- Home
- A-Z Publications
- Publications
Publications
Machine Learning-based Energy Optimization for On-site SMR Hydrogen Production
Jun 2021
Publication
The production and application of hydrogen an environmentally friendly energy source have been attracting increasing interest of late. Although steam methane reforming (SMR) method is used to produce hydrogen it is difficult to build a high-fidelity model because the existing equation-oriented theoretical model cannot be used to clearly understand the heat-transfer phenomenon of a complicated reforming reactor. Herein we developed an artificial neural network (ANN)-based data-driven model using 485710 actual operation datasets for optimizing the SMR process. Data preprocessing including outlier removal and noise filtering was performed to improve the data quality. A model with high accuracy (average R2 = 0.9987) was developed which can predict six variables through hyperparameter tuning of a neural network model as follows: syngas flow rate; CO CO2 CH4 and H2 compositions; and steam temperature. During optimization the search spaces for nine operating variables namely the natural gas flow rate for the feed and fuel hydrogen flow rate for desulfurization water flow rate and temperature air flow rate SMR inlet temperature and pressure and low-temperature shift (LTS) inlet temperature were defined and applied to the developed model for predicting the thermal efficiencies for 387420489 cases. Subsequently five constraints were established to consider the feasibility of the process and the decision variables with the highest process thermal efficiency were determined. The process operating conditions showed a thermal efficiency of 85.6%.
Recent Insights into Low-Surface-Area Catalysts for Hydrogen Production from Ammonia
Nov 2022
Publication
A potential method of storing and transporting hydrogen safely in a cost-effective and practical way involves the utilization of molecules that contain hydrogen in their structure such as ammonia. Because of its high hydrogen content and carbon-free molecular structure as well as the maturity of related technology (easy liquefaction) ammonia has gained attention as a “hydrogen carrier” for the generation of energy. Unfortunately hydrogen production from ammonia requires an efficient catalyst to achieve high conversion at low reaction temperatures. Recently very attractive results have been obtained with low-surface-area materials. This review paper is focused on summarizing and comparing recent advances in novel economic and active catalysts for this reaction paying particular attention to materials with low surface area such as silicon carbide (SiC) and perovskites (ABO3 structure). The effects of the supports the active phase and the addition of promoters in such low-porosity materials have been analyzed in detail. Advances in adequate catalytic systems (including support and active metal) benefit the perspective of ammonia as a hydrogen carrier for the decarbonization of the energy sector and accelerate the “hydrogen economy”.
Numerical Redesign of 100kw MGT Combustor for 100% H2 Fueling
Jan 2014
Publication
The use of hydrogen as energy carrier in a low emission microturbine could be an interesting option for renewable energy storage distributed generation and combined heat & power. However the hydrogen using in gas turbine is limited by the NOx emissions and the difficulty to operate safely. CFD simulations represent a powerful and mature tool to perform detailed 3-D investigation for the development of a prototype before carrying out an experimental analysis. This paper describes the CFD supported redesign of the Turbec T100 microturbine combustion chamber natural gas-fired to allow the operation on 100% hydrogen.
High-Performance Hydrogen-Fueled Internal Combustion Engines: Feasibility Study and Optimization via 1D-CFD Modeling
Mar 2024
Publication
Hydrogen-powered mobility is believed to be crucial in the future as hydrogen constitutes a promising solution to make up for the non-programmable character of the renewable energy sources. In this context the hydrogen-fueled internal combustion engine represents one of the suitable technical solutions for the future of sustainable mobility. As a matter of fact hydrogen engines suffer from limitations in volumetric efficiency due to the very low density of the fuel. Consequently hydrogen-fueled ICEs can reach sufficient torque and power density only if suitable supercharging solutions are developed. Moreover gaseous-engine performance can be improved to a great extent if direct injection is applied. In this perspective a remarkable know-how has been developed in the last two decades on NG engines which can be successfully exploited in this context. The objective of this paper is twofold. In the first part a feasibility study has been carried out with reference to a typical 2000cc SI engine by means of 1D simulations. This study was aimed at characterizing the performance on the full load curve with respect to a baseline PFI engine fueled by NG. In this phase the turbocharging/supercharging device has not been included in the model in order to quantify the attainable benefits in the absence of any limitation coming from the turbocharger. In the second part of this paper the conversion of a prototype 1400cc direct injection NG engine running with stoichiometric mixture to run on a lean hydrogen combustion mode has been investigated via 1D simulations. The matching between engine and turbocharger has been included in the model and the effects of two different turbomatching choices have been presented and discussed.
Hydrogen Informed Gurson Model for Hydrogen Embrittlement Simulation
Jul 2019
Publication
Hydrogen-microvoid interactions were studied via unit cell analyses with different hydrogen concentrations. The absolute failure strain decreases with hydrogen concentration but the failure loci were found to follow the same trend dependent only on stress triaxiality in other words the effects of geometric constraint and hydrogen on failure are decoupled. Guided by the decoupling principle a hydrogen informed Gurson model is proposed. This model is the first practical hydrogen embrittlement simulation tool based on the hydrogen enhanced localized plasticity (HELP) mechanism. It introduces only one additional hydrogen related parameter into the Gurson model and is able to capture hydrogen enhanced internal necking failure of microvoids with accuracy; its parameter calibration procedure is straightforward and cost efficient for engineering purpose
Shipping Australian Sunshine: Liquid Renewable Green Fuel Export
Dec 2022
Publication
Renewable green fuels (RGF) such as hydrogen are the global energy future. Air pollution is compounded with climate change as the emissions driving both development problems come largely from the same source of fossil fuel burning. As an energy exporter Australian energy export dominates the total energy production and the RGF has become central to the current proposal of Australian government to reach net zero emission. The hydrogen production from solar panels only on 3% of Australia's land area could compensate 10 times of Germany's non-electricity energy consumption. In the unique geographic position Australia's RGF export attracts significant costs for long distance onboard storage and shipping. While the cost reduction of RGF production relies on technological advancement which needs a long time the storage and shipping costs must be minimised for Australia to remain competitive in the global energy market. The present review concentrates on Australian export pathways of lifecycles of liquid renewable green fuels including renewable liquified hydrogen (LH2) liquified methane (LCH4) ammonia (NH3) and methanol (CH3OH) as liquid RGF have the advantages of adopting the existing infrastructure. This review compares the advantages and disadvantages of discussed renewable energy carriers. It is found that the cost of LH2 pathway can be acceptable for shipping distance of up to 7000 km (Asian countries such as Japan) but ammonia (NH3) or methanol (CH3OH) pathways may be more cost effective for shipping distance above 7000 km for European counties such as Germany. These observations suggest the proper fuel forms to fulfill the requirements to different customers and hence will highlight Australia's position as one of major exporters of renewable energy in the future. Detailed techno-economic analysis is worth to be done for supplying more quantitative results.
Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review
Jan 2022
Publication
In the context of the great research pulse on clean energy transition distributed energy systems have a key role especially in the case of integration of both renewable and traditional energy sources. The stable interest in small-scale gas turbines can further increase owing to their flexibility in both operation and fuel supply. Since their not-excellent electrical efficiency research activities on micro gas turbine (MGT) are focused on the performance improvements that are achievable in several ways like modifying the Brayton cycle integrating two or more plants using cleaner fuels. Hence during the last decades the growing interest in MGT-based energy systems encouraged the development of many numerical approaches aimed to provide a reliable and effective prediction of the energy systems’ behavior. Indeed numerical modeling can help to individuate potentialities and issues of each enhanced layout or hybrid energy system and this review aims to discuss the various layout solutions proposed by researchers with particular attention to recent publications highlighting the adopted modeling approaches and methods.
A Comprehensive Study on Production of Methanol from Wind Energy
Apr 2022
Publication
Methanol is a promising new alternative fuel that emits significantly less carbon dioxide than gasoline. Traditionally methanol was produced by gasifying natural gas and coal. Syn-Gas is created by converting coal and natural gas. After that the Syn-Gas is converted to methanol. Alternative renewable energy-to-methanol conversion processes have been extensively researched in recent years due to the traditional methanol production process’s high carbon footprint. Using an electrolysis cell wind energy can electrolyze water to produce hydrogen. Carbon dioxide is a gas that can be captured from the atmosphere and industrial processes. Carbon dioxide and hydrogen are combusted in a reactor to produce methanol and water; the products are then separated using a distillation column. Although this route is promising it has significant cost and efficiency issues due to the low efficiency of the electrolysis cells and high manufacturing costs. Additionally carbon dioxide capture is an expensive process. Despite these constraints it is still preferable to store excess wind energy in the form of methanol rather than sending it directly to the grid. This process is significantly more carbon-efficient and resource-efficient than conventional processes. Researchers have proposed and/or simulated a variety of wind power methods for methanol processes. This paper discusses these processes. The feasibility of wind energy for methanol production and its future potential is also discussed in this paper.
Numerical Simulation of Leaking Hydrogen Dispersion Behavior
Sep 2021
Publication
As one kind of clean zero carbon and sustainable energy hydrogen energy has been regarded as the most potential secondary energy. Recently hydrogen refueling station gradually becomes one of important distribution infrastructures that provides hydrogen sources for transport vehicles and other distribution devices. However the highly combustible nature of hydrogen may bring great hazards to environment and human. The safety design of hydrogen usage has been brought to public too. This paper is mainly focused on the hydrogen leakage and dispersion process. A new solver for gaseous buoyancy dispersion process is developed based on OpenFOAM [1]. Thermodynamic and transport properties of gases are updated by library Mutation ++ [2]. For validation two tests of hydrogen dispersion in partially opened space and closed space are presented. Numerical simulation of hydrogen dispersion behavior in hydrogen refueling station is carried out in this paper as well. From the results three phases of injection dispersion and buoyancy can be seen clearly. The profile of hydrogen concentration is tend to be Gaussian in dispersion region. Subsonic H2 jet in stagnant environment is calculated for refueling station the relationship between H2 concentration decay and velocity along the jet trajectory is obtained.
A Multi-objective Optimization Approach in Defining the Decarbonization Strategy of a Refinery
Mar 2022
Publication
Nowadays nearly one quarter of global carbon dioxide emissions are attributable to energy use in industry making this an important target for emission reductions. The scope of this study is hence that to define a cost-optimized decarbonization strategy for an energy and carbon intensive industry using an Italian refinery as a case study. The methodology involves the coupling of EnergyPLAN with a Multi-Objective Evolutionary Algorithm (MOEA) considering the minimization of annual cost and CO2 emissions as two potentially conflicting objectives and the energy technologies’ capacities as decision variables. For the target year 2025 EnergyPLAN+MOEA has allowed to model a range of 0-100 % decarbonization solutions characterized by optimal penetration mix of 22 technologies in the electrical thermal hydrogen feedstock and transport demand. A set of nine scenarios with different land use availabilities and implementable technologies each consisting of 100 optimal systems out of 10000 simulated ones has been evaluated. The results show on the one hand the possibility of achieving medium-high decarbonization solutions at costs close to current ones on the other how the decarbonization pathways strongly depend on the available land for solar thermal photovoltaic and wind as well as the presence of a biomass supply chain in the region.
An MILP Approach for the Optimal Design of Renewable Battery-hydrogen Energy Systems for Off-grid Insular Communities
Jul 2021
Publication
The optimal sizing of stand-alone renewable H2-based microgrids requires the load demand to be reliably satisfied by means of local renewable energy supported by a hybrid battery/hydrogen storage unit while minimizing the system costs. However this task is challenging because of the high number of components that have to be installed and operated. In this work an MILP optimization framework has been developed and applied to the off-grid village of Ginostra (on the Stromboli island Italy) which is a good example of several other insular sites throughout the Mediterranean area. A year-long time horizon was considered to model the seasonal storage which is necessary for off-grid areas that wish to achieve energy independence by relying on local renewable sources. The degradation costs of batteries and H2-based devices were included in the objective function of the optimization problem i.e. the annual cost of the system. Efficiency and investment cost curves were considered for the electrolyzer and fuel cell components in order to obtain a more detailed and precise techno-economic estimation. The design optimization was also performed with the inclusion of a general demand response program (DRP) to assess its impact on the sizing results. Moreover the effectiveness of the proposed MILP-based method was tested by comparing it with a more traditional approach based on a metaheuristic algorithm for the optimal sizing complemented with ruled-based strategies for the system operation. Thanks to its longer-term storage capability hydrogen is required for the optimal system configuration in order to reach energy self-sufficiency. Finally considering the possibility of load deferral the electricity generation cost can be reduced to an extent that depends on the amount of load that is allowed to participate in the DRP scheme. This cost reduction is mainly due to the decreased capacity of the battery storage system.
Multi-layer Coordinated Optimization of Integrated Energy System with Electric Vehicles Based on Feedback Correction
Sep 2022
Publication
The integrated energy system with electric vehicles can realize multi-energy coordination and complementarity and effectively promote the realization of low-carbon environmental protection goals. However the temporary change of vehicle travel plan will have an adverse impact on the system. Therefore a multi-layer coordinated optimization strategy of electric-thermal-hydrogen integrated energy system including vehicle to grid (V2G) load feedback correction is proposed. The strategy is based on the coordination of threelevel optimization. The electric vehicle charging and discharging management layer comprehensively considers the variance of load curve and the dissatisfaction of vehicle owners and the charging and discharging plan is obtained through multi-objective improved sparrow search algorithm which is transferred to the model predictive control rolling optimization layer. In the rolling optimization process according to the actual situation selectively enter the V2G load feedback correction layer to update V2G load so as to eliminate the impact of temporary changes in electric vehicle travel plans. Simulation results show that the total operating cost with feedback correction is 4.19% lower than that without feedback correction and tracking situation of tie-line planned value is improved which verifies the proposed strategy.
Renewable-based Zero-carbon Fuels for the Use of Power Generation: A Case Study in Malaysia Supported by Updated Developments Worldwide
Apr 2021
Publication
The existing combustion-centered energy mix in Malaysia has shown that replacing fossil fuels with zero-carbon alternative fuels could be a better approach to achieve the reduction of the carbon footprint of the power generation industry. In this study the potential of zero-carbon alternative fuels generated from renewable sources such as green hydrogen and green ammonia was addressed in terms of the production transport storage and utilization in Malaysia’s thermal power plants. The updated developments associated to green hydrogen and green ammonia across the globe have also been reviewed to support the existing potential in Malaysia. Though green hydrogen and green ammonia are hardly commercialized in Malaysia for the time being numerous potentialities have been identified in utilizing these fuels to achieve the zero-carbon power generation market in Malaysia. The vast and strategic location of natural gas network in Malaysia has the potential to deliver green hydrogen with minimal retrofitting required. Moreover there are active participation of Malaysia’s academic institutions in the development of water electrolysis that is the core process to convert the electricity from renewables plant into hydrogen. Malaysia also has the capacity to use its abundance of depleted gas reservoirs for the storage of green hydrogen. A large number of GT plants in Malaysia would definitely have the potential to utilize hydrogen co-firing with natural gas to minimize the amount of carbon dioxide (CO2) released. The significant number of ammonia production plants in Malaysia could provide a surplus of ammonia to be used as an alternative fuel for power plants. With regard to the energy policy in Malaysia positive acceptance of the implementation of renewable energy has been shown with the introduction of various energy policies aimed at promoting the incorporation of renewables into the energy mix. However there is still inadequate support for the implementation of alternative zero-carbon fuels in Malaysia.
Fuel Cells for Shipping: To Meet On-board Auxiliary Demand and Reduce Emissions
Feb 2021
Publication
The reduction of harmful emissions from the international shipping sector is necessary. On-board energy demand can be categorised as either: propulsion or auxiliary services. Auxiliary services contribute a significant proportion of energy demand with major loads including: compressors pumps and HVAC (heating ventilation and air-conditioning). Typically this demand is met using the same fuel source as the main propulsion (i.e. fossil fuels). This study has analysed whether emissions from large scale ships could feasibly be reduced by meeting auxiliary demand by installing a hydrogen fuel cell using data from an LNG tanker to develop a case study. Simulations have shown that for a capacity of 10 x 40ft containers of compressed hydrogen the optimal fuel cell size would be 3 MW and this could save 10600 MWh of fossil fuel use equivalent to 2343 t of CO2. Hence this could potentially decarbonise a significant proportion of shipping energy demand. Although there are some notable technical and commercial considerations such as fuel cell lifetime and capital expenditure requirements. Results imply that if auxiliary loads could be managed to avoid peaks in demand this could further increase the effectiveness of this concept.
Optimal Scheduling of Multi-microgrids with Power to Hydrogen Considering Federated Demand Response
Sep 2022
Publication
Hydrogen is regarded as a promising fuel in the transition to clean energy. Nevertheless as the demand for hydrogen increases some microgrids equipped with P2H (MGH) will encounter the issue of primary energy deficiency. Meanwhile some microgrids (MGs) face the difficulty of being unable to consume surplus energy locally. Hence we interconnect MGs with different energy characteristics and then establish a collaborative scheduling model of multi-microgrids (MMGs). In this model a federated demand response (FDR) program considering predictive mean voting is designed to coordinate controllable loads of electricity heat and hydrogen in different MGs. With the coordination of FDR the users’ satisfaction and comfort in each MG are kept within an acceptable range. To further adapt to an actual working condition of the microturbine (MT) in MGH a power interaction method is proposed to maintain the operating power of the MT at the optimum load level and shave peak and shorten the operating periods of MT. In the solution process the sequence operation theory is utilized to deal with the probability density of renewable energy. A series of case studies on a test system of MMG demonstrate the effectiveness of the proposed method.
The Potential of Zero-carbon Bunker Fuels in Developing Countries
Apr 2015
Publication
To meet the climate targets set forth in the International Maritime Organization’s Initial GHG Strategy the maritime transport sector needs to abandon the use of fossil-based bunker fuels and turn toward zero-carbon alternatives which emit zero or at most very low greenhouse gas (GHG) emissions throughout their lifecycles. This report “The Potential of Zero-Carbon Bunker Fuels in Developing Countries” examines a range of zero-carbon bunker fuel options that are considered to be major contributors to shipping’s decarbonized future: biofuels hydrogen and ammonia and synthetic carbon-based fuels. The comparison shows that green ammonia and green hydrogen strike the most advantageous balance of favorable features due to their lifecycle GHG emissions broader environmental factors scalability economics and technical and safety implications. Furthermore the report finds that many countries including developing countries are very well positioned to become future suppliers of zero-carbon bunker fuels—namely ammonia and hydrogen. By embracing their potential these countries would be able to tap into an estimated $1+ trillion future fuel market while modernizing their own domestic energy and industrial infrastructure. However strategic policy interventions are needed to unlock these potentials.
Our Green Print: Future Heat for Everyone
Jul 2021
Publication
Green Print - Future Heat for Everyone draws together technical consumer and economic considerations to create a pioneering plan to transition 22 million UK homes to low carbon heat by 2050.<br/>Our Green Print underlines the scale of the challenge ahead acknowledging that a mosaic of low carbon heating solutions will be required to meet the needs of individual communities and setting out 12 key steps that can be taken now in order to get us there<br/>The Climate Change Committee (CCC) estimates an investment spend of £250bn to upgrade insulation and heating in homes as well as provide the infrastructure to deliver the energy.<br/>This is a task of unprecedented scale the equivalent of retro-fitting 67000 homes every month from now until 2050. In this Report Cadent takes the industry lead in addressing the challenge.
Towards 2050 Net Zero Carbon Infrastructure: A Critical Review of Key Decarbonisation Challenges in the Domestic Heating Sector in the UK
Nov 2023
Publication
One of the most challenging sectors to meet “Net Zero emissions” target by 2050 in the UK is the domestic heating sector. This paper provides a comprehensive literature review of the main challenges of heating systems transition to low carbon technologies in which three distinct categories of challenges are discussed. The first challenge is of decarbonizing heat at the supply side considering specifically the difficulties in integrating hydrogen as a low-carbon heating substitute to the dominant natural gas. The next challenge is of decarbonizing heat at the demand side and research into the difficulties of retrofitting the existing UK housing stock of digitalizing heating energy systems as well as ensuring both retrofits and digitalization do not disproportionately affect vulnerable groups in society. The need for demonstrating innovative solutions to these challenges leads to the final focus which is the challenge of modeling and demonstrating future energy systems heating scenarios. This work concludes with recommendations for the energy research community and policy makers to tackle urgent challenges facing the decarbonization of the UK heating sector.
Hydrogen Embrittlement of a Boiler Water Wall Tube in a District Heating System
Jul 2022
Publication
A district heating system is an eco-friendly power generation facility with high energy efficiency. The boiler water wall tube used in the district heating system is exposed to extremely harsh conditions and unexpected fractures often occur during operation. In this study a corrosion failure analysis of the boiler water wall tube was performed to elucidate the failure mechanisms. The study revealed that overheating by flames was the cause of the failure of the boiler water wall tube. With an increase in temperature in a localized region the microstructure not only changed from ferrite/pearlite to martensite/bainite which made it more susceptible to brittleness but it also developed tensile residual stresses in the water-facing side by generating cavities or microcracks along the grain boundaries inside the tube. High-temperature hydrogen embrittlement combined with stress corrosion cracking initiated many microcracks inside the tube and created an intergranular fracture.
Economically Viable Large-scale Hydrogen Liquefaction
Mar 2016
Publication
The liquid hydrogen demand particularly driven by clean energy applications will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection a dimensioning of key equipment for large scale liquefiers such as turbines and compressors as well as heat exchangers must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction e.g. fluid properties ortho-para hydrogen conversion and coldbox configuration must be analysed in detail. This paper provides an overview on the approach challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.
No more items...