- Home
- A-Z Publications
- Publications
Publications
Storable Energy Production from Wind over Water
Apr 2020
Publication
The current status of a project is described which aims to demonstrate the technical and economic feasibility of converting the vast wind energy available over the globe’s oceans and lakes into storable energy. To this end autonomous high-performance sailing ships are equipped with hydrokinetic turbines whose output is stored either in electric batteries or is fed into electrolysers to produce hydrogen which then is compressed and stored in tanks. In the present paper the previous analytical studies which showed the potential of this “energy ship concept” are summarized and progress on its hardware demonstration is reported involving the conversion of a model sailboat to autonomous operation. The paper concludes with a discussion of the potential of this concept to achieve the IPCC-mandated requirement of reducing the global CO2 emissions by about 45% by 2030 reaching net zero by 2050.
Fabrication of Highly Textured 2D SnSe Layers with Tunable Electronic Properties for Hydrogen Evolution
Jun 2021
Publication
Hydrogen is regarded to be one of the most promising renewable and clean energy sources. Finding a highly efficient and cost-effective catalyst to generate hydrogen via water splitting has become a research hotspot. Two-dimensional materials with exotic structural and electronic properties have been considered as economical alternatives. In this work 2D SnSe films with high quality of crystallinity were grown on a mica substrate via molecular beam epitaxy. The electronic property of the prepared SnSe thin films can be easily and accurately tuned in situ by three orders of magnitude through the controllable compensation of Sn atoms. The prepared film normally exhibited p-type conduction due to the deficiency of Sn in the film during its growth. First-principle calculations explained that Sn vacancies can introduce additional reactive sites for the hydrogen evolution reaction (HER) and enhance the HER performance by accelerating electron migration and promoting continuous hydrogen generation which was mirrored by the reduced Gibbs free energy by a factor of 2.3 as compared with the pure SnSe film. The results pave the way for synthesized 2D SnSe thin films in the applications of hydrogen production.
Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis
Jun 2017
Publication
Industrial hydrogen production via alkaline water electrolysis (AEL) is a mature hydrogen production method. One argument in favor of AEL when supplied with renewable energy is its environmental superiority against conventional fossil-based hydrogen production. However today electricity from the national grid is widely utilized for industrial applications of AEL. Also the ban on asbestos membranes led to a change in performance patterns making a detailed assessment necessary. This study presents a comparative Life Cycle Assessment (LCA) using the GaBi software (version 6.115 thinkstep Leinfelden-Echterdingen Germany) revealing inventory data and environmental impacts for industrial hydrogen production by latest AELs (6 MW Zirfon membranes) in three different countries (Austria Germany and Spain) with corresponding grid mixes. The results confirm the dependence of most environmental effects from the operation phase and specifically the site-dependent electricity mix. Construction of system components and the replacement of cell stacks make a minor contribution. At present considering the three countries AEL can be operated in the most environmentally friendly fashion in Austria. Concerning the construction of AEL plants the materials nickel and polytetrafluoroethylene in particular used for cell manufacturing revealed significant contributions to the environmental burden.
Wittichenite Semiconductor of Cu3BiS3 Films for Efficient Hydrogen Evolution from Solar Driven Photoelectrochemical Water Splitting
Jun 2021
Publication
A highly efficient low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-hour long-term stability in neutral water solutions. This high onset potential of the Cu3BiS3-based photocathode directly results in a good unbiased operating photocurrent of ~1.6 mA/cm2 assisted by the BiVO4 photoanode. A tandem device of Cu3BiS3-BiVO4 with an unbiased solar-to-hydrogen conversion efficiency of 2.04% is presented. This tandem device also presents high stability over 20 hours. Ultimately a 5 × 5 cm2 large Cu3BiS3-BiVO4 tandem device module is fabricated for standalone overall solar water splitting with a long-term stability of 60 hours.
Analysis of the Environmental Degradation Effects on the Cables of “La Arena” Bridge (Spain)
Sep 2017
Publication
After nearly 25 years of service some of the wires of the tendons of “La Arena” bridge (Spain) started to exhibit the effects of environmental degradation processes. “La Arena” is cable-stayed bridge with 6 towers and a reference span between towers of about 100 meters. After a maintenance inspection of the bridge evidences of corrosion were detected in some of the galvanized wires of the cables. A more in-deep analysis of these wires revealed that many of them exhibited loss of section due to the corrosion process. In order to clarify the causes of this degradation event and to suggest some remedial actions an experimental program was designed. This program consisted of tensile and fatigue tests on some strand samples of the bridge together with a fractographic analysis of the fracture surfaces of the wires its galvanized layer thickness and some hydrogen measurements (hydrogen embrittlement could be another effect of the environmental degradation process).Once the type and extension of the flaws in the wires was characterized a structural integrity assessment of the strands was performed with the aim of quantifying the margins until failure and establishing some maintenance recommendations.
A Combined Chemical-Electrochemical Process to Capture CO2 and Produce Hydrogen and Electricity
Sep 2021
Publication
Several carbon sequestration technologies have been proposed to utilize carbon dioxide (CO2 ) to produce energy and chemical compounds. However feasible technologies have not been adopted due to the low efficiency conversion rate and high-energy requirements. Process intensification increases the process productivity and efficiency by combining chemical reactions and separation operations. In this work we present a model of a chemical-electrochemical cyclical process that can capture carbon dioxide as a bicarbonate salt. The proposed process also produces hydrogen and electrical energy. Carbon capture is enhanced by the reaction at the cathode that displaces the equilibrium into bicarbonate production. Literature data show that the cyclic process can produce stable operation for long times by preserving ionic balance using a suitable ionic membrane that regulates ionic flows between the two half-cells. Numerical simulations have validated the proof of concept. The proposed process could serve as a novel CO2 sequestration technology while producing electrical energy and hydrogen.
Development of a Pneumatic Actuated Low-pressure Direct Injection Gas Injector for Hydrogen-fueled Internal Combustion Engines
Dec 2022
Publication
Mixture formation is one of the greatest challenges for the development of robust and efficient hydrogen-fueled internal combustion engines. In many reviews and research papers authors pointed out that direct injection (DI) has noteworthy advantages over a port fuel injection (PFI) such as higher power output higher efficiency the possibility of mixture stratification to control NOx-formation and reduce heat losses and above all to mitigate combustion abnormalities such as back-firing and pre-ignitions. When considering pressurized gas tanks for on-vehicle hydrogen storage a low-pressure (LP) injection system is advantageous since the tank capacity can be better exploited accordingly. The low gas density upstream of the injector requires cross-sectional areas far larger than any other injectors for direct injection in today's gasoline or diesel engines. The injector design proposed in this work consists of a flat valve seat to enable the achievement of lifetime requirements in heavy-duty applications. The gas supply pressure is used as the energy source for the actuation of the valve plate by means of a pneumatic actuator. This article describes the design and the performed tests carried out to prove the concept readiness of the new LP-DI-injector.
EUA- Bringing Hydrogen Alive
Apr 2021
Publication
The UK is on course to become a global leader in hydrogen technology. Over £3bn is ready to be invested into hydrogen today. The pace of activity is rapid and the opportunities are vast.
Join us at our free to attend event where you will gain unique insights into how the Hydrogen industry is progressing together with exclusive access to future plans.
The dynamic and lively session will demonstrate the viability of hydrogen as a key component to achieve Net Zero.
Confirmed contributors include:
Join us at our free to attend event where you will gain unique insights into how the Hydrogen industry is progressing together with exclusive access to future plans.
The dynamic and lively session will demonstrate the viability of hydrogen as a key component to achieve Net Zero.
Confirmed contributors include:
- National Grid Gas Transmission
- Cadent
- Chris Train Previous CEO Cadent
- DNV
- Worcester Bosch
- ITM Power
- Northern Gas Networks
- Decarbonising Heat in Buildings - New Research Findings from the Gas Distribution Networks
On Flame Ball-to-Deflagration Transition in Hydrogen-air Mixtures
Sep 2021
Publication
Ultra-lean hydrogen-air combustion is characterized by two phenomena: the difference in upward and downward flame propagation concentration limits and the incomplete combustion. The clear answers on the two basic questions are still absent: What is a reason and what is a mechanism for their manifestation? Problem statement and the principal research topics of the Flame Ball to Deflagration Transition (FBDT) phenomenon in gaseous hydrogen-air mixtures are presented. The non-empirical concept of the fundamental concentration limits discriminates two basic low-speed laminar combustion patterns - self-propagating locally planar deflagration fronts and drifting locally spherical flame balls. To understand - at what critical conditions and how the baric deflagrations are transforming into iso- baric flame balls? - the photographic studies of the quasi-2-dim flames freely propagating outward radially via thin horizontal channel were performed. For gradual increase of initial hydrogen concentration from 3 to 12 vol.% the three representative morphological types of combustion (star-like dendrite-like and quasi-homogeneous) and two characteristic processes of reaction front bifurcation were revealed. Key elements of the FBDT mechanism both for 2-dim and 3-dim combustion are the following. Locally spherical ""leading centres"" (drifting flame balls) are the ""elementary building blocks"" of all ultra-lean flames. System of the drifting flame balls is formed due to primary bifurcation of the pre-flame kernel just after ignition. Subsequent mutual dynamics and overall morphology of the ultra-lean flames are governed by competitive non-local interactions of the individual drifting flame balls and their secondary/tertiary/etc. bifurcations defined by initial stoichiometry."
Calibrating a Ductile Damage Model for Two Pipeline Steels: Method and Challenges
Dec 2020
Publication
This work is part of a project that aims to develop a micromechanics based damage law taking into account hydrogen assisted degradation. A 'vintage' API 5L X56N and a 'modern' API 5L X70M pipeline steel have been selected for this purpose. The paper focuses on an experimental calibration of ductile damage properties of the well known complete Gurson model for the two steels in absence of hydrogen. A basic microstructural characterization is provided showing a banded ferrite-pearlite microstructure for both steels. Charpy impact tests showed splits at the fracture surface for the X70 steel. Double-notched round bar tensile tests are performed aiming to provide the appropriate input for damage model calibration. The double-notched nature of the specimens allows to examine the material state at maximum load in the unfailed notch and the final material state in the failed notch. Different notch radii are used capturing a broad range of positive stress triaxialities. The notches are optically monitored for transverse necking in two perpendicular directions (transverse to rolling and through thickness) to reveal any anisotropy in plastic deformation and/or damage. It is explained how the occurrence of splits at the segregation zone and anisotropy complicate the calibration procedure. Calibration is done for each steel and acceptable results are obtained. However the occurrence of splits did not allow to evaluate the damage model for the highest levels of tested stress triaxiality.
Enhancing the Hydrogen Storage Properties of AxBy Intermetallic Compounds by Partial Substitution: A Short Review
Dec 2020
Publication
Solid-state hydrogen storage covers a broad range of materials praised for their gravimetric volumetric and kinetic properties as well as for the safety they confer compared to gaseous or liquid hydrogen storage methods. Among them AxBy intermetallics show outstanding performances notably for stationary storage applications. Elemental substitution whether on the A or B site of these alloys allows the effective tailoring of key properties such as gravimetric density equilibrium pressure hysteresis and cyclic stability for instance. In this review we present a brief overview of partial substitution in several AxBy alloys from the long-established AB5 and AB2-types to the recently attractive and extensively studied AB and AB3 alloys including the largely documented solid-solution alloy systems. We not only present classical and pioneering investigations but also report recent developments for each AxBy category. Special care is brought to the influence of composition engineering on desorption equilibrium pressure and hydrogen storage capacity. A simple overview of the AxBy operating conditions is provided hence giving a sense of the range of possible applications whether for low- or high-pressure systems.
Life Cycle Assessment of Fuel Cell Vehicles Considering the Detailed Vehicle Components: Comparison and Scenario Analysis in China Based on Different Hydrogen Production Schemes
Aug 2019
Publication
Numerous studies concerning the life cycle assessment of fuel cell vehicles (FCVs) have been conducted. However little attention has been paid to the life cycle assessment of an FCV from the perspective of the detailed vehicle components. This work conducts the life cycle assessment of Toyota Mirai with all major components considered in a Chinese context. Both the vehicle cycle and the fuel cycle are included. Both comprehensive resources and energy consumption and comprehensive environmental emissions of the life cycles are investigated. Potential environmental impacts are further explored based on CML 2001 method. Then different hydrogen production schemes are compared to obtain the most favorable solution. To explore the potential of the electrolysis the scenario analysis of the power structure is conducted. The results show that the most mineral resources are consumed in the raw material acquisition stage the most fossil energy is consumed in the use stage and global warming potential (GWP) value is fairly high in all life cycle stages of Toyota Mirai using electrolyzed hydrogen. For hydrogen production schemes the scenario analysis indicates that simply by optimizing the power structure the environmental impact of the electrolysis remains higher than other schemes. When using the electricity from hydropower or wind power the best choice will be the electrolysis.
ZnO@ZIF-8 Core-Shell Structure Gas Sensors with Excellent Selectivity to H2
Jun 2021
Publication
As the energy crisis becomes worse hydrogen as a clean energy source is more and more widely used in industrial production and people’s daily life. However there are hidden dangers in hydrogen storage and transportation because of its flammable and explosive features. Gas detection is the key to solving this problem. High quality sensors with more practical and commercial value must be able to accurately detect target gases in the environment. Emerging porous metal-organic framework (MOF) materials can effectively improve the selectivity of sensors as a result of high surface area and coordinated pore structure. The application of MOFs for surface modification to improve the selectivity and sensitivity of metal oxides sensors to hydrogen has been widely investigated. However the influence of MOF modified film thickness on the selectivity of hydrogen sensors is seldom studied. Moreover the mechanism of the selectivity improvement of the sensors with MOF modified film is still unclear. In this paper we prepared nano-sized ZnO particles by a homogeneous precipitation method. ZnO nanoparticle (NP) gas sensors were prepared by screen printing technology. Then a dense ZIF-8 film was grown on the surface of the gas sensor by hydrothermal synthesis. The morphology the composition of the elements and the characters of the product were analyzed by X-ray diffraction analysis (XRD) transmission electron microscope (TEM) scanning electron microscope (SEM) energy dispersive spectrometer (EDS) Brunauer-Emmett-Teller (BET) and differential scanning calorimetry (DSC). It is found that the ZIF-8 film grown for 4 h cannot form a dense core-shell structure. The thickness of ZIF-8 reaches 130 nm at 20 h. Through the detection and analysis of hydrogen (1000 ppm) ethanol (100 ppm) and acetone (50 ppm) from 150 °C to 290 °C it is found that the response of the ZnO@ZIF-8 sensors to hydrogen has been significantly improved while the response to ethanol and acetone was decreased. By comparing the change of the response coefficient when the thickness of ZIF-8 is 130 nm the gas sensor has a significantly improved selectivity to hydrogen at 230 °C. The continuous increase of the thickness tends to inhibit selectivity. The mechanism of selectivity improvement of the sensors with different thickness of the ZIF-8 films is discussed.
Study of Activity and Super-Capacitance Exhibited by Bifunctional Raney 2.0 Catalyst for Alkaline Water-Splitting Electrolysis
Dec 2020
Publication
Low-cost high-performance coatings for hydrogen production via electrolytic water-splitting are of great importance for de-carbonising energy. In this study the Raney2.0 coating was analysed using various electrochemical techniques to assess its absolute performance and it was confirmed to have an extremely low overpotential for hydrogen evolution of just 28 mV at 10 mA/cm2. It was also confirmed to be an acceptable catalyst for oxygen evolution making it the highest performing simple bifunctional electrocatalyst known. The coating exhibits an extremely high capacitance of up to 1.7 F/cm2 as well as being able to store 0.61 J/cm2 in the form of temporary hydride deposits. A new technique is presented that performs a best-fit of a transient simulation of an equivalent circuit containing a constant phase element to cyclic voltammetry measurements. From this the roughness factor of the coating was calculated to be approximately 40000 which is the highest figure ever reported for this type of material. The coating is therefore an extremely useful improved bifunctional coating for the continued roll-out of alkaline electrolysis for large-scale renewable energy capture via hydrogen production.
Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
Jan 2021
Publication
Climate change is one of the major problems that people face in this century with fossil fuel combustion engines being huge contributors. Currently the battery powered electric vehicle is considered the predecessor while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells it is shown that despite the lower efficiency the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency and high prices for the required components this domestically produced hydrogen cannot compete with hydrogen produced from fossil fuels on a larger scale
Internal Film Cooling with Discrete-Slot Injection Orifices in Hydrogen/Oxygen Engine Thrust Chambers
May 2022
Publication
In the present study a hydrogen and oxygen heat-sink engine thrust chamber and the corresponding injection faceplate with discrete slot orifices are devised to study the cooling performance near the faceplate region. Moreover a set of experiments and numerical simulations are conducted to evaluate the effects of various factors on combustion performance and film cooling efficiency. According to the obtained result the circumferential cooling efficiency has an M-shaped distribution in the near-injector region. Furthermore it has been discovered that when the film flow ratio increases so does the cooling efficiency. This is especially more pronounced in the range of 30–80 mm from the faceplate. The cooling efficiency is found to be proportional to the film flow rate ratio’s 0.4 power. Compared with the slot thickness the reduction in the slot width is more beneficial in improving the cooling efficiency and the advantage is more prominent for small film flow ratios. In addition when the amount of coolant is not enough the cooling effect of the discrete slot film orifice is better than that of the common cylindrical orifice. The present article demonstrates that setting the area ratio of the adjacent film orifices is an effective way to reduce the uneven circumferential distribution of the wall surface temperature.
Model of Local Hydrogen Permeability in Stainless Steel with Two Coexisting Structures
Apr 2021
Publication
The dynamics of hydrogen in metals with mixed grain structure is not well understood at a microscopic scale. One of the biggest issues facing the hydrogen economy is “hydrogen embrittlement” of metal induced by hydrogen entering and diffusing into the material. Hydrogen diffusion in metallic materials is difficult to grasp owing to the non-uniform compositions and structures of metal. Here a time-resolved “operando hydrogen microscope” was used to interpret local diffusion behaviour of hydrogen in the microstructure of a stainless steel with austenite and martensite structures. The martensite/austenite ratios differed in each local region of the sample. The path of hydrogen permeation was inferred from the time evolution of hydrogen permeation in several regions. We proposed a model of hydrogen diffusion in a dual-structure material and verified the validity of the model by simulations that took into account the transfer of hydrogen at the interfaces.
Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures
Jul 2015
Publication
Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally sized micropores and occurs at pressures as low as 0.02 MPa. The quantities of contained solid-like H2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorption isotherms. The demonstration of the existence of solid-like H2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H2 density. Thus this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.
Experimental Investigations Relevant for Hydrogen and Fission Product Issues Raised by the Fukushima Accident
Jan 2015
Publication
The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011 caused by an earthquake and a subsequent tsunami resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation leakage from primary containment boundary to the reactor building improper functioning of standby gas treatment system (SGTS) unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous aqueous and solid materials available for interaction e.g. gas components decontamination paint aerosols and water pools. In the light of the Fukushima accident additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally as more and more passive safety systems such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics hydrogen aerosols and iodine) test facility (9.2 m high 3.2 m in diameter and 60 m3 volume) are discussed in the light of the Fukushima accident.
Electrification and Sustainable Fuels: Competing for Wind and Sun (complement to the Policy brief)
May 2021
Publication
This study seeks to answer a simple question: will we have enough renewable electricity to meet all of the EU's decarbonisation objectives and if not what should be the priorities and how to address the remaining needs for energy towards carbon neutrality? Indeed if not the policy push for green hydrogen would not be covered by enough green electricity to match the “energy efficiency and electrification first” approach outlined in the system integration communication and a prioritization of green electricity uses complemented by other solutions (import of green electricity or sustainable fuels CCS...) would be advisable [1]. On one hand we show that the principle “Energy efficiency and electrification first” results in an electricity demand which will be very difficult to satisfy domestically with renewable energy. On the other hand green hydrogen and other sustainable fuels will be needed for a carbon neutral industry for the replacement of the fuel for aviation and navigation and as strategic green energy reserves. The detailed modelling of these interactions is challenging given the large uncertainties on technology and infrastructure development. Therefore we offer a “15 minutes” decarbonization scenario based on general and transparent technical considerations and very straightforward “back-of-envelope” calculations. This working paper contains the calculations and assumptions in support of the accompanying policy brief with the same title which focuses instead on the main take-aways.
Estimation of Hydrogen Production using Wind Energy in Algeria
Aug 2015
Publication
In response to problems involved in the current crisis of petrol in Algeria with the decrease in the price of the oil barrel the rate of growth in domestic electricity demand and with an associated acceleration of global warming as a result of significantly increased greenhouse gas (GHG) emissions renewable energy seems today as a clean and strategic substitution for the next decades. However the greatest obstacles which face electric energy comes from renewable energy systems are often referred to the intermittency of these sources as well as storage and transport problems the need for their conversion into a versatile energy carrier in its use storable transportable and environmentally acceptable are required. Among all the candidates answering these criteria hydrogen presents the best answer. In the present work particular attention is paid to the production of hydrogen from wind energy. The new wind map of Algeria shows that the highest potential wind power was found in Adrar Hassi-R'Mel and Tindouf regions. The data obtained from these locations have been analyzed using Weibull probability distribution function. The wind energy produced in these locations is exploited for hydrogen production through water electrolysis. The objective of this paper is to realize a technological platform allowing the evaluation of emergent technologies of hydrogen production from wind energy using four wind energy conversion systems of 600 1250 1500 and 2000 kW rated capacity. The feasibility study shows that using wind energy in the selected sites is a promising solution. It is shown that the turbine " De Wind D7" is sufficient to supply the electricity and hydrogen with a least cost and a height capacity factor. The minimum cost of hydrogen production of 1.214 $/kgH2 is obtained in Adrar.
Hydrogen: Untapped Energy?
Jan 2012
Publication
Hydrogen has potential applications across our future energy systems due particularly to its relatively high energy weight ratio and because it is emission-free at the point of use. Hydrogen is also abundant and versatile in the sense that it could be produced from a variety of primary energy sources and chemical substances including water and used to deliver power in a variety of applications including fuel cell combined heat and power technologies. As a chemical feedstock hydrogen has been used for several decades and such expertise could be fed back into the relatively new areas of utilising hydrogen to meet growing energy demands.<br/>The UK interest in hydrogen is also growing with various industrial academic and governmental organisations investigating how hydrogen could be part of a diverse portfolio of options for a low carbon future. While hydrogen as an alternative fuel is yet to command mass-appeal in the UK energy market IGEM believes hydrogen is capable of allowing us to use the wide range of primary energy sources at our disposal in a much greener and sustainable way.<br/>IGEM also sees hydrogen playing a small but key role in the gas industry whereby excess renewable energy is used to generate hydrogen which is then injected into the gas grid for widespread distribution and consumption. Various studies suggest admixtures containing up to 10 – 50%v/v hydrogen could be safely administered into the existing natural gas infrastructure. However IGEM understands that this would currently not be permissible under the Gas Safety (Management) Regulations (GS(M)R) for gas conveyance here in the UK. Also proper assessments of the risks associated with adding hydrogen to natural gas streams will need to be performed so that such systems can be managed effectively.<br/>IGEM has also identified a need for standards that cover the safety requirements of hydrogen technologies particularly those pertaining to installations in commercial or domestic environments. IGEM also recommend that the technical measures used to determine separation distances for hydrogen installations particularly refuelling stations are re-assessed through a systematic identification and control of potential sources of ignition.<br/>Hydrogen has the potential to be a significant fuel of the future and part of a diverse portfolio of energy options capable of meeting growing energy needs. This report therefore seeks to demonstrate how hydrogen could be a potential option for energy storage and power generation in a diverse energy system. It also aims to inform the readers on the current state of hydrogen here in the UK and abroad. This report has been assembled for IGEM members interested bodies and the general public.
Water Removal from LOHC Systems
Oct 2020
Publication
Liquid organic hydrogen carriers (LOHC) store hydrogen by reversible hydrogenation of a carrier material. Water can enter the system via wet hydrogen coming from electrolysis as well as via moisture on the catalyst. Removing this water is important for reliable operation of the LOHC system. Different approaches for doing this have been evaluated on three stages of the process. Drying of the hydrogen before entering the LOHC system itself is preferable. A membrane drying process turns out to be the most efficient way. If the water content in the LOHC system is still so high that liquid–liquid demixing occurs it is crucial for water removal to enhance the slow settling. Introduction of an appropriate packing can help to separate the two phases as long as the volume flow is not too high. Further drying below the rather low solubility limit is challenging. Introduction of zeolites into the system is a possible option. Water adsorbs on the surface of the zeolite and moisture content is therefore decreased.
Hydrogen-based Systems for Integration of Renewable Energy in Power Systems: Achievements and Perspectives
Jul 2021
Publication
This paper is a critical review of selected real-world energy storage systems based on hydrogen ranging from lab-scale systems to full-scale systems in continuous operation. 15 projects are presented with a critical overview of their concept and performance. A review of research related to power electronics control systems and energy management strategies has been added to integrate the findings with outlooks usually described in separate literature. Results show that while hydrogen energy storage systems are technically feasible they still require large cost reductions to become commercially attractive. A challenge that affects the cost per unit of energy is the low energy efficiency of some of the system components in real-world operating conditions. Due to losses in the conversion and storage processes hydrogen energy storage systems lose anywhere between 60 and 85% of the incoming electricity with current technology. However there are currently very few alternatives for long-term storage of electricity in power systems so the interest in hydrogen for this application remains high from both industry and academia. Additionally it is expected that the share of intermittent renewable energy in power systems will increase in the coming decades. This could lead to technology development and cost reductions within hydrogen technology if this technology is needed to store excess renewable energy. Results from the reviewed projects indicate that the best solution from a technical viewpoint consists in hybrid systems where hydrogen is combined with short-term energy storage technologies like batteries and supercapacitors. In these hybrid systems the advantages with each storage technology can be fully exploited to maximize efficiency if the system is specifically tailored to the given situation. The disadvantage is that this will obviously increase the complexity and total cost of the energy system.<br/>Therefore control systems and energy management strategies are important factors to achieve optimal results both in terms of efficiency and cost. By considering the reviewed projects and evaluating operation modes and control systems new hybrid energy systems could be tailored to fit each situation and to reduce energy losses.
An Investigation of a (Vinylbenzyl) Trimethylammonium and N-Vinylimidazole-Substituted Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) Copolymer as an Anion-Exchange Membrane in a Lignin-Oxidising Electrolyser
Jun 2021
Publication
Electrolysis is seen as a promising route for the production of hydrogen from water as part of a move to a wider “hydrogen economy”. The electro-oxidation of renewable feedstocks offers an alternative anode couple to the (high-overpotential) electrochemical oxygen evolution reaction for developing low-voltage electrolysers. Meanwhile the exploration of new membrane materials is also important in order to try and reduce the capital costs of electrolysers. In this work we synthesise and characterise a previously unreported anion-exchange membrane consisting of a fluorinated polymer backbone grafted with imidazole and trimethylammonium units as the ion-conducting moieties. We then investigate the use of this membrane in a lignin-oxidising electrolyser. The new membrane performs comparably to a commercially-available anion-exchange membrane (Fumapem) for this purpose over short timescales (delivering current densities of 4.4 mA cm−2 for lignin oxidation at a cell potential of 1.2 V at 70 °C during linear sweep voltammetry) but membrane durability was found to be a significant issue over extended testing durations. This work therefore suggests that membranes of the sort described herein might be usefully employed for lignin electrolysis applications if their robustness can be improved.
Acoustic and Psychoacoustic Levels from an Internal Combustion Engine Fueled by Hydrogen vs. Gasoline
Feb 2022
Publication
Whereas noise generated by road traffic is an important factor in urban pollution little attention has been paid to this issue in the field of hydrogen-fueled vehicles. The objective of this study is to analyze the influence of the type of fuel (gasoline or hydrogen) on the sound levels produced by a vehicle with an internal combustion engine. A Volkswagen Polo 1.4 vehicle adapted for its bi-fuel hydrogen-gasoline operation has been used. Tests were carried out with the vehicle when stationary to eliminate rolling and aerodynamic noise. Acoustics and psychoacoustics levels were measured both inside and outside the vehicle. A slight increase in the noise level has only been found outside when using hydrogen as fuel compared to gasoline. The increase is statistically significant can be quantified between 1.1 and 1.7 dBA and is mainly due to an intensification of the 500 Hz band. Loudness is also higher outside the vehicle (between 2 and 4 sones) when the fuel is hydrogen. Differences in sharpness and roughness values are lower than the just-noticeable difference (JND) values of the parameters. Higher noise levels produced by hydrogen can be attributed to its higher reactivity compared to gasoline.
A Review on the Properties of Iron Aluminide Intermetallics
Jan 2016
Publication
Iron aluminides have been among the most studied intermetallics since the 1930s when their excellent oxidation resistance was first noticed. Their low cost of production low density high strength-to-weight ratios good wear resistance ease of fabrication and resistance to high temperature oxidation and sulfurization make them very attractive as a substitute for routine stainless steel in industrial applications. Furthermore iron aluminides allow for the conservation of less accessible and expensive elements such as nickel and molybdenum. These advantages have led to the consideration of many applications such as brake disks for windmills and trucks filtration systems in refineries and fossil power plants transfer rolls for hot-rolled steel strips and ethylene crackers and air deflectors for burning high-sulfur coal. A wide application for iron aluminides in industry strictly depends on the fundamental understanding of the influence of (i) alloy composition; (ii) microstructure; and (iii) number (type) of defects on the thermo-mechanical properties. Additionally environmental degradation of the alloys consisting of hydrogen embrittlement anodic or cathodic dissolution localized corrosion and oxidation resistance in different environments should be well known. Recently some progress in the development of new micro- and nano-mechanical testing methods in addition to the fabrication techniques of micro- and nano-scaled samples has enabled scientists to resolve more clearly the effects of alloying elements environmental items and crystal structure on the deformation behavior of alloys. In this paper we will review the extensive work which has been done during the last decades to address each of the points mentioned above.
Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers
Mar 2017
Publication
Cost reduction and high efficiency are the mayor challenges for sustainable H2 production via proton exchange membrane (PEM) electrolysis. Titanium-based components such as bipolar plates (BPP) have the largest contribution to the capital cost. This work proposes the use of stainless steel BPPs coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spraying (VPS) respectively. The physical properties of the coatings are thoroughly characterized by scanning electron atomic force microscopies (SEM AFM); and X-ray diffraction photoelectron spectroscopies (XRD XPS). The Ti coating (50μm) protects the stainless steel substrate against corrosion while a 50- fold thinner layer of Nb decreases the contact resistance by almost one order of magnitude. The Nb/ Ti-coated stainless steel bipolar BPPs endure the harsh environment of the anode for more than 1000h of operation under nominal conditions showing a potential use in PEM electrolyzers for large-scale H2 production from renewables.
A Quantitative Assessment of the Hydrogen Storage Capacity of the UK Continental Shelf
Nov 2020
Publication
Increased penetration of renewable energy sources and decarbonisation of the UK's gas supply will require large-scale energy storage. Using hydrogen as an energy storage vector we estimate that 150 TWh of seasonal storage is required to replace seasonal variations in natural gas production. Large-scale storage is best suited to porous rock reservoirs. We present a method to quantify the hydrogen storage capacity of gas fields and saline aquifers using data previously used to assess CO2 storage potential. We calculate a P50 value of 6900 TWh of working gas capacity in gas fields and 2200 TWh in saline aquifers on the UK continental shelf assuming a cushion gas requirement of 50%. Sensitivity analysis reveals low temperature storage sites with sealing rocks that can withstand high pressures are ideal sites. Gas fields in the Southern North Sea could utilise existing infrastructure and large offshore wind developments to develop large-scale offshore hydrogen production.
Electrocatalytic Properties for the Hydrogen Evolution of the Electrodeposited Ni–Mo/WC Composites
May 2021
Publication
The catalytical activity for the hydrogen evolution reaction (HER) of the electrodeposited Ni–Mo/WC composites is examined in 1 M KOH solution. The structure surface morphology and surface composition is investigated using the scanning electron microscopy X-ray diffraction and X-ray photoelectron spectroscopy. The electrocatalytic properties for the HER is evaluated based on the cathodic polarization electrochemical impedance cyclic voltammetry and chronopotentiometry methods. The obtained results prove the superior catalytic activity for the HER of Ni–Mo/WC composites to Ni–Mo alloy. The catalytic activity of Ni–Mo/WC electrodes is determined by the presence of WC nanoparticles and Mo content in the metallic matrix. The best electrocatalytic properties are identified for Ni–Mo/WC composite with the highest Mo content and the most oxidized surface among the studied coatings. The impedance results reveal that the observed improvement in the catalytic activity is the consequence of high real surface area and high intrinsic catalytic activity of the composite.
Hydrogen for Australia’s Future
Aug 2018
Publication
The Hydrogen Strategy Group chaired by Australia’s Chief Scientist Dr Alan Finkel has today released a briefing paper on the potential domestic and export opportunities of a hydrogen industry in Australia.
Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.
Hydrogen is the most abundant element in the universe not freely available as a gas on Earth but bound into many common substances including water and fossil fuels.
Hydrogen was first formally presented as a credible alternative energy source in the early 1970s but never proved competitive at scale as an energy source – until now. We find that the worldwide demand for hydrogen is set to increase substantially over coming decades driven by Japan’s decision to put imported hydrogen at the heart of its economy. Production costs are falling technologies are progressing and the push for non-nuclear low-emissions fuels is building momentum. We conclude that Australia is remarkably well-positioned to benefit from the growth of hydrogen industries and markets.
Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.
Hydrogen is the most abundant element in the universe not freely available as a gas on Earth but bound into many common substances including water and fossil fuels.
Hydrogen was first formally presented as a credible alternative energy source in the early 1970s but never proved competitive at scale as an energy source – until now. We find that the worldwide demand for hydrogen is set to increase substantially over coming decades driven by Japan’s decision to put imported hydrogen at the heart of its economy. Production costs are falling technologies are progressing and the push for non-nuclear low-emissions fuels is building momentum. We conclude that Australia is remarkably well-positioned to benefit from the growth of hydrogen industries and markets.
Instantaneous Hydrogen Production from Ammonia by Non-thermal Arc Plasma Combining with Catalyst
Jul 2021
Publication
Owing to the storage and transportation problems of hydrogen fuel exploring new methods of the realtime hydrogen production from ammonia becomes attractive. In this paper non-thermal arc plasma (NTAP) combining with NiO/Al2O3 catalyst is developed to produce hydrogen from ammonia with high efficiency and large scale. The effects of ammonia gas flow rate and discharge power on the gas temperature electron density the hydrogen production rate and energy efficiency were investigated. Experimental results show that the optical emission spectrum of NTAP working with pure ammonia medium was dominated by the atom spectrum of Hα Hβ and molecular spectrum of NH component. Under the optimum experimental condition of plasma discharge the highest energy efficiency of hydrogen production reached 783.4 L/kW·h at NH3 gas flow rate of 30 SLM. When the catalyst was added and heated by the NTAP simultaneously the energy efficiency further increased to 1080.0 L/kW·h.
Hydrothermal Synthesis of Iridium-Substituted NaTaO3 Perovskites
Jun 2021
Publication
Iridium-containing NaTaO3 is produced using a one-step hydrothermal crystallisation from Ta2O5 and IrCl3 in an aqueous solution of 10 M NaOH in 40 vol% H2O2 heated at 240 °C. Although a nominal replacement of 50% of Ta by Ir was attempted the amount of Ir included in the perovskite oxide was only up to 15 mol%. The materials are formed as crystalline powders comprising cube-shaped crystallites around 100 nm in edge length as seen by scanning transmission electron microscopy. Energy dispersive X-ray mapping shows an even dispersion of Ir through the crystallites. Profile fitting of powder X-ray diffraction (XRD) shows expanded unit cell volumes (orthorhombic space group Pbnm) compared to the parent NaTaO3 while XANES spectroscopy at the Ir LIII-edge reveals that the highest Ir-content materials contain Ir4+. The inclusion of Ir4+ into the perovskite by replacement of Ta5+ implies the presence of charge-balancing defects and upon heat treatment the iridium is extruded from the perovskite at around 600 °C in air with the presence of metallic iridium seen by in situ powder XRD. The highest Ir-content material was loaded with Pt and examined for photocatalytic evolution of H2 from aqueous methanol. Compared to the parent NaTaO3 the Ir-substituted material shows a more than ten-fold enhancement of hydrogen yield with a significant proportion ascribed to visible light absorption.
Towards Ecological Alternatives in Bearing Lubrication
Jun 2021
Publication
Hydrogen is the cleanest fuel available because its combustion product is water. The internal combustion engine can in principle and without significant modifications run on hydrogen to produce mechanical energy. Regarding the technological solution leading to compact engines a question to ask is the following: Can combustion engine systems be lubricated with hydrogen? In general since many applications such as in turbomachines is it possible to use the surrounding gas as a lubricant? In this paper journal bearings global parameters are calculated and compared for steady state and dynamic conditions for different gas constituents such as air pentafluoropropane helium and hydrogen. Such a bearing may be promising as an ecological alternative to liquid lubrication.
Fuel Cells and Hydrogen Observatory 2019 EU and National Policies Report
Sep 2021
Publication
The policy module of the FCHO presents an overview of EU and national policies across various hydrogen and fuel cell related sectors. It provides a snapshot of the current state of hydrogen legislation and policy. Scope: While FCHO covers 38 entities around the world due to the completeness of the data at the moment of writing this report covers 29 entities. The report reflects data collected January 2019 – December 2019. Key Findings: Hydrogen policies are relatively commonplace among European countries but with large differences between member states. EU hydrogen leaders do not lag behind global outliers such as South Korea or Japan.
Aging Effects on Modelling and Operation of a Photovoltaic System with Hydrogen Storage
Jun 2021
Publication
In this work the aging effects on modelling and operation of a photovoltaic system with hydrogen storage in terms of energy production decrease and demand for additional hydrogen during 10 years of the system operation was analysed for the entire energy system for the first time. The analyses were performed with the support of experimental data for the renewable energy system composed of photovoltaic modules fuel cell electrolysers hydrogen storage and hydrogen backup.<br/>It has been found that the total degradation of the analysed system can be described by the proposed parameter – unit additional hydrogen consumption ratio. The results reveal a 33.2–36.2% increase of the unit fuel requirement from an external source after 10 years in reference to the initial condition. Degradation of the components can on the other hand be well described with the unit hydrogen consumption ratio by fuel cell for electricity or the unit electricity consumption ratio by electrolyser for hydrogen production which has been found to vary for the electrolyser in the range of 4.6–4.9% and for the fuel cell stack in the range of 13.4–15.1% during the 10 years of the system operation. The analyses indicate that this value depends on the load profile and PV module types and the system performance decline is non-linear."
2020 It's Time To Get Real
Mar 2020
Publication
Gi Editor Sharon Baker-Hallam sits down with Chris Stark CEO of the Committee on Climate Change to talk about this year’s Sir Denis Rooke Memorial Lecture the economic opportunities to be found in going green and why 2020 is a critical year in the ongoing battle against rising global temperatures
Hydrogen Tank Rupture in Fire in the Open Atmosphere: Hazard Distance Defined by Fireball
Feb 2021
Publication
The engineering correlations for assessment of hazard distance defined by a size of fireball after either liquid hydrogen spill combustion or high-pressure hydrogen tank rupture in a fire in the open atmosphere (both for stand-alone and under-vehicle tanks) are presented. The term “fireball size” is used for the maximum horizontal size of a fireball that is different from the term “fireball diameter” applied to spherical or semi-spherical shape fireballs. There are different reasons for a fireball to deviate from a spherical shape e.g. in case of tank rupture under a vehicle the non-instantaneous opening of tank walls etc. Two conservative correlations are built using theoretical analysis numerical simulations and experimental data available in the literature. The theoretical model for hydrogen fireball size assumes complete isobaric combustion of hydrogen in air and presumes its hemispherical shape as observed in the experiments and the simulations for tank rupturing at the ground level. The dependence of the fireball size on hydrogen mass and fireball’s diameter-to-height ratio is discussed. The correlation for liquid hydrogen release fireball is based on the experiments by Zabetakis (1964). The correlations can be applied as engineering tools to access hazard distances for scenarios of liquid or gaseous hydrogen storage tank rupture in a fire in the open atmosphere
HyDeploy Report: Summary of Gas Appliance and Installation Testing
Jun 2018
Publication
The HyDeploy project has undertaken a programme of work to assess the effect of hydrogen addition on the safety and performance of gas appliances and installations. A representative set of eight appliances have been assessed in laboratory experiments with a range of test gases that explored high and low Wobbe Index and hydrogen concentrations up to 28.4 % mol/mol. These tests have demonstrated that the addition of hydrogen does not affect the key hazard areas of CO production light back flame out or the operation of flame failure devices. It was identified that for some designs of gas fire appliances the operation of the oxygen depletion sensors may be affected by the addition of hydrogen. Testing of the gas fires that are present at Keele University that use oxygen depletion sensors have been shown to operate satisfactorily.<br/>A comprehensive onsite survey programme at Keele University has assessed 95% of the installations (126 of 133) that will receive the hydrogen blended gas during the HyDeploy trial. Where access to properties was not possible then the information obtained revealed that the appliances were annually checked either through British Gas service contracts or as a result of being rental properties. The onsite testing programme assessed installations for gas tightness and appliance combustion safety and operation with normal line gas G20 reference gas and two hydrogen blended gases. The checks identified a small number instances were remedial work was required to correct poor condition or operation. Only one case was found to be immediately dangerous which was capped off until repair work was undertaken. CO and smoke alarms were fitted in approximately half of properties and alarms were provided as required to the occupants. Gas tightness tests identified leaks in three installations. Where installations are gas tight then analysis has shown that no additional leaks would occur with hydrogen blended gas. There were no issues identified with the combustion performance of those appliances that were operating correctly and results were in line with those obtained in the laboratory testing programme.<br/>The findings of the Appliance and Installation testing program have been used to define the input values into the HyDeploy quantified risk assessment (QRA) where Keele University specific operation is different to GB as a whole or where the findings show the addition of hydrogen will change the risk profile.<br/>Click on supplements to see the other documents from this report
A Comprehensive Review of Microbial Electrolysis Cells (MEC) Reactor Designs and Configurations for Sustainable Hydrogen Gas Production
Nov 2015
Publication
Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles. A cutting edge technology called a microbial electrolysis cell (MEC) can achieve sustainable and clean hydrogen production from a wide range of renewable biomass and wastewaters. Enhancing the hydrogen production rate and lowering the energy input are the main challenges of MEC technology. MEC reactor design is one of the crucial factors which directly influence on hydrogen and current production rate in MECs. The rector design is also a key factor to upscaling. Traditional MEC designs incorporated membranes but it was recently shown that membrane-free designs can lead to both high hydrogen recoveries and production rates. Since then multiple studies have developed reactors that operate without membranes. This review provides a brief overview of recent advances in research on scalable MEC reactor design and configurations.
On Capital Utilization in the Hydrogen Economy: The Quest to Minimize Idle Capacity in Renewables-rich Energy Systems
Oct 2020
Publication
The hydrogen economy is currently experiencing a surge in attention partly due to the possibility of absorbing variable renewable energy (VRE) production peaks through electrolysis. A fundamental challenge with this approach is low utilization rates of various parts of the integrated electricity-hydrogen system. To assess the importance of capacity utilization this paper introduces a novel stylized numerical energy system model incorporating the major elements of electricity and hydrogen generation transmission and storage including both “green” hydrogen from electrolysis and “blue” hydrogen from natural gas reforming with CO2 capture and storage (CCS). Concurrent optimization of all major system elements revealed that balancing VRE with electrolysis involves substantial additional costs beyond reduced electrolyzer capacity factors. Depending on the location of electrolyzers greater capital expenditures are also required for hydrogen pipelines and storage infrastructure (to handle intermittent hydrogen production) or electricity transmission networks (to transmit VRE peaks to electrolyzers). Blue hydrogen scenarios face similar constraints. High VRE shares impose low utilization rates of CO2 capture transport and storage infrastructure for conventional CCS and of hydrogen transmission and storage infrastructure for a novel process (gas switching reforming) that enables flexible power and hydrogen production. In conclusion all major system elements must be considered to accurately reflect the costs of using hydrogen to integrate higher VRE shares.
Emerging, Hydrogen-driven Electrochemical Water Purification
Jan 2022
Publication
Energy-efficient technologies for the remediation of water and generation of drinking water is a key towards sustainable technologies. Electrochemical desalination technologies are promising alternatives towards established methods such as reverse osmosis or ultrafiltration. In the last few years hydrogen-driven electrochemical water purification has emerged. This review article explores the concept of desalination fuel cells and capacitive-Faradaic fuel cells for ion separation.
Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns
May 2021
Publication
Salt caverns are accepted as an ideal solution for high-pressure hydrogen storage. As well as considering the numerous benefits of the realization of underground hydrogen storage (UHS) such as high energy densities low leakage rates and big storage volumes risk analysis of UHS is a required step for assessing the suitability of this technology. In this work a preliminary quantitative risk assessment (QRA) was performed by starting from the worst-case scenario: rupture at the ground of the riser pipe from the salt cavern to the ground. The influence of hydrogen contamination by bacterial metabolism was studied considering the composition of the gas contained in the salt caverns as time variable. A bow-tie analysis was used to highlight all the possible causes (basic events) as well as the outcomes (jet fire unconfined vapor cloud explosion (UVCE) toxic chemical release) and then consequence and risk analyses were performed. The results showed that a UVCE is the most frequent outcome but its effect zone decreases with time due to the hydrogen contamination and the higher contents of methane and hydrogen sulfide.
Mobility from Renewable Electricity: Infrastructure Comparison for Battery and Hydrogen Fuel Cell Vehicles
May 2018
Publication
This work presents a detailed breakdown of the energy conversion chains from intermittent electricity to a vehicle considering battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs). The traditional well-to-wheel analysis is adapted to a grid to mobility approach by introducing the intermediate steps of useful electricity energy carrier and on-board storage. Specific attention is given to an effective coupling with renewable electricity sources and associated storage needs. Actual market data show that compared to FCEVs BEVs and their infrastructure are twice as efficient in the conversion of renewable electricity to a mobility service. A much larger difference between BEVs and FCEVs is usually reported in the literature. Focusing on recharging events this work additionally shows that the infrastructure efficiencies of both electric vehicle (EV) types are very close with 57% from grid to on-board storage for hydrogen refilling stations and 66% for fast chargers coupled with battery storage. The transfer from the energy carrier at the station to on-board storage in the vehicle accounts for 9% and 12% of the total energy losses of these two modes respectively. Slow charging modes can achieve a charging infrastructure efficiency of 78% with residential energy storage systems coupled with AC chargers.
Large-scale Stationary Hydrogen Storage via Liquid Organic Hydrogen Carriers
Aug 2021
Publication
Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach liquid organic molecules have emerged as a favorable storage medium because of their desirable properties such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs.
Techno-economic Assessment of Hydrogen Production from Seawater
Nov 2022
Publication
Population growth and the expansion of industries have increased energy demand and the use of fossil fuels as an energy source resulting in release of greenhouse gases (GHG) and increased air pollution. Countries are therefore looking for alternatives to fossil fuels for energy generation. Using hydrogen as an energy carrier is one of the most promising alternatives to replace fossil fuels in electricity generation. It is therefore essential to know how hydrogen is produced. Hydrogen can be produced by splitting the water molecules in an electrolyser using the abondand water resources which are covering around ⅔ of the Earth's surface. Electrolysers however require high-quality water with conductivity in the range of 0.1–1 μS/cm. In January 2018 there were 184 offshore oil and gas rigs in the North Sea which may be excellent sites for hydrogen production from seawater. The hydrogen production process reported in this paper is based on a proton exchange membrane (PEM) electrolyser with an input flow rate of 300 L/h. A financially optimal system for producing demineralized water from seawater with conductivity in the range of 0.1–1 μS/cm as the input for electrolyser by WAVE (Water Application Value Engine) design software was studied. The costs of producing hydrogen using the optimised system was calculated to be US$3.51/kg H2. The best option for low-cost power generation using renewable resources such as photovoltaic (PV) devices wind turbines as well as electricity from the grid was assessed considering the location of the case considered. All calculations were based on assumption of existing cable from the grid to the offshore meaning that the cost of cables and distribution infrastructure were not considered. Models were created using HOMER Pro (Hybrid Optimisation of Multiple Energy Resources) software to optimise the microgrids and the distributed energy resources under the assumption of a nominal discount rate inflation rate project lifetime and CO2 tax in Norway. Eight different scenarios were examined using HOMER Pro and the main findings being as follows:<br/>The cost of producing water with quality required by the electrolyser is low compared with the cost of electricity for operation of the electrolyser and therefore has little effect on the total cost of hydrogen production (less than 1%).<br/>The optimal solution was shown to be electricity from the grid which has the lowest levelised cost of energy (LCOE) of the options considered. The hydrogen production cost using electricity from the grid was about US$ 5/kg H2.<br/>Grid based electricity resulted in the lowest hydrogen production cost even when costs for CO2 emissions in Norway that will start to apply in 2025 was considered being approximately US$7.7/kg H2.<br/>From economical point of view wind energy was found to be a more economical than solar.
Public Acceptance for the Implementation of Hydrogen Self-refueling Stations
Sep 2021
Publication
The utilization of hydrogen energy is important for achieving a low-carbon society. Japan has set ambitious goals for hydrogen stations and fuel cell vehicles focusing on the introduction and dissemination of self-refuelling systems. This paper evaluates public trust in the fuel equipment and self-handling technology related to self-refuelling hydrogen stations and compares it with that for widespread gasoline stations. To this end the results of an online survey of 300 people with Japanese driver licenses are reported and analyzed. The results show that trust in the equipment and self-handling is more important for the user than trust in the fuel. In addition to introduce and disseminate new technology such as hydrogen stations users must be made aware of the risk of using the technology until it becomes as familiar as existing gasoline station technology.
Economic Analysis of a High-pressure Urban Pipeline Concept (HyLine) for Delivering Hydrogen to Retail Fueling Stations
Nov 2019
Publication
Reducing the cost of delivering hydrogen to fuelling stations and dispensing it into fuel cell electric vehicles (FCEVs) is one critical element of efforts to increase the cost-competitiveness of FCEVs. Today hydrogen is primarily delivered to stations by trucks. Pipeline delivery is much rarer: one urban U.S. station has been supplied with 800-psi hydrogen from an industrial hydrogen pipeline since 2011 and a German station on the edge of an industrial park has been supplied with 13000-psi hydrogen from a pipeline since 2006. This article compares the economics of existing U.S. hydrogen delivery methods with the economics of a high-pressure scalable intra-city pipeline system referred to here as the “HyLine” system. In the HyLine system hydrogen would be produced at urban industrial or commercial sites compressed to 15000 psi stored at centralized facilities delivered via high-pressure pipeline to retail stations and dispensed directly into FCEVs. Our analysis of retail fuelling station economics in Los Angeles suggests that as FCEV demand for hydrogen in an area becomes sufficiently dense pipeline hydrogen delivery gains an economic advantage over truck delivery. The HyLine approach would also enable cheaper dispensed hydrogen compared with lower-pressure pipeline delivery owing to economies of scale associated with integrated compression and storage. In the largest-scale fuelling scenario analyzed (a network of 24 stations with capacities of 1500 kg/d each and hydrogen produced via steam methane reforming) HyLine could potentially achieve a profited hydrogen cost of $5.3/kg which is approximately equivalent to a gasoline cost of $2.7/gal (assuming FCEVs offer twice the fuel economy of internal combustion engine vehicles and vehicle cost is competitive). It is important to note that significant effort would be required to develop technical knowledge codes and standards that would enable a HyLine system to be viable. However our preliminary analysis suggests that the HyLine approach merits further consideration based on its potential economic advantages. These advantages could also include the value of minimizing retail space used by hydrogen compression and storage sited at fuelling stations which is not reflected in our analysis.
A Novel Integration of a Green Power-to-ammonia to Power System: Reversible Solid Oxide Fuel Cell for Hydrogen and Power Production Coupled with an Ammonia Synthesis Unit
Mar 2021
Publication
Renewable energy is a key solution in maintaining global warming below 2 °C. However its intermittency necessitates the need for energy conversion technologies to meet demand when there are insufficient renewable energy resources. This study aims to tackle these challenges by thermo-electrochemical modelling and simulation of a reversible solid oxide fuel cell (RSOFC) and integration with the Haber Bosch process. The novelty of the proposed system is usage of nitrogen-rich fuel electrode exhaust gas for ammonia synthesis during fuel cell mode which is usually combusted to prevent release of highly flammable hydrogen into the environment. RSOFC round-trip efficiencies of 41–53% have been attained when producing excess ammonia (144 kg NH3/hr) for the market and in-house consumption respectively. The designed system has the lowest reported ammonia electricity consumption of 6.4–8.21 kWh/kg NH3 power-to-hydrogen power-to-ammonia and power-generation efficiencies of 80% 55–71% and 64–66%.
Constrained Extended Kalman Filter Design and Application for On-line State Estimation of High-order Polymer Electrolyte Membrane Fuel Cell Systems
Jun 2021
Publication
In this paper an alternative approach to extended Kalman filtering (EKF) for polymer electrolyte membrane fuel cell (FC) systems is proposed. The goal is to obtain robust real-time capable state estimations of a high-order FC model for observer applications mixed with control or fault detection. The introduced formulation resolves dependencies on operating conditions by successive linearization and constraints allowing to run the nonlinear FC model at significantly lower sampling rates than with standard approaches. The proposed method provides state estimates for challenging operating conditions such as shut-down and start-up of the fuel cell for which the unconstrained EKF fails. A detailed comparison with the unscented Kalman filter shows that the proposed EKF reconstructs the outputs equally accurate but nine times faster. An application to measured data from an FC powered passenger car is presented yielding state estimates of a real FC system which are validated based on the applied model.
No more items...