carbon footprints subject to different relevant system parameters. In addition the throughput and energy efficiency performance of the wireless network is critically evaluated with the help of MATLAB-based Monte-Carlo simulations taking multipath fading system bandwidth transmission power and inter-cell interference (ICI) into consideration. Results show that a more stable and reliable green solution for the telecommunications sector will be the macro cellular basis stations driven by the recommended hybrid supply system. The hybrid supply system has around 17% surplus electricity and 48.1 h backup capacity that increases the system reliability by maintaining a better quality of service (QoS). To end the outcomes of the suggested system are compared with the other supply scheme and the previously published research work for justifying the validity of the proposed system.
Improving Carbon Efficiency and Profitability of the Biomass to Liquid Process with Hydrogen from Renewable Power
Aug 2018
Publication
A process where power and biomass are converted to Fischer-Tropsch liquid fuels (PBtL) is compared to a conventional Biomass-to-Liquid (BtL) process concept. Based on detailed process models it is demonstrated that the carbon efficiency of a conventional Biomass to Liquid process can be increased from 38 to more than 90% by adding hydrogen from renewable energy sources. This means that the amount of fuel can be increased by a factor of 2.4 with the same amount of biomass. Electrical power is applied to split water/steam at high temperature over solid oxide electrolysis cells (SOEC). This technology is selected because part of the required energy can be replaced by available heat. The required electrical power for the extra production is estimated to be 11.6 kWh per liter syncrude (C ) 5+ . By operating the SOEC iso-thermally close to 850 °C the electric energy may be reduced to 9.5 kWh per liter which is close to the energy density of jet fuel. A techno-economic analysis is performed where the total investments and operating costs are compared for the BtL and PBtL. With an electrical power price of 0.05 $/kWh and with SOEC investment cost of the 1000 $/kW(el) the levelized cost of producing advanced biofuel with the PBtL concept is 1.7 $/liter which is approximately 30% lower than for the conventional BtL. Converting excess renewable electric power to advanced biofuel in a PBtL plant is a sensible way of storing energy as a fuel with a relatively high energy density.
Impact of Polymers on Magnesium-Based Hydrogen Storage Systems
Jun 2022
Publication
In the present scenario much importance has been provided to hydrogen energy systems (HES) in the energy sector because of their clean and green behavior during utilization. The developments of novel techniques and materials have focused on overcoming the practical difficulties in the HES (production storage and utilization). Comparatively considerable attention needs to be provided in the hydrogen storage systems (HSS) because of physical-based storage (compressed gas cold/cryo compressed and liquid) issues such as low gravimetric/volumetric density storage conditions/parameters and safety. In material-based HSS a high amount of hydrogen can be effectively stored in materials via physical or chemical bonds. In different hydride materials Mg-based hydrides (Mg–H) showed considerable benefits such as low density hydrogen uptake and reversibility. However the inferior sorption kinetics and severe oxidation/contamination at exposure to air limit its benefits. There are numerous kinds of efforts like the inclusion of catalysts that have been made for Mg–H to alter the thermodynamic-related issues. Still those efforts do not overcome the oxidation/contamination-related issues. The developments of Mg–H encapsulated by gas-selective polymers can effectively and positively influence hydrogen sorption kinetics and prevent the Mg–H from contaminating (air and moisture). In this review the impact of different polymers (carboxymethyl cellulose polystyrene polyimide polypyrrole polyvinylpyrrolidone polyvinylidene fluoride polymethylpentene and poly(methyl methacrylate)) with Mg–H systems has been systematically reviewed. In polymer-encapsulated Mg–H the polymers act as a barrier for the reaction between Mg–H and O2/H2O selectively allowing the H2 gas and preventing the aggregation of hydride nanoparticles. Thus the H2 uptake amount and sorption kinetics improved considerably in Mg–H.
Nested Decomposition Approach for Dispatch Optimization of Large-Scale, Integrated Electricity, Methane and Hydrogen Infrastructures
Apr 2022
Publication
Energy system integration enables raising operational synergies by coupling the energy infrastructures for electricity methane and hydrogen. However this coupling reinforces the infrastructure interdependencies increasing the need for integrated modeling of these infrastructures. To analyze the cost-efficient sustainable and secure dispatch of applied large-scale energy infrastructures an extensive and non-linear optimization problem needs to be solved. This paper introduces a nested decomposition approach with three stages. The method enables an integrated and full-year consideration of large-scale multi-energy systems in hourly resolution taking into account physical laws of power flows in electricity and gas transmission systems as boundary conditions. For this purpose a zooming technique successively reduces the temporal scope while first increasing the spatial and last the technical resolution. A use case proves the applicability of the presented approach to large-scale energy systems. To this end the model is applied to an integrated European energy system model with a detailed focus on Germany in a challenging transport situation. The use case demonstrates the temporal regional and cross-sectoral interdependencies in the dispatch of integrated energy infrastructures and thus the benefits of the introduced approach.
Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept
Oct 2021
Publication
Germany’s energy transition known as ‘Energiewende’ was always very progressive. However it came technically to a halt at the question of large-scale seasonal energy storage for wind and solar which was not available. At the end of the 2000s we combined our knowledge of both electrical and process engineering imitated nature by copying photosynthesis and developed Power-to-Gas by combining water electrolysis with CO2 -methanation to convert water and CO2 together with wind and solar power to synthetic natural gas. Storing green energy by coupling the electricity with the gas sector using its vast TWh-scale storage facility was the solution for the biggest energy problem of our time. This was the first concept that created the term ‘sector coupling’ or ‘sectoral integration’. We first implemented demo sites presented our work in research industry and ministries and applied it in many macroeconomic studies. It was an initial idea that inspired others to rethink electricity as well as eFuels as an energy source and energy carrier. We developed the concept further to include Power-to-Liquid Power-to-Chemicals and other ways to ‘convert’ electricity into molecules and climate-neutral feedstocks and named it ‘Power-to-X’ at the beginning of the 2010s.
Effect of TPRD Diameter and Direction of Release on Hydrogen Dispersion in Underground Parking
Sep 2021
Publication
Unignited hydrogen release in underground parking could be considered inherently safer if the safety strategy to avoid the formation of the flammable hydrogen-air mixture under a ceiling is followed. This strategy excludes destructive deflagrative combustion and associated pressure and thermal effects in the case of ignition. This paper aims at understanding the effects of the thermally activated pressure relieve device (TPRD) diameter and direction of release on the build-up of hydrogen flammable concentration under the ceiling in the presence of mechanical ventilation required for underground parking. The study employs the similarity law for hydrogen jet concentration decay in a free under-expanded jet to find the lower limit of TPRD diameter that excludes the formation of a flammable mixture under the ceiling during upward release. This approach is conservative and does not include the effect of mechanical ventilation providing flow velocity around a few meters per second which is significantly below velocities in hydrogen momentum-dominated under-expanded jets. Hydrogen releases downwards under a vehicle at different angles and with different air velocities due to mechanical ventilation were investigated using computational fluid dynamics (CFD). The joint effect of TPRD diameter release direction and mechanical ventilation is studied. TPRD diameters for the release of hydrogen upwards and downwards preventing the creation of flammable hydrogen-air mixture under the parking ceiling are defined for different ceiling heights and locations of TPRD above the floor. Recommendations to the design of TPRD devices to underpin the safe introduction of hydrogen fuelled vehicles in currently existing underground parking and infrastructure are formulated."
A Catalyst Fusible Link for Hydrogen Detection and Activation of Passive Ventilation Systems
Sep 2021
Publication
This paper presents an experimental study of a hydrogen fusible link developed for use in the detection of hydrogen and in the activation of passive ventilation or other safety systems. Fusible links are commonly used to passively close fire dampers in the event of a fire; they generally consist of two pieces of metal joined together by a low temperature alloy to form a single device. When exposed to fire the link will heat up and eventually melt the alloy causing the metal pieces to separate. The same principle has been adopted for the hydrogen fusible link in which hydrogen recombiner catalyst was coated onto small rectangular brass plates. These plates were then soldered together to create prototypes of the hydrogen fusible link. When the resulting link is exposed to a hydrogen-air mixture an exothermic reaction occurs on the catalyst surface that will heat up the link and melt the solder separating the two sections of the hydrogen fusible link. A series of experiments was performed to characterize the thermal response of the hydrogen fusible links to various hydrogen-air mixtures. The effect of both hydrogen concentration and its rate of accumulation on the increase of catalyst temperature was examined. This study demonstrated the applicability of the hydrogen fusible link for managing hydrogen risk.
Experimental Parameters of Ignited Congestion Experiments of Liquid Hydrogen in the PRESLHY Project
Sep 2021
Publication
Liquid hydrogen (LH2) has the potential to form part of the UK energy strategy in the future and therefore could see widespread use due to the relatively high energy density when compared to other renewable energy sources. To study the feasibility of this the European Fuel Cells and Hydrogen Joint Undertaking (FCH JU) funded project PRESLHY undertook pre-normative research for the safe use of cryogenic LH2 in non-industrial settings. Several key scenarios were identified as knowledge gaps and both theoretical and experimental studies were conducted to provide insight into these scenarios. This included experiments studying the effect of congestion on an ignited hydrogen plume that develops from a release of LH2; this paper describes the objectives experimental setup and a summary of the results from these activities. Characterisation of the LH2 release hydrogen concentration and temperatures measurements within the resulting gas cloud was undertaken along with pressure measurements both within the cloud and further afield. Various release conditions and congestion levels were studied. Results showed that at high levels of congestion increased overpressures occurred with the higher flow rates studied including one high order event. Data generated from these experiments is being taken forward to generate and validate theoretical models ultimately to contribute to the development of regulations codes and standards (RCS) for LH2."
Siting and Co-location with Hydrogen: What are the Risks?
Sep 2021
Publication
The demand for hydrogen has grown more than threefold since 1975 [1] and price is expected to significantly decrease by 2030 [2] concluding in an expected continual increase in demand. HyLaw defined by Hydrogen Europe lays out recommendations for hydrogen applications using identified Legal and Administrative Processes (LAPs) across 18 European countries. Regarding site location HyLaw refers to the land use plan. This defines the production and storage of hydrogen as an industrial activity and therefore regardless of the specific site methods of production or use the hydrogen site must be within a permitted industrial zone or under specific condition commercial areas [3]. Local authorities fire departments and other concerned parties may need to be consulted on site suitability for the project. Risktec explores a range of considerations for siting and layout of hydrogen developments including co-location with other assets for example with renewable energy sources hazardous facilities or public structures. Good practice tools and assessment techniques are presented to mitigate the risks associated with the production storage and use of hydrogen not just the surrounding site and environment but the operatives of the facility.
Ultra-clean Hydrogen Production by Ammonia Decomposition
Jan 2016
Publication
A rigorous heterogeneous mathematical model is used to simulate a cascade of multi-stage fixed bed membrane reactors (MSFBMR) with inter-stage heating and fresh sweep gas for the decomposition of ammonia to produce high purity hydrogen suitable for the PEM fuel cells. Different reactor configurations are compared. The comparison between a single fixed bed reactor (FBR) and a single fixed bed membrane reactor (FBMR) shows that the FBMR is superior to the FBR and gives 60.48% ammonia conversion higher than the FBR. However 20.91% exit ammonia conversion obtained by the FBMR is considered to be poor. The FBMR is limited by the kinetics at low temperatures. The numerical results show that the MSFBMR of four beds achieve 100.0% ammonia conversion. It was found that the membrane plays the prime role in the displacement of the thermodynamic equilibrium. The results also show that a linear relationship exists between the number of beds and the feed temperature and a correlation has been developed. A critical point for an effective hydrogen permeation zone has been identified. It is observed that the diffusion limitation is confined to a slim region at the entrance of the reactor. It is also observed that the heat load assumes a maximum inflection point and explanations offered. The results show that the multi-stage configuration has a promising potential to be applied successfully on-site for ultra-clean hydrogen production.
Reduction of Maritime GHG Emissions and the Potential Role of E-fuels
Nov 2021
Publication
Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050 to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel E-LNG or E-Methanol. We evaluate emissions energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity.
Baselining the Body of Knowledge for Hydrogen Shock Interactions and Debris Escalation
Sep 2021
Publication
The differences in behaviour of hydrogen when compared to natural gas under deflagration and detonation scenarios are well known. The authors currently work in the area of fire and explosion analysis and have identified what they feel are potential gaps in the current Body of Knowledge (BOK) available to the sector. This is especially related to the behaviour around secondary shock formation and interactions with surrounding structures especially with ‘open’ structures such as steel frameworks typically seen in an offshore environment and practicable methods for determining debris formation and propagation. Whilst the defence sector has extensive knowledge in these areas this is primarily in the area of high explosives where the level of shocks observed is stronger than those resulting from a hydrogen detonation. This information would need to be reviewed and assessed to ensure it is appropriate for application in the hydrogen sector. Therefore with a focus on practicality the authors have undertaken a two-phase approach. The first phase involves carrying out a through literature search and discussions within our professional networks in order to ascertain whether there is a gap in the BOK. If good research guidance and tools to support this area of assessment already exist the authors have attempted to collate and consolidate this into a form that can be made more easily available to the community. Secondly if there is indeed a gap in the BOK the authors have attempted to ensure that all relevant information is collated to act as a reference and provide a consistent baseline for future research and development activities.
An Alkaline-Acid Glycerol Electrochemical Reformer for Simultaneous Production of Hydrogen and Electricity
Apr 2022
Publication
This study shows the results for the first time of an glycerol alkaline-acid electrolyzer. Such a configuration allows spontaneous operation producing energy and hydrogen simultaneously as a result of the utilization of the neutralization and fuel chemical energy. The electroreformer—built with a 20 wt% Pd/C anode and cathode and a Na+ -pretreated Nafion® 117—can simultaneously produce hydrogen and electricity in the low current density region whereas it operates in electrolysis mode at high current densities. In the spontaneous region the maximum power densities range from 1.23 mW cm−2 at 30 ◦C to 11.9 mW cm−2 at 90 ◦C with a concomitant H2 flux ranging from 0.0545 STP m−3 m−2 h −1 at 30 ◦C to 0.201 STP m−3 m−2 h −1 at 90 ◦C due to the beneficial effect of the temperature on the performance. Furthermore over a chronoamperometric test the electroreformer shows a stable performance over 12 h. As a challenge proton crossover from the cathode to the anode through the cation exchange Nafion® partially reduces the pH gradient responsible for the extra electromotive force thus requiring a less permeable membrane.
Prospects and Technical Challenges in Hydrogen Production through Dry Reforming of Methane
Mar 2022
Publication
Environmental issues related to greenhouse gases (GHG) emissions have pushed the development of new technologies that will allow the economic production of low-carbon energy vectors such as hydrogen (H2 ) methane (CH4 ) and liquid fuels. Dry reforming of methane (DRM) has gained increased attention since it uses CH4 and carbon dioxide (CO2 ) which are two main greenhouse gases (GHG) as feedstock for the production of syngas which is a mixture of H2 and carbon monoxide (CO) and can be used as a building block for the production of fuels. Since H2 has been identified as a key enabler of the energy transition a lot of studies have aimed to benefit from the environmental advantages of DRM and to use it as a pathway for a sustainable H2 production. However there are several challenges related to this process and to its use for H2 production such as catalyst deactivation and the low H2/CO ratio of the syngas produced which is usually below 1.0. This paper presents the recent advances in the catalyst development for H2 production via DRM the processes that could be combined with DRM to overcome these challenges and the current industrial processes using DRM. The objective is to assess in which conditions DRM could be used for H2 production and the gaps in literature data preventing better evaluation of the environmental and economic potential of this process.
Study on Introduction of CO2 Free Energy to Japan with Liquid Hydrogen
Jul 2015
Publication
In Japan both CO2 (Carbon dioxide) emission reduction and energy security are the very important social issues after Fukushima Daiichi accident. On the other hand FCV (Fuel Cell Vehicle) using hydrogen will be on the market in 2015. Introducing large mass hydrogen energy is being expected as expanding hydrogen applications or solution to energy issues of Japan. And then the Japanese government announced the road map for introducing hydrogen energy supply chain in this June2014. Under these circumstances imported CO2 free hydrogen will be one of the solutions for energy security and CO2 reduction if the hydrogen price is affordable. To achieve this Kawasaki Heavy Industries Ltd. (KHI) performed a feasibility study on CO2-free hydrogen energy supply chain from Australian brown coal linked with CCS (Carbon dioxide Capture and Storage) to Japan. In the study hydrogen production systems utilizing brown coal gasification and LH2 (liquid hydrogen) systems as storing and transporting hydrogen are examined. This paper shows the possibility of realizing the CO2 free hydrogen supply chain the cost breakdown of imported hydrogen cost its cost competitiveness with conventional fossil and LH2 systems as key technologies of the hydrogen energy chain.
Effect of the High-Pressure Hydrogen Gas Exposure in the Silica-Filled EPDM Sealing Composites with Different Silica Content
Mar 2022
Publication
With the increasing interest in hydrogen energy the stability of hydrogen storage facilities and components is emphasized. In this study we analyzed the effect of high-pressure hydrogen gas treatment in silica-filled EPDM composites with different silica contents. In detail cure characteristics crosslink density mechanical properties and hydrogen permeation properties were investigated. Results showed that material volume remaining hydrogen content and mechanical properties were changed after 96.3 MPa hydrogen gas exposure. With an increase in the silica content the crosslink density and mechanical properties increased but hydrogen permeability was decreased. After treatment high-silica-content composites showed lower volume change than low-silica-content composites. The crack damage due to the decompression caused a decrease in mechanical properties but high silica content can inhibit the reduction in mechanical properties. In particular EPDM/silica composites with a silica content of above 60 phr exhibited excellent resistance to hydrogen gas as no change in their physical and mechanical properties was observed.
No more items...