- Home
- A-Z Publications
- Publications
Publications
Hydrogen Energy as Future of Sustainable Mobility
May 2022
Publication
Conventional fuels for vehicular applications generate hazardous pollutants which have an adverse effect on the environment. Therefore there is a high demand to shift towards environment-friendly vehicles for the present mobility sector. This paper highlights sustainable mobility and specifically sustainable transportation as a solution to reduce GHG emissions. Thus hydrogen fuel-based vehicular technologies have started blooming and have gained significance following the zero-emission policy focusing on various types of sustainable motilities and their limitations. Serving an incredible deliverance of energy by hydrogen fuel combustion engines hydrogen can revolution various transportation sectors. In this study the aspects of hydrogen as a fuel for sustainable mobility sectors have been investigated. In order to reduce the GHG (Green House Gas) emission from fossil fuel vehicles researchers have paid their focus for research and development on hydrogen fuel vehicles and proton exchange fuel cells. Also its development and progress in all mobility sectors in various countries have been scrutinized to measure the feasibility of sustainable mobility as a future. This paper is an inclusive review of hydrogen-based mobility in various sectors of transportation in particular fuel cell cars that provides information on various technologies adapted with time to add more towards perfection. When compared to electric vehicles with a 200-mile range fuel cell cars have a lower driving cost in all of the 2035 and 2050 scenarios. To stimulate the use of hydrogen as a passenger automobile fuel the cost of a hydrogen fuel cell vehicle (FCV) must be brought down to at least the same level as an electric vehicle. Compared to gasoline cars fuel cell vehicles use 43% less energy and generate 40% less CO2.
Hydrogen-Electric Coupling Coordinated Control Strategy of Multi-Station Integrated System Based on the Honeycomb Topology
Mar 2022
Publication
With the high-proportion accession of renewable energy and randomness of the load side in the new energy power system unbalanced feeder power and heavy overload of the transformer caused by massive access of highly uncertain source loads become more and more serious. In order to solve the aforementioned problems a honeycomb topology of the multi-station integrated system is proposed. The soft open point (SOP) is used as the key integrated equipment of the internal unit of a multi-station integrated system. The honeycomb grid structure is composed of flexible nodes and the multi-station integrated system is composed of multi-network flexible interconnection. Based on the characteristics of the regional resource endowment hydrogen energy flow is deeply coupled in parts of honeycomb grids. In order to improve the reliability and flexibility of the multi-station integrated unit the structure of the new multi-station integrated unit the power balance constraints on the unit and the switching process of SOP control mode are studied. At the same time the hydrogen electricity coupling structure and the coordinated control strategy of hydrogen electricity conversion are proposed to solve the problem of deep application of hydrogen energy. Finally the effectiveness of the proposed multi-station integrated system is verified by using three simulation models.
Experimental Study of the Feasibility of In‐Situ Hydrogen Generation from Gas Reservoir
Nov 2022
Publication
Due to there is no better way to exploit depleted gas reservoirs and hydrogen can generate from natural gas combustion. In this paper the possibility of in‐situ hydrogen generation in air injected gas reservoirs was determined through pseudo dynamic experiments. The study indicated that highertemperature and steam/methane ratio can generate more hydrogen and the temperature should not be lower than 600 °C within gas reservoirs. The debris has positive catalysis for hydrogen generation. The maximum mole fraction of hydrogen was 26.63% at 600 °C.
Effect of H2 on Blast Furnace Ironmaking: A Review
Nov 2022
Publication
Under the background of “carbon peaking” and “carbon neutralization” the green transformation of iron and steel enterprises is imminent. The hydrogen-rich smelting technology of blast furnaces is very important for reducing energy consumption and CO2 emission in ironmaking systems and it is one of the important directions of green and low-carbon development of iron and steel enterprises. In this paper the research status of the thermal state reduction mechanism of iron-bearing burden coke degradation behavior and formation of the cohesive zone in various areas of blast furnace after hydrogen-rich smelting is summarized which can make a more clear and comprehensive understanding for the effect of H2 on blast furnace ironmaking. Meanwhile based on the current research situation it is proposed that the following aspects should be further studied in the hydrogen-rich smelting of blast furnaces: (1) the utilization rate of hydrogen and degree of substitution for direct reduction (2) combustion behavior of fuel in raceway (3) control of gas flow distribution in the blast furnace (4) operation optimization of the blast furnace.
The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion
Feb 2022
Publication
High-strength aluminum alloys are widely used in industry. Hydrogen embrittlement greatly reduces the performance and service safety of aluminum alloys. The hydrogen traps in aluminum profoundly affect the hydrogen embrittlement of aluminum. Here we took a coincidence-site lattice (CSL) symmetrically tilted grain boundary (STGB) Σ5(120)[001] as an example to carry out molecular dynamics (MD) simulations of hydrogen diffusion in aluminum at different temperatures and to obtain results and rules consistent with the experiment. At 700 K three groups of MD simulations with concentrations of 0.5 2.5 and 5 atomic % hydrogen (at. % H) were carried out for STGB models at different angles. By analyzing the simulation results and the MSD curves of hydrogen atoms we found that in the low hydrogen concentration of STGB models the grain boundaries captured hydrogen atoms and hindered their movement. In high-hydrogen-concentration models the diffusion rate of hydrogen atoms was not affected by the grain boundaries. The analysis of the simulation results showed that the diffusion of hydro-gen atoms at the grain boundary is anisotropic.
Hydrogen Safety Challenges: A Comprehensive Review on Production, Storage, Transport, Utilization, and CFD-Based Consequence and Risk Assessment
Mar 2024
Publication
This review examines the central role of hydrogen particularly green hydrogen from renewable sources in the global search for energy solutions that are sustainable and safe by design. Using the hydrogen square safety measures across the hydrogen value chain—production storage transport and utilisation—are discussed thereby highlighting the need for a balanced approach to ensure a sustainable and efficient hydrogen economy. The review also underlines the challenges in safety assessments points to past incidents and argues for a comprehensive risk assessment that uses empirical modelling simulation-based computational fluid dynamics (CFDs) for hydrogen dispersion and quantitative risk assessments. It also highlights the activities carried out by our research group SaRAH (Safety Risk Analysis and Hydrogen) relative to a more rigorous risk assessment of hydrogenrelated systems through the use of a combined approach of CFD simulations and the appropriate risk assessment tools. Our research activities are currently focused on underground hydrogen storage and hydrogen transport as hythane.
Impact of Hydrogen Liquefaction on Hydrogen Fuel Quality for Transport Applications (ISO-14687:2019)
Aug 2022
Publication
Decarbonisation of the energy sector is becoming increasingly more important to the reduction in climate change. Renewable energy is an effective means of reducing CO2 emissions but the fluctuation in demand and production of energy is a limiting factor. Liquid hydrogen allows for long-term storage of energy. Hydrogen quality is important for the safety and efficiency of the end user. Furthermore the quality of the hydrogen gas after liquefaction has not yet been reported. The purity of hydrogen after liquefaction was assessed against the specification of Hydrogen grade D in the ISO-14687:2019 by analysing samples taken at different locations throughout production. Sampling was carried out directly in gas cylinders and purity was assessed using multiple analytical methods. The results indicate that the hydrogen gas produced from liquefaction is of a higher purity than the starting gas with all impurities below the threshold values set in ISO-14687:2019. The amount fraction of water measured in the hydrogen sample increased with repeated sampling from the liquid hydrogen tank suggesting that the sampling system used was affected by low temperatures (−253 ◦C). These data demonstrate for the first time the impact of liquefaction on hydrogen purity assessed against ISO-14687:2019 showing that liquified hydrogen is a viable option for long-term energy storage whilst also improving quality.
Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies
Apr 2021
Publication
Industries account for about 30% of total final energy consumption worldwide and about 20% of global CO2 emissions. While transitions towards renewable energy have occurred in many parts of the world in the energy sectors the industrial sectors have been lagging behind. Decarbonising the energy-intensive industrial sectors is however important for mitigating emissions leading to climate change. This paper analyses various technological trajectories and key policies for decarbonising energy-intensive industries: steel mining and minerals cement pulp and paper and refinery. Electrification fuel switching to low carbon fuels together with technological breakthroughs such as fossil-free steel production and CCS are required to bring emissions from energy-intensive industry down to net-zero. A long-term credible carbon price support for technological development in various parts of the innovation chain policies for creating markets for low-carbon materials and the right condition for electrification and increased use of biofuels will be essential for a successful transition towards carbon neutrality. The study focuses on Sweden as a reference case as it is one of the most advanced countries in the decarbonisation of industries. The paper concludes that it may be technically feasible to deep decarbonise energy-intensive industries by 2045 given financial and political support.
Techno-economic Assessment of a Chemical Looping Splitting System for H2 and CO Co-generation
Feb 2022
Publication
The natural gas (NG) reforming is currently one of the low-cost methods for hydrogen production. However the mixture of H2 and CO2 in the produced gas inevitably includes CO2 and necessitates the costly CO2 separation. In this work a novel double chemical looping involving both combustion (CLC) and sorption-enhanced reforming (SE-CLR) was proposed towards the co-production of H2 and CO (CLC-SECLRHC) in two separated streams. CLC provides reactant CO2 and energy to feed SECLRHC which generates hydrogen in a higher purity as well as the calcium cycle to generate CO in a higher purity. Techno-economic assessment of the proposed system was conducted to evaluate its efficiency and economic competitiveness. Studies revealed that the optimal molar ratios of oxygen carrier (OC)/NG and steam/NG for reforming were recommended to be 1.7 and 1.0 respectively. The heat integration within CLC and SECLRHC units can be achieved by circulating hot OCs. The desired temperatures of fuel reactor (FR) and reforming reactor (RR) should be 850 °C and 600 °C respectively. The heat coupling between CLC and SECLRHC units can be realized via a jacket-type reactor and the NG split ratio for reforming and combustion was 0.53:0.47. Under the optimal conditions the H2 purity the H2 yield and the CH4 conversion efficiency were 98.76% 2.31 mol mol-1 and 97.96% respectively. The carbon and hydrogen utilization efficiency respectively were 58.60% and 72.45% in terms of the total hydrogen in both steam and NG. The exergy efficiency of the overall process reached 70.28%. In terms of the conventional plant capacity (75×103 t y-1 ) and current raw materials price (2500 $ t-1 ) the payback period can be 6.2 years and the IRR would be 11.5 demonstrating an economically feasible and risk resistant capability.
Green-hydrogen Research: What Have We Achieved, and Where Are We Going? Bibliometrics Analysis
Jul 2022
Publication
In response to the global challenge of climate change 136 countries accounting for 90% of global GDP and 85% of the population have now set net-zero targets. A transition to net-zero will require the decarbonization of all sectors of the economy. Green-hydrogen produced from renewable energy sources poses little to no threat to the environment and increasing its production will support net-zero targets Our study examined the evolution of green-hydrogen research themes since the UN Sustainable Development Goals were adopted in 2015 by utilizing bibliographic couplings keyword co-occurrence and keyphrase analysis of 642 articles from 2016 to 2021 in the Scopus database. We studied bibliometrics indicators and temporal evolution of publications and citations patterns of open access the effect of author collaboration influential publications and top contributing countries. We also consider new indicators like publication views keyphrases topics with prominence and field weighted citation impact and Altmetrics to understand the research direction further. We find four major thematic distributions of green-hydrogen research based on keyword co-occurrence networks: hydrogen storage hydrogen production electrolysis and the hydrogen economy. We also find networks of four research clusters that provide new information on the journal’s contributions to green-hydrogen research. These are materials chemistry hydrogen energy and cleaner production applied energy and fuel cells. Most green-hydrogen research aligns with Affordable and Clean Energy (SDG 7) and Climate Action (SDG 13). The outcomes of policy decisions in the United States Europe India and China will profoundly impact green-hydrogen production and storage over the next five years. If these policies are implemented these countries will account for two-thirds of this growth. Asia will account for the most significant part and become the second-largest producer globally.
The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO2 Emission Restrictions
Aug 2022
Publication
This study aimed to simulate the sector-coupled energy system of Germany in 2030 with the restriction on CO2 emission levels and to observe how the system evolves with decreasing emissions. Moreover the study presented an analysis of the interconnection between electricity heat and hydrogen and how technologies providing flexibility will react when restricting CO2 emissions levels. This investigation has not yet been carried out with the technologies under consideration in this study. It shows how the energy system behaves under different set boundaries of CO2 emissions and how the costs and technologies change with different emission levels. The study results show that the installed capacities of renewable technologies constantly increase with higher limitations on emissions. However their usage rates decreases with low CO2 emission levels in response to higher curtailed energy. The sector-coupled technologies behave differently in this regard. Heat pumps show similar behaviour while the electrolysers usage rate increases with more renewable energy penetration. The system flexibility is not primarily driven by the hydrogen sector but in low CO2 emission level scenarios the flexibility shifts towards the heating sector and electrical batteries.
Projecting the Future Cost of PEM and Alkaline Water Electrolysers; a CAPEX Model Including Electrolyser Plant Size and Technology Department
Oct 2022
Publication
The investment costs of water electrolysis represent one key challenge for the realisation of renewable hydrogen-based energy systems. This work presents a technology cost assessment and outlook towards 2030 for alkaline electrolysers (AEL) and PEM electrolysers (PEMEL) in the MW to GW range taking into consideration the effects of plant size and expected technology developments. Critical selected data was fitted to a modified power law to describe the cost of an electrolyser plant based on the overall capacity and a learning/technology development rate to derive cost estimations for different PEMEL and AEL plant capacities towards 2030. The analysis predicts that the CAPEX gap between AEL and PEMEL technologies will decrease significantly towards 2030 with plant size until 1 e10 MW range. Beyond this only marginal cost reductions can be expected with CAPEX values approaching 320e400 $/kW for large scale (greater than 100 MW) plants by 2030 with subsequent cost reductions possible. Learning rates for electrolysers were estimated at 25 e30% for both AEL and PEMEL which are significantly higher than the learning rates reported in previous literature.
CFD Simulations of the Refueling of Long Horizontal H2 Tanks
Sep 2021
Publication
The understanding of physical phenomena occurring during the refueling of H2 tanks used for hydrogen mobility applications is the key point towards the most optimal refueling protocol. A lot of experimental investigations on tank refueling were performed in the previous years for different types and sizes of tank. Several operating conditions were tested through these experiments. For instance the HyTransfer project gave one of the major outputs on the understanding of the physical phenomena occurring during a tank refueling. From a numerical perspective the availability of accurate numerical tools is another key point. Such tools could be used instead of the experimental set-ups to test various operating conditions or new designs of tanks and injectors. The use of these tools can reduce the cost of the refueling protocol development in the future. However they first need to be validated versus experimental data. This work is dedicated to CFD (Computational Fluid Dynamics) modeling of the hydrogen refueling of a long horizontal 530L type IV tank. As of now the number of available CFD simulations for such a large tank is low as the computational cost is significant which is often considered as a bottleneck for this approach. The simulated operating conditions correspond to one of the experimental campaigns performed in the framework of the HyTransfer project. The 3D CFD model is presented. In a first validation step the CFD results are compared with experimental data. Then a deeper insight into the physics predicted by the CFD is provided. Finally two other methodologies with the aim to reduce the computational cost have been tested.
Impact of Local Emergency Demand Response Programs on the Operation of Electricity and Gas Systems
Mar 2022
Publication
With increasing attention to climate change the penetration level of renewable energy sources (RES) in the electricity network is increasing. Due to the intermittency of RES gas‐fired power plants could play a significant role in backing up the RES in order to maintain the supply– demand balance. As a result the interaction between gas and power networks are significantly in‐ creasing. On the other hand due to the increase in peak demand (e.g. electrification of heat) net‐ work operators are willing to execute demand response programs (DRPs) to improve congestion management and reduce costs. In this context modeling and optimal implementation of DRPs in proportion to the demand is one of the main issues for gas and power network operators. In this paper an emergency demand response program (EDRP) is implemented locally to reduce the con‐ gestion of transmission lines and gas pipelines more efficiently. Additionally the effects of optimal implementation of local emergency demand response program (LEDRP) in gas and power networks using linear and non‐linear economic models (power exponential and logarithmic) for EDRP in terms of cost and line congestion and risk of unserved demand are investigated. The most reliable demand response model is the approach that has the least difference between the estimated demand and the actual demand. Furthermore the role of the LEDRP in the case of hydrogen injection instead of natural gas in the gas infrastructure is investigated. The optimal incentives for each bus or node are determined based on the power transfer distribution factor gas transfer distribution factor available electricity or gas transmission capability and combination of unit commitment with the LEDRP in the integrated operation of these networks. According to the results implementing the LEDRP in gas and power networks reduces the total operation cost up to 11% and could facilitate hydrogen injection to the network. The proposed hybrid model is implemented on a 24‐bus IEEE electricity network and a 15‐bus gas network to quantify the role and value of different LEDRP models.
Estimation of the Levelized Cost of Nuclear Hydrogen Production from Light Water Reactors in the United States
Aug 2022
Publication
In June 2021 the United States (US) Department of Energy (DOE) hosted the first-ever Hydrogen Shot Summit which lasted for two days. More than 3000 stockholders around the world were convened at the summit to discuss how low-cost clean hydrogen production would be a huge step towards solving climate change. Hydrogen is a dynamic fuel that can be used across all industrial sectors to lower the carbon intensity. By 2030 the summit hopes to have developed a means to reduce the current cost of clean hydrogen by 80%; i.e. to USD 1 per kilogram. Because of the importance of clean hydrogen towards carbon neutrality the overall DOE budget for Fiscal Year 2021 is USD 35.4 billion and the total budget for DOE hydrogen activities in Fiscal Year 2021 is USD 285 million representing 0.81% of the total DOE budget for 2021. The DOE hydrogen budget of 2021 is estimated to increase to USD 400 million in Fiscal Year 2022. The global hydrogen market is growing and the US is playing an active role in ensuring its growth. Depending on the electricity source used the electrolysis of hydrogen can have no greenhouse gas emissions. When assessing the advantages and economic viability of hydrogen production by electrolysis it is important to take into account the source of the necessary electricity as well as emissions resulting from electricity generation. In this study to evaluate the levelized cost of nuclear hydrogen production the International Atomic Energy Agency Hydrogen Economic Evaluation Program is used to model four types of LWRs: Exelon’s Nine Mile Point Nuclear Power Plant (NPP) in New York; Palo Verde NPP in Arizona; Davis-Besse NPP in Ohio; and Prairie Island NPP in Minnesota. Each of these LWRs has a different method of hydrogen production. The results show that the total cost of hydrogen production for Exelon’s Nine Mile Point NPP Palo Verde NPP Davis-Besse NPP and Prairie Island NPP was 4.85 ± 0.66 4.77 ± 1.36 3.09 ± 1.19 and 0.69 ± 0.03 USD/kg respectively. These findings show that among the nuclear reactors the cost of nuclear hydrogen production using Exelon’s Nine Mile Point NPP reactor is the highest whereas the cost of nuclear hydrogen production using the Prairie Island NPP reactor is the lowest.
Day-ahead Economic Optimization Scheduling Model for Electricity–hydrogen Collaboration Market
Aug 2022
Publication
This paper presents a day-ahead economic optimization scheduling model for Regional Electricity–Hydrogen Integrated Energy System (REHIES) with high penetration of renewable energies. The electricity–hydrogen coupling devices are modelled with energy storage units and Insensitive Electrical Load (ISEL). The proposed objective function is able to capture the maximum benefits for REHIES in terms of economic benefits and can be summarized as a Quadratic Programming (QP) problem. The simulation verification is performed by MATLAB/CPLEX solver. The simulation results show that the proposed optimization model adapts the market requirement by contributing flexible collaboration between electricity and hydrogen. Also the translational properties of ISEL can implement higher economic profits and more effective utilization of renewable energy.
Complex Metal Borohydrides: From Laboratory Oddities to Prime Candidates in Energy Storage Applications
Mar 2022
Publication
Despite being the lightest element in the periodic table hydrogen poses many risks regarding its production storage and transport but it is also the one element promising pollutionfree energy for the planet energy reliability and sustainability. Development of such novel materials conveying a hydrogen source face stringent scrutiny from both a scientific and a safety point of view: they are required to have a high hydrogen wt.% storage capacity must store hydrogen in a safe manner (i.e. by chemically binding it) and should exhibit controlled and preferably rapid absorption–desorption kinetics. Even the most advanced composites today face the difficult task of overcoming the harsh re-hydrogenation conditions (elevated temperature high hydrogen pressure). Traditionally the most utilized materials have been RMH (reactive metal hydrides) and complex metal borohydrides M(BH4 )x (M: main group or transition metal; x: valence of M) often along with metal amides or various additives serving as catalysts (Pd2+ Ti4+ etc.). Through destabilization (kinetic or thermodynamic) M(BH4 )x can effectively lower their dehydrogenation enthalpy providing for a faster reaction occurring at a lower temperature onset. The present review summarizes the recent scientific results on various metal borohydrides aiming to present the current state-of-the-art on such hydrogen storage materials while trying to analyze the pros and cons of each material regarding its thermodynamic and kinetic behavior in hydrogenation studies.
Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models
Feb 2023
Publication
Hydrogen is a promising fuel to decarbonize aviation but macroeconomic studies are currently missing. Computable general equilibrium (CGE) models are suitable to conduct macroeconomic analyses and are frequently employed in hydrogen and aviation research. The main objective of this paper is to investigate existing CGE studies related to (a) hydrogen and (b) aviation to derive a macroeconomic research agenda for hydrogen-powered aviation. Therefore the well-established method of systematic literature review is conducted. First we provide an overview of 18 hydrogen-related and 27 aviation-related CGE studies and analyze the literature with respect to appropriate categories. Second we highlight key insights and identify research gaps for both the hydrogen and aviation-related CGE literature. Our findings comprise inter alia hydrogen’s current lack of cost competitiveness and the macroeconomic relevance of air transportation. Research gaps include among others a stronger focus on sustainable hydrogen and a more holistic perspective on the air transportation system. Third we derive implications for macroeconomic research on hydrogen-powered aviation including (I) the consideration of existing modeling approaches (II) the utilization of interdisciplinary data and scenarios (III) geographical suitability (IV) the application of diverse policy tools and (V) a holistic perspective. Our work contributes a meaningful foundation for macroeconomic studies on hydrogen-powered aviation. Moreover we recommend policymakers to address the macroeconomic perspectives of hydrogen use in air transportation.
Multi-Model Assessment for Secondary Smelting Decarbonisation: The Role of Hydrogen in the Clean Energy Transition
Jan 2023
Publication
Extensive decarbonisation efforts result in major changes in energy demand for the extractive industry. In 2021 the extraction and primary processing of metals and minerals accounted for 4.5 Gt of CO2 eq. per year. The aluminium industry was responsible for 1.1 Gt CO2 eq. direct and indirect emissions. To reach the European milestone of zero emissions by 2050 a reduction of 3% annually is essential. To this end the industry needs to take a turn towards less impactful production practices coupling secondary production with green energy sources. The present work aims to comprehensively compare the lifecycle energy consumption and environmental performance of a secondary aluminium smelter employing alternative thermal and electricity sources. In this frame a comparative analysis of the environmental impact of different thermal energy sources namely natural gas light fuel oil liquified petroleum gas hydrogen and electricity for a secondary aluminium smelter is presented. The results show that H2 produced by renewables (green H2 ) is the most environmentally beneficial option accounting for −84.156 kg CO2 eq. By producing thermal energy as well as electricity on site H2 technologies also serve as a decentralized power station for green energy production. These technologies account for a reduction of 118% compared to conventionally used natural gas. The results offer a comprehensive overview to aid decision-makers in comparing environmental impacts caused by different energy sources.
Design and Implementation of an Intelligent Energy Management System for Smart Home Utilizing a Multi-agent System
Jul 2022
Publication
Green Hydrogen Microgrid System has been selected as a source of clean and renewable alternative energy because it is undergoing a global revolution and has been identified as a source of clean energy that may aid the country in achieving net-zero emissions in the coming years. The study proposes an innovative Microgrid Renewable hybrid system to achieve these targets. The proposed hybrid renewable energy system combines a photovoltaic generator (PVG) a fuel cell (FC) a supercapacitor (SC) and a home vehicle power supply (V2H) to provide energy for a predefined demand. The proposed architecture is connected to the grid and is highly dependent on solar energy during peak periods. During the night or shading period it uses FC as a backup power source. The SC assists the FC with high charge power. SC performs this way during load transients or quick load changes. A multi-agent system (MAS) was used to build a real energy management system (RT-HEMS) for intelligent coordination between components (MAS). The scheduling algorithm reduces energy consumption by managing the required automation devices without the need for additional network power. It will meet household energy requirements regardless of weather conditions including bright cloudy or rainy conditions. Implementation and discussion of the RT-HEMS ensures that the GHS is functioning properly and that the charge request is satisfied.
No more items...