- Home
- A-Z Publications
- Publications
Publications
Decarbonization of Australia’s Energy System: Integrated Modelling of the Transformation of Electricity, Transportation, and Industrial Sectors
Jul 2020
Publication
To achieve the Paris Agreement’s long-term temperature goal current energy systems must be transformed. Australia represents an interesting case for energy system transformation modelling: with a power system dominated by fossil fuels and specifically with a heavy coal component there is at the same time a vast potential for expansion and use of renewables. We used the multi-sectoral Australian Energy Modelling System (AUSeMOSYS) to perform an integrated analysis of implications for the electricity transport and selected industry sectors to the mid-century. The state-level resolution allows representation of regional discrepancies in renewable supply and the quantification of inter-regional grid extensions necessary for the physical integration of variable renewables. We investigated the impacts of different CO2 budgets and selected key factors on energy system transformation. Results indicate that coal-fired generation has to be phased out completely by 2030 and a fully renewable electricity supply achieved in the 2030s according to the cost-optimal pathway implied by the 1.5 °C Paris Agreement-compatible carbon budget. Wind and solar PV can play a dominant role in decarbonizing Australia’s energy system with continuous growth of demand due to the strong electrification of linked energy sectors.
How To Transport and Store Hydrogen – Facts and Figures
Apr 2021
Publication
The EU has set a goal of achieving climate neutrality by 2050 and decided to raise its 2030 climate target to 55%. For this the EU needs to transform its energy system. It is of paramount importance that it will become more efficient affordable and interconnected. Hydrogen can play a pivotal role in the EU’s decarbonisation efforts and be at the centre of the energy system integration supporting transport of renewable energy over very long distances and facilitating renewables storage from one season to another.<br/><br/>ENTSOG GIE and Hydrogen Europe have joined forces on a factsheet that answers a number of fundamental questions about gaseous and liquid hydrogen transport and storage titled “How to transport and store hydrogen? Facts and figures”. This factsheet provides an objective and informative analysis on key concepts terminology and facts and figures from different public sources.<br/><br/>The factsheet illustrates the EU’s potential to enable a global hydrogen economy and to become a global technology leader due to its extensive gas infrastructure that can be used to transport blends of hydrogen or be converted to transport pure hydrogen.
Onshore, Offshore or In-turbine Electrolysis? Techno-economic Overview of Alternative Integration Designs for Green Hydrogen Production into Offshore Wind Power Hubs
Aug 2021
Publication
Massive investments in offshore wind power generate significant challenges on how this electricity will be integrated into the incumbent energy systems. In this context green hydrogen produced by offshore wind emerges as a promising solution to remove barriers towards a carbon-free economy in Europe and beyond. Motivated by the recent developments in Denmark with the decision to construct the world’s first artificial Offshore Energy Hub this paper investigates how the lowest cost for green hydrogen can be achieved. A model proposing an integrated design of the hydrogen and offshore electric power infrastructure determining the levelised costs of both hydrogen and electricity is proposed. The economic feasibility of hydrogen production from 2 Offshore Wind Power Hubs is evaluated considering the combination of different electrolyser placements technologies and modes of operations. The results show that costs down to 2.4 €/kg can be achieved for green hydrogen production offshore competitive with the hydrogen costs currently produced by natural gas. Moreover a reduction of up to 13% of the cost of wind electricity is registered when an electrolyser is installed offshore shaving the peak loads.
Thickness-Prediction Method Involving Tow Redistribution for the Dome of Composite Hydrogen Storage Vessels
Feb 2022
Publication
Traditional thickness-prediction methods underestimate the actual dome thickness at polar openings leading to the inaccurate prediction of the load-bearing capacity of composite hydrogen storage vessels. A method of thickness prediction for the dome section of composite hydrogen storage vessels was proposed which involved fiber slippage and tow redistribution. This method considered the blocking effect of the port on sliding fiber tows and introduced the thickness correlation to predict the dome thickness at polar openings. The arc length corresponding to the parallel circle radius was calculated and then the actual radius values corresponding to the bandwidth were obtained by the interpolation method. The predicted thickness values were compared with the actual measured thickness. The maximum relative error of the predicted thickness was 4.19% and the mean absolute percentage error was 2.04%. The results show that the present method had a higher prediction accuracy. Eventually this prediction method was used to perform progressive damage analysis on vessels. By comparing with the results of the cubic spline function method the analysis results of the present method approached the actual case. This showed that the present method improved the accuracy of the design.
Material-based Hydrogen Storage Projection
Sep 2021
Publication
Massive consumption of fossil fuel leads to shortage problems as well as various global environmental issues. Due to the global climatic problem in the world techniques to supply energy demand change from conventional methods that use fossil fuel as the energy source to clean and renewable sources such as solar and wind. However these renewable energy sources are not permanent. Energy storage methods can ensure to supply the energy demand in need if the energy is stored when the renewable source is available. Hydrogen is considered a promising alternative feedstock owing to has unique properties such as clean energy high energy density absence of toxic materials and carbon-free nature. Hydrogen is used main fuel source in fuel cells and hydrogen can be produced with various methods such as wind or electrolysis of water systems that supply electricity from renewable sources. However the safe effective and economical storage of hydrogen is still a challenge that limits the spread of the usage of hydrogen energy. High pressed hydrogen gas and cryogenic hydrogen liquid are two applied storage pathways although they do not meet the above-mentioned requirement. To overcome these drawbacks materials-based hydrogen storage materials have been mostly investigated research field recently. The aim of the study is that exhibiting various material-based hydrogen storage systems and development of these techniques worldwide. Additionally past and current status of the technology are explained and future perspective is discussed.
Fuel Cells and Hydrogen Observatory Hydrogen Molecule Market Report
Sep 2021
Publication
The purpose of the hydrogen molecule market analysis is to track changes in the structure of hydrogen supply and demand in Europe. This report is mainly focused on presenting the current landscape - that will allow for future year-on-year comparisons in order to assess the progress Europe is making with regards to deployment of clean hydrogen production capacities as well as development of demand for clean hydrogen from emerging new hydrogen applications in the mobility sector or in industry. The following report summarizes the hydrogen molecule market landscape and contains data about hydrogen production and consumption in the EEA countries (EU countries together with Switzerland Norway Iceland and Liechtenstein). Hydrogen production capacity is presented by country and by technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data available at the end of 2019. Hydrogen market (on both the demand and supply side) is dominated by ammonia and refining industries with three countries (DE NL PL) responsible for almost half hydrogen consumption. Today hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are insignificant with blue hydrogen capacities at below 1% and green hydrogen production capacity below 0.1% of total.
Bayesian Inference and Uncertainty Quantification for Hydrogen-Enriched and Lean-Premixed Combustion Systems
May 2021
Publication
Development of probabilistic modelling tools to perform Bayesian inference and uncertainty quantification (UQ) is a challenging task for practical hydrogen-enriched and low-emission combustion systems due to the need to take into account simultaneously simulated fluid dynamics and detailed combustion chemistry. A large number of evaluations is required to calibrate models and estimate parameters using experimental data within the framework of Bayesian inference. This task is computationally prohibitive in high-fidelity and deterministic approaches such as large eddy simulation (LES) to design and optimize combustion systems. Therefore there is a need to develop methods that: (a) are suitable for Bayesian inference studies and (b) characterize a range of solutions based on the uncertainty of modelling parameters and input conditions. This paper aims to develop a computationally-efficient toolchain to address these issues for probabilistic modelling of NOx emission in hydrogen-enriched and lean-premixed combustion systems. A novel method is implemented into the toolchain using a chemical reactor network (CRN) model non-intrusive polynomial chaos expansion based on the point collocation method (NIPCE-PCM) and the Markov Chain Monte Carlo (MCMC) method. First a CRN model is generated for a combustion system burning hydrogen-enriched methane/air mixtures at high-pressure lean-premixed conditions to compute NOx emission. A set of metamodels is then developed using NIPCE-PCM as a computationally efficient alternative to the physics-based CRN model. These surrogate models and experimental data are then implemented in the MCMC method to perform a two-step Bayesian calibration to maximize the agreement between model predictions and measurements. The average standard deviations for the prediction of exit temperature and NOx emission are reduced by almost 90% using this method. The calibrated model then used with confidence for global sensitivity and reliability analysis studies which show that the volume of the main-flame zone is the most important parameter for NOx emission. The results show satisfactory performance for the developed toolchain to perform Bayesian inference and UQ studies enabling a robust and consistent process for designing and optimising low-emission combustion systems.
Enabling Low-carbon Hydrogen Supply Chains Through Use of Biomass and Carbon Capture and Storage: A Swiss Case Study
Jul 2020
Publication
This study investigates the optimal design of low-carbon hydrogen supply chains on a national scale. We consider hydrogen production based on several feedstocks and energy sources namely water with electricity natural gas and biomass. When using natural gas we couple hydrogen production with carbon capture and storage. The design of the hydrogen biomass and carbon dioxide (CO2 ) infrastructure is performed by solving an optimization problem that determines the optimal selection size and location of the hydrogen production technologies and the optimal structure of the hydrogen biomass and CO2 O2 networks. First we investigate the rationale behind the optimal design of low-carbon hydrogen supply chains by referring to an idealized system configuration and by performing a parametric analysis of the most relevant design parameters of the supply chains such as biomass availability. This allows drawing general conclusions independent of any specific geographic features about the minimum-cost and minimum-emissions system designs and network structures. Moreover we analyze the Swiss case study to derive specific guidelines concerning the design of hydrogen supply chains deploying carbon capture and storage. We assess the impact of relevant design parameters such as location of CO2 storage facilities techno-economic features of CO2 capture technologies and network losses on the optimal supply chain design and on the competition between the hydrogen and CO2 networks. Findings highlight the fundamental role of biomass (when available) and of carbon capture and storage for decarbonizing hydrogen supply chains while transitioning to a wider deployment of renewable energy sources.
Selected Aspects of Hydrogen Production via Catalytic Decomposition of Hydrocarbons
Feb 2021
Publication
Owing to the high hydrogen content hydrocarbons are considered as an alternative source for hydrogen energy purposes. Complete decomposition of hydrocarbons results in the formation of gaseous hydrogen and solid carbonaceous by-product. The process is complicated by the methane formation reaction when the released hydrogen interacts with the formed carbon deposits. The present study is focused on the effects of the reaction mixture composition. Variations in the inlet hydrogen and methane concentrations were found to influence the carbon product’s morphology and the hydrogen production efficiency. The catalyst containing NiO (82 wt%) CuO (13 wt%) and Al2O3 (5 wt%) was prepared via a mechanochemical activating procedure. Kinetics of the catalytic process of hydrocarbons decomposition was studied using a reactor equipped with McBain balances. The effects of the process parameters were explored in a tubular quartz reactor with chromatographic analysis of the outlet gaseous products. In the latter case the catalyst was loaded piecemeal. The texture and morphology of the produced carbon deposits were investigated by nitrogen adsorption and electron microscopy techniques.
Water Photo-Electrooxidation Using Mats of TiO2 Nanorods, Surface Sensitized by a Metal–Organic Framework of Nickel and 1,2-Benzene Dicarboxylic Acid
Apr 2021
Publication
Photoanodes comprising a transparent glass substrate coated with a thin conductive film of fluorine-doped tin oxide (FTO) and a thin layer of a photoactive phase have been fabricated and tested with regard to the photo-electro-oxidation of water into molecular oxygen. The photoactive layer was made of a mat of TiO2 nanorods (TDNRs) of micrometric thickness. Individual nanorods were successfully photosensitized with nanoparticles of a metal–organic framework (MOF) of nickel and 12-benzene dicarboxylic acid (BDCA). Detailed microstructural information was obtained from SEM and TEM analysis. The chemical composition of the active layer was determined by XRD XPS and FTIR analysis. Optical properties were determined by UV–Vis spectroscopy. The water photooxidation activity was evaluated by linear sweep voltammetry and the robustness was assessed by chrono-amperometry. The OER (oxygen evolution reaction) photo-activity of these photoelectrodes was found to be directly related to the amount of MOF deposited on the TiO2 nanorods and was therefore maximized by adjusting the MOF content. The microscopic reaction mechanism which controls the photoactivity of these photoelectrodes was analyzed by photo-electrochemical impedance spectroscopy. Microscopic rate parameters are reported. These results contribute to the development and characterization of MOF-sensitized OER photoanodes.
The ‘Green’ Ni-UGSO Catalyst for Hydrogen Production under Various Reforming Regimes
Jun 2021
Publication
A new spinelized Ni catalyst (Ni-UGSO) using Ni(NO3)2·6H2O as the Ni precursor was prepared according to a less material intensive protocol. The support of this catalyst is a negative-value mining residue UpGraded Slag Oxide (UGSO) produced from a TiO2 slag production unit. Applied to dry reforming of methane (DRM) at atmospheric pressure T = 810 °C space velocity of 3400 mL/(h·g) and molar CO2/CH4 = 1.2 Ni-UGSO gives a stable over 168 h time-on-stream methane conversion of 92%. In this DRM reaction optimization study: (1) the best performance is obtained with the 10–13 wt% Ni load; (2) the Ni-UGSO catalysts obtained from two different batches of UGSO demonstrated equivalent performances despite their slight differences in composition; (3) the sulfur-poisoning resistance study shows that at up to 5.5 ppm no Ni-UGSO deactivation is observed. In steam reforming of methane (SRM) Ni-UGSO was tested at 900 °C and a molar ratio of H2O/CH4 = 1.7. In this experimental range CH4 conversion rapidly reached 98% and remained stable over 168 h time-on-stream (TOS). The same stability is observed for H2 and CO yields at around 92% and 91% respectively while H2/CO was close to 3. In mixed (dry and steam) methane reforming using a ratio of H2O/CH4 = 0.15 and CO2/CH4 = 0.97 for 74 h and three reaction temperature levels (828 °C 847 °C and 896 °C) CH4 conversion remains stable; 80% at 828 °C (26 h) 85% at 847 °C (24 h) and 95% at 896 °C (24 h). All gaseous streams have been analyzed by gas chromatography. Both fresh and used catalysts are analyzed by scanning electron microscopy-electron dispersive X-ray spectroscopy (SEM-EDXS) X-ray diffraction (XRD) and thermogravimetric analysis (TGA) coupled with mass spectroscopy (MS) and BET Specific surface. In the reducing environment of reforming such catalytic activity is mainly attributed to (a) alloys such as FeNi FeNi3 and Fe3Ni2 (reduction of NiFe2O4 FeNiAlO4) and (b) to the solid solution NiO-MgO. The latter is characterized by a molecular distribution of the catalytically active Ni phase while offering an environment that prevents C deposition due to its alkalinity.
Shining the Light on Clean Hydrogen
Jun 2021
Publication
Clean hydrogen:
- What's driving the excitement?
- Will hydrogen stay on the main stage of the energy transition?
- What is the market for clean hydrogen today?
Progress and Challenges on the Thermal Management of Electrochemical Energy Conversion and Storage Technologies: Fuel Cells, Electrolysers, and Supercapacitors
Oct 2021
Publication
It is now well established that electrochemical systems can optimally perform only within a narrow range of temperature. Exposure to temperatures outside this range adversely affects the performance and lifetime of these systems. As a result thermal management is an essential consideration during the design and operation of electrochemical equipment and can heavily influence the success of electrochemical energy technologies. Recently significant attempts have been placed on the maturity of cooling technologies for electrochemical devices. Nonetheless the existing reviews on the subject have been primarily focused on battery cooling. Conversely heat transfer in other electrochemical systems commonly used for energy conversion and storage has not been subjected to critical reviews. To address this issue the current study gives an overview of the progress and challenges on the thermal management of different electrochemical energy devices including fuel cells electrolysers and supercapacitors. The physicochemical mechanisms of heat generation in these electrochemical devices are discussed in-depth. Physics of the heat transfer techniques currently employed for temperature control are then exposed and some directions for future studies are provided.
Overview of Biomass Conversion to Electricity and Hydrogen and Recent Developments in Low-Temperature Electrochemical Approaches
Nov 2020
Publication
Biomass is plant or animal material that stores both chemical and solar energies and that is widely used for heat production and various industrial processes. Biomass contains a large amount of the element hydrogen so it is an excellent source for hydrogen production. Therefore biomass is a sustainable source for electricity or hydrogen production. Although biomass power plants and reforming plants have been commercialized it remains a difficult challenge to develop more effective and economic technologies to further improve the conversion efficiency and reduce the environmental impacts in the conversion process. The use of biomass-based flow fuel cell technology to directly convert biomass to electricity and the use of electrolysis technology to convert biomass into hydrogen at a low temperature are two new research areas that have recently attracted interest. This paper first briefly introduces traditional technologies related to the conversion of biomass to electricity and hydrogen and then reviews the new developments in flow biomass fuel cells (FBFCs) and biomass electrolysis for hydrogen production (BEHP) in detail. Further challenges in these areas are discussed.
Techno-Economics Optimization of H2 and CO2 Compression for Renewable Energy Storage and Power-to-Gas Applications
Nov 2021
Publication
The decarbonization of the industrial sector is imperative to achieve a sustainable future. Carbon capture and storage technologies are the leading options but lately the use of CO2 is also being considered as a very attractive alternative that approaches a circular economy. In this regard power to gas is a promising option to take advantage of renewable H2 by converting it together with the captured CO2 into renewable gases in particular renewable methane. As renewable energy production or the mismatch between renewable production and consumption is not constant it is essential to store renewable H2 or CO2 to properly run a methanation installation and produce renewable gas. This work analyses and optimizes the system layout and storage pressure and presents an annual cost (including CAPEX and OPEX) minimization. Results show the proper compression stages need to achieve the storage pressure that minimizes the system cost. This pressure is just below the supercritical pressure for CO2 and at lower pressures for H2 around 67 bar. This last quantity is in agreement with the usual pressures to store and distribute natural gas. Moreover the H2 storage costs are higher than that of CO2 even with lower mass quantities; this is due to the lower H2 density compared with CO2 . Finally it is concluded that the compressor costs are the most relevant costs for CO2 compression but the storage tank costs are the most relevant in the case of H2.
Criticality and Life-Cycle Assessment of Materials Used in Fuel-Cell and Hydrogen Technologies
Mar 2021
Publication
The purpose of this paper is to obtain relevant data on materials that are the most commonly used in fuel-cell and hydrogen technologies. The focus is on polymer-electrolyte-membrane fuel cells solid-oxide fuel cells polymer-electrolyte-membrane water electrolysers and alkaline water electrolysers. An innovative methodological approach was developed for a preliminary material assessment of the four technologies. This methodological approach leads to a more rapid identification of the most influential or critical materials that substantially increase the environmental impact of fuel-cell and hydrogen technologies. The approach also assisted in amassing the life-cycle inventories—the emphasis here is on the solid-oxide fuel-cell technology because it is still in its early development stage and thus has a deficient materials’ database—that were used in a life-cycle assessment for an in-depth material-criticality analysis. All the listed materials—that either are or could potentially be used in these technologies—were analysed to give important information for the fuel-cell and hydrogen industries the recycling industry the hydrogen economy as well as policymakers. The main conclusion from the life-cycle assessment is that the polymer-electrolyte membrane water electrolysers have the highest environmental impacts; lower impacts are seen in polymer-electrolyte-membrane fuel cells and solid-oxide fuel cells while the lowest impacts are observed in alkaline water electrolysers. The results of the material assessment are presented together for all the considered materials but also separately for each observed technology.
Cryogenic and Ambient Gaseous Hydrogen Blowdown with Discharge Line Effects
Sep 2021
Publication
The present work performed within the PRESLHY EC-project presents a simplified 1-d transient modelling methodology to account for discharge line effects during blowdown. The current formulation includes friction extra resistance area change and heat transfer through the discharge line walls and is able to calculate the mass flow rate and distribution of all physical variables along the discharge line. Choked flow at any time during the transient is calculated using the Possible Impossible Flow (PIF) algorithm. Hydrogen single phase physical properties and vapour-liquid equilibrium are calculated using the Helmholtz Free Energy (HFE) formulation. Homogeneous Equilibrium Mixture (HEM) model is used for two-phase physical properties. Validation is performed against the new experiments with compressed gaseous hydrogen performed at the DISCHA facility in the framework of PRESLHY (200 bar ambient and cryogenic initial tank temperature 77 K and 4 nozzle diameters 0.5 1 2 and 4 mm) and an older experiment at 900 bar ambient temperature and 2 mm nozzle. Predictions are compared against measured data from the experiments and the relative importance of line heat transfer compared to flow resistance is analysed.
CFD Simulations of Large Scale LH2 Dispersion in Open Environment
Sep 2021
Publication
An inter-comparison among partners’ CFD simulations has been carried out within the EU-funded project PRESLHY to investigate the dispersion of the mixture cloud formed from large scale liquid hydrogen release. Rainout experiments performed by Health and Safety Executive (HSE) have been chosen for the work. From the HSE experimental series trial-11 was selected forsimulation due to its conditions where only liquid flow at the nozzle was achieved. During trial-11 liquid hydrogen is spilled horizontally 0.5 m above a concrete pad from a 5 barg tank pressure through a 12 mm (1/2 inch) nozzle. The dispersion takes place outdoors and thus it is imposed to variant wind conditions. Comparison of the CFD results with the measurements at several sensors is presented and useful conclusions are drawn.
Net Zero in the Heating Sector: Technological Options and Environmental Sustainability from Now to 2050
Jan 2021
Publication
Heating and hot water within buildings account for almost a quarter of global energy consumption. Approximately 90% of this heat is derived directly from the combustion of fossil fuels primarily natural gas leading to the unabated emission of carbon dioxide. This paper assesses the environmental sustainability of a range of heating technologies and scenarios on a life cycle basis. The major technologies considered are natural gas boilers air source heat pumps hydrogen boilers and direct electric heaters. The scenarios use the UK as an example due to its status as a major economy with a legally-binding net-zero carbon target for 2050; they consider plausible future electricity and natural gas mixes including the potential growth of domestic shale gas. The environmental impacts are estimated using ReCiPe 2016. Current gas boilers have a climate change impact of 220 g CO2 eq./kWh of heat which could fall to 64 g CO2 eq./kWh for boilers fuelled by hydrogen derived from natural gas with carbon capture. Heat from electric air source heat pumps or hydrogen from electrolysis can achieve net zero with a decarbonised electricity mix but electrolysis has the highest energy demand of all options which leads to the highest impacts across 17 of the 19 categories. Despite their high carbon emissions gas boilers remain the lowest impact option across 12 categories as they avoid the impacts related to electricity generation including metal depletion toxicities and eutrophication. By 2050 the best performing scenario sees the climate change impact of the heating mix fall by 95%; this is achieved by prioritising electric air source heat pumps without hydrofluorocarbon refrigerants alongside demand reduction. The results show that if infrastructure and financial challenges can be overcome there are several viable decarbonisation strategies for heating with heat pumps offering the most environmentally sustainable option of those considered here. However increased renewable electricity demand may worsen some environmental impacts compared to natural gas boilers.
Controllable H2 Generation by Formic Acid Decomposition on a Novel Pd/Templated Carbon Catalyst
Nov 2020
Publication
A novel Pd/templated carbon catalyst (Pd/TC) was developed characterized and tested in the dehydrogenation of formic acid (FA) under mild conditions with the possibility to control the H2 generation rate in the absence or presence of HCOONa (SF) by adjusting the Pd:FA and/or FA:SF ratios. The characterization results of the templated carbon obtained by the chemical vapor deposition of acetylene on NaY zeolite revealed different structural and morphological properties compared to other C-based supports. Therefore it was expected to induce a different catalytic behavior for the Pd/TC catalyst. Indeed the TC-supported Pd catalyst exhibited superior activity in the decomposition of FA even at room temperature with turnover frequencies (TOFs) of up to 143.7 and 218.8 h−1 at 60 °C. The H2 generation rate increased with an increasing temperature while the H2 yield increased with a decreasing FA concentration. Constant generation of gaseous flow (H2 + CO2) was achieved for 11 days by the complete dehydrogenation of FA at room temperature using a 2 M FA solution and Pd:FA = 1:2100. The presence of SF in the reaction medium significantly enhanced the H2 generation rate (535 h−1 for FA:SF = 3:1 and 60 °C).
The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective
Dec 2020
Publication
Hydrogen is currently enjoying a renewed and widespread momentum in many national and international climate strategies. This review paper is focused on analysing the challenges and opportunities that are related to green and blue hydrogen which are at the basis of different perspectives of a potential hydrogen society. While many governments and private companies are putting significant resources on the development of hydrogen technologies there still remains a high number of unsolved issues including technical challenges economic and geopolitical implications. The hydrogen supply chain includes a large number of steps resulting in additional energy losses and while much focus is put on hydrogen generation costs its transport and storage should not be neglected. A low-carbon hydrogen economy offers promising opportunities not only to fight climate change but also to enhance energy security and develop local industries in many countries. However to face the huge challenges of a transition towards a zero-carbon energy system all available technologies should be allowed to contribute based on measurable indicators which require a strong international consensus based on transparent standards and targets.
A Decarbonization Roadmap for Singapore and Its Energy Policy Implications
Oct 2021
Publication
As a signatory to the Paris Agreement Singapore is committed to achieving net-zero carbon emissions in the second half of the century. In this paper we propose a decarbonization roadmap for Singapore based on an analysis of Singapore’s energy landscape and a technology mapping exercise. This roadmap consists of four major components. The first component which also underpins the other three components is using centralized post-combustion carbon capture technology to capture and compress CO2 emitted from multiple industrial sources in Jurong Island. The captured CO2 is then transported by ship or an existing natural gas pipeline to a neighboring country where it will be stored permanently in a subsurface reservoir. Important to the success of this first-of-a-kind cross-border carbon capture and storage (CCS) project is the establishment of a regional CCS corridor which makes use of economies of scale to reduce the cost of CO2 capture transport and injection. The second component of the roadmap is the production of hydrogen in a methane steam reforming plant which is integrated with the carbon capture plant. The third component is the modernizing of the refining sector by introducing biorefineries increasing output to petrochemical plants and employing post-combustion carbon capture. The fourth component is refueling the transport sector by introducing electric and hydrogen fuel cell vehicles using biofuels for aviation and hydrogen for marine vessels. The implications of this roadmap on Singapore’s energy policies are also discussed.
Asymmetric Solvation of the Zinc Dimer Cation Revealed by Infrared Multiple Photon Dissociation Spectroscopy of Zn2+(H2O)n (n = 1–20)
Jun 2021
Publication
Investigating metal-ion solvation—in particular the fundamental binding interactions—enhances the understanding of many processes including hydrogen production via catalysis at metal centers and metal corrosion. Infrared spectra of the hydrated zinc dimer (Zn2+(H2O)n; n = 1–20) were measured in the O–H stretching region using infrared multiple photon dissociation (IRMPD) spectroscopy. These spectra were then compared with those calculated by using density functional theory. For all cluster sizes calculated structures adopting asymmetric solvation to one Zn atom in the dimer were found to lie lower in energy than structures adopting symmetric solvation to both Zn atoms. Combining experiment and theory the spectra show that water molecules preferentially bind to one Zn atom adopting water binding motifs similar to the Zn+(H2O)n complexes studied previously. A lower coordination number of 2 was observed for Zn2+(H2O)3 evident from the highly red-shifted band in the hydrogen bonding region. Photodissociation leading to loss of a neutral Zn atom was observed only for n = 3 attributed to a particularly low calculated Zn binding energy for this cluster size.
Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System
Feb 2022
Publication
Greenhouse gas emissions need to be drastically reduced to mitigate the environmental impacts caused by climate change and to lead to a transformation of the European energy system. A model landscape consisting of four final energy consumption sector models with high spatial (NUTS-3) and temporal (hourly) resolution and the multi-energy system model ISAaR is extended and applied to investigate the transformation pathway of the European energy sector in the deep emission mitigation scenario solidEU. The solidEU scenario describes not only the techno-economic but also the socio-political contexts and it includes the EU27 + UK Norway and Switzerland. The scenario analysis shows that volatile renewable energy sources (vRES) dominate the energy system in 2050. In addition the share of flexible sector coupling technologies increases to balance electricity generation from vRES. Seasonal differences are balanced by hydrogen storage with a seasonal storage profile. The deployment rates of vRES in solidEU show that a fast profound energy transition is necessary to achieve European climate protection goals.
Emerging Electrochemical Energy Conversion and Storage Technologies
Sep 2014
Publication
Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management conservation and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost life time and performance leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells large format lithium-ion batteries electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi-billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies which will have substantial impact on the environment and the way we produce and utilize energy are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.
Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State
Jun 2021
Publication
Public attention to climate change challenges our locked-in fossil fuel-dependent energy sector. Natural gas is replacing other fossil fuels in our energy mix. One way to reduce the greenhouse gas (GHG) impact of fossil natural gas is to replace it with renewable natural gas (RNG). The benefits of utilizing RNG are that it has no climate change impact when combusted and utilized in the same applications as fossil natural gas. RNG can be injected into the gas grid used as a transportation fuel or used for heating and electricity generation. Less common applications include utilizing RNG to produce chemicals such as methanol dimethyl ether and ammonia. The GHG impact should be quantified before committing to RNG. This study quantifies the potential production of biogas (i.e. the precursor to RNG) and RNG from agricultural and waste sources in New York State (NYS). It is unique because it is the first study to provide this analysis. The results showed that only about 10% of the state’s resources are used to generate biogas of which a small fraction is processed to RNG on the only two operational RNG facilities in the state. The impact of incorporating a second renewable substitute for fossil natural gas “green” hydrogen is also analyzed. It revealed that injecting RNG and “green” hydrogen gas into the pipeline system can reduce up to 20% of the state’s carbon emissions resulting from fossil natural gas usage which is a significant GHG reduction. Policy analysis for NYS shows that several state and federal policies support RNG production. However the value of RNG can be increased 10-fold by applying a similar incentive policy to California’s Low Carbon Fuel Standard (LCFS).
Synergistic Hybrid Marine Renewable Energy Harvest System
Mar 2024
Publication
This paper proposes a novel hybrid marine renewable energy-harvesting system to increase energy production reduce levelized costs of energy and promote renewable marine energy. Firstly various marine renewable energy resources and state-of-art technologies for energy exploitation and storage were reviewed. The site selection criteria for each energy-harvesting approach were identified and a scoring matrix for site selection was proposed to screen suitable locations for the hybrid system. The Triton Knoll wind farm was used to demonstrate the effectiveness of the scoring matrix. An integrated energy system was designed and FE modeling was performed to assess the effects of additional energy devices on the structural stability of the main wind turbine structure. It has been proven that the additional energy structures have a negligible influence on foundation/structure deflection.
Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy
Sep 2021
Publication
The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For the application and the diffusion of these systems in addition to their environmental performance it is necessary however to evaluate their economic feasibility. In this paper a life cycle assessment of a fuel cell/photovoltaic hybrid micro-cogeneration heat and power system for a residential building is integrated with a detailed economic analysis. Financial indicators (net present cost and payback time are used for studying two different investments: reversible-Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario using a homeowner perspective approach. Moreover two alternative incentives scenarios are analysed and applied: net metering and self-consumers’ groups (or energy communities). Results show that both systems obtain annual savings but their high capital costs still would make the investments not profitable. However the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario among all. On the contrary the reversible-Solid Oxide Fuel Cell maximizes its economic performance only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis environmental impacts are monetized using three different monetization methods with the aim to internalize (considering them into direct cost) the externalities (environmental costs). If externalities are considered as an effective cost the natural gas Solide Oxide Fuel Cell system increases its saving because its environmental impact is lower than in the base case one while the reversible-Solid Oxide Fuel Cell system reduces it.
Improve Hydrogen Economy for Vehicular Fuel Cell System via Investigation and Control of Optimal Operating Oxygen Excess Ratio
Apr 2022
Publication
This study investigates and controls the optimal operating oxygen excess ratio (OER) for PEMFC which effectively prevents oxygen starvation and improves the hydrogen economy of proton exchange membrane fuel cells (PEMFC). Firstly the PEMFC output characteristic model and the five-order nonlinear air supply system model are established. Moreover an adaptive algebraic observer was developed to observe the partial pressure of gas in PEMFC and further reconstruct OER. Secondly to achieve the minimum hydrogen consumption under the required power the reference OER is determined by analyzing the PEMFC system output power with its minimum current. Finally the super-twisting algorithm is adopted to track reference OER. Simulation results show that the average absolute observation errors of oxygen nitrogen and cathode pressures under the Highway Fuel Economy Test are 1351.1 Pa (5.1%) 1724.2 Pa (0.9%) and 409.9 Pa (1.6%) respectively. The OER adjust average absolute error is 0.03. Compared with the commonly used fixed OER (e.g. OER of 1.5 and 2.3) the optimal OER strategy can reduce the hydrogen consumption of the PEMFC system by 5.2% and 1.8% respectively. Besides a DSP hardware in loop test is conducted to show the real-time performance of the proposed optimal method.
Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe
Sep 2021
Publication
The power-to-methane technology is promising for long-term high-capacity energy storage. Currently there are two different industrial-scale methanation methods: the chemical one (based on the Sabatier reaction) and the biological one (using microorganisms for the conversion). The second method can be used not only to methanize the mixture of pure hydrogen and carbon dioxide but also to methanize the hydrogen and carbon dioxide content of low-quality gases such as biogas or deponia gas enriching them to natural gas quality; therefore the applicability of biomethanation is very wide. In this paper we present an overview of the existing and planned industrial-scale biomethanation facilities in Europe as well as review the facilities closed in recent years after successful operation in the light of the scientific and socioeconomic context. To outline key directions for further developments this paper interconnects biomethanation projects with the competitiveness of the energy sector in Europe for the first time in the literature. The results show that future projects should have an integrative view of electrolysis and biomethanation as well as hydrogen storage and utilization with carbon capture and utilization (HSU&CCU) to increase sectoral competitiveness by enhanced decarbonization.
Fuel Cells and Hydrogen Observatory Technology and Market Report
Sep 2021
Publication
The information in this report covers the period January 2019 – December 2019. The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. This includes statistical information on the size of the global fuel cell market including number and capacity of fuel cell systems shipped in a calendar year. For this first edition data to the end of 2019 is presented where possible alongside analysis of key sector developments. Fuel cell system shipments for each calendar year are presented both as numbers of units and total system megawatts. The data are further divided and subdivided by: • Application: Total system shipments are divided into Transport Stationary and Portable applications • Fuel cell type: Numbers are provided for each of the different fuel cell chemistry types • Region of integration: Region where the final manufacturer – usually the system integrator – integrates the fuel cell into the final product • Region of deployment: Region where the final product was shipped to for deployment The data is sourced directly from industry players as well as other relevant sources including press releases associations and other industry bodies.
Impacts of Variation Management on Cost-optimal Investments in Wind Power and Solar Photovoltaics
Dec 2019
Publication
This work investigates the impacts of variation management on the cost-optimal electricity system compositions in four regions with different pre-requisites for wind and solar generation. Five variation management strategies involving electric boilers batteries hydrogen storage low-cost biomass and demand-side management are integrated into a regional investment model that is designed to account for variability. The variation management strategies are considered one at a time as well as combined in four different system contexts. By investigating how the variation management strategies interact with each other as well as with different electricity generation technologies in a large number of cases this work support policy-makers in identifying variation management portfolios relevant to their context. It is found that electric boilers demand-side management and hydrogen storage increase the cost-optimal variable renewable electricity (VRE) investments if the VRE share is sufficiently large to reduce its marginal system value. However low-cost biomass and hydrogen storage are found to increase cost-optimal investments in wind power in systems with a low initial wind power share. In systems with low solar PV share variation management reduce the cost-optimal solar PV investments. In two of the regions investigated a combination of variation management strategies results in a stronger increase in VRE capacity than the sum of the single variation management efforts.
Setting Thresholds to Define Indifferences and Preferences in PROMETHEE for Life Cycle Sustainability Assessment of European Hydrogen Production
Jun 2021
Publication
The Life Cycle Sustainability Assessment (LCSA) is a proven method for sustainability assessment. However the interpretation phase of an LCSA is challenging because many different single results are obtained. Additionally performing a Multi-Criteria Decision Analysis (MCDA) is one way—not only for LCSA—to gain clarity about how to interpret the results. One common form of MCDAs are outranking methods. For these type of methods it becomes of utmost importance to clarify when results become preferable. Thus thresholds are commonly used to prevent decisions based on results that are actually indifferent between the analyzed options. In this paper a new approach is presented to identify and quantify such thresholds for Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) based on uncertainty of Life Cycle Impact Assessment (LCIA) methods. Common thresholds and this new approach are discussed using a case study on finding a preferred location for sustainable industrial hydrogen production comparing three locations in European countries. The single LCSA results indicated different preferences for the environmental economic and social assessment. The application of PROMETHEE helped to find a clear solution. The comparison of the newly-specified thresholds based on LCIA uncertainty with default thresholds provided important insights of how to interpret the LCSA results regarding industrial hydrogen production.
How Green Are the National Hydrogen Strategies?
Feb 2022
Publication
Since Japan promulgated the world’s first national hydrogen strategy in 2017 28 national (or regional in the case of the EU) hydrogen strategies have been issued by major world economies. As carbon emissions vary with different types of hydrogen and only green hydrogen produced from renewable energy can be zero-emissions fuel this paper interrogates the commitment of the national hydrogen strategies to achieve decarbonization objectives focusing on the question “how green are the national hydrogen strategies?” We create a typology of regulatory stringency for green hydrogen in national hydrogen strategies analyzing the text of these strategies and their supporting policies and evaluating their regulatory stringency toward decarbonization. Our typology includes four parameters fossil fuel penalties hydrogen certifications innovation enablement and the temporal dimension of coal phasing out. Following the typology we categorize the national hydrogen strategies into three groups: zero regulatory stringency scale first and clean later and green hydrogen now. We find that most national strategies are of the type “scale first and clean later” with one or more regulatory measures in place. This article identifies further challenges to enhancing regulatory stringency for green hydrogen at both national and international levels.
Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review
Jan 2021
Publication
Hydrogen is receiving increasing attention as a versatile energy vector to help accelerate the transition to a decarbonised energy future. Gas turbines will continue to play a critical role in providing grid stability and resilience in future low-carbon power systems; however it is recognised that this role is contingent upon achieving increased thermal efficiencies and the ability to operate on carbon-neutral fuels such as hydrogen. An important consideration in the development of gas turbine combustors capable of operating with pure hydrogen or hydrogen-enriched natural gas are the significant changes in thermoacoustic instability characteristics associated with burning these fuels. This article provides a review of the effects of burning hydrogen on combustion dynamics with focus on swirl-stabilised lean-premixed combustors. Experimental and numerical evidence suggests hydrogen can have either a stabilising or destabilising impact on the dynamic state of a combustor through its influence particularly on flame structure and flame position. Other operational considerations such as the effect of elevated pressure and piloting on combustion dynamics as well as recent developments in micromix burner technology for 100% hydrogen combustion have also been discussed. The insights provided in this review will aid the development of instability mitigation strategies for high hydrogen combustion.
Energy Optimization of a Sulfur-Iodine Thermochemical Nuclear Hydrogen Production Cycle
Dec 2021
Publication
The use of nuclear reactors is a large studied possible solution for thermochemical water splitting cycles. Nevertheless there are several problems that have to be solved. One of them is to increase the efficiency of the cycles. Hence in this paper a thermal energy optimization of a SulfureIodine nuclear hydrogen production cycle was performed by means a heuristic method with the aim of minimizing the energy targets of the heat exchanger network at different minimum temperature differences. With this method four different heat exchanger networks are proposed. A reduction of the energy requirements for cooling ranges between 58.9-59.8% and 52.6-53.3% heating compared to the reference design with no heat exchanger network. With this reduction the thermal efficiency of the cycle increased in about 10% in average compared to the reference efficiency. This improves the use of thermal energy of the cycle.
The Heralds of Hydrogen: The Economic Sectors that are Driving the Hydrogen Economy in Europe
Jan 2021
Publication
This paper looked at 39 hydrogen associations across Europe to understand which economic sectors support the hydrogen transition in Europe and why they do so. Several broad conclusions can be drawn from this paper. It is clear that the support for hydrogen is broad and from a very wide spectrum of economic actors that have clear interests in the success of the hydrogen transition. Motivations for support differ. Sales and market growth are important for companies pursuing professional scientific and technical activities as well as manufacturers of chemicals machinery electronic or electrical equipment and fabricated metals. The increasing cost of CO2 combines with regulatory and societal pressure to decarbonize and concerns from investors about the long-term profitability of sectors with high emissions. This makes hydrogen especially interesting for companies working in the energy transport steel and chemical industries. Another motivation is the ability to keep using existing fixed assets relevant for ports oil and gas companies and natural gas companies. More sector-specific concerns are a technological belief held by some motor vehicle manufacturers in the advantages of FCVs over BEVs for private mobility which is held more widely regarding heavy road transport. Security of supply and diversifying the current business portfolio come up specifically for natural gas companies. Broader concerns about having to shift into other energy technologies as a core business are reasons for interest from the oil and gas sector and ports.
Perhaps the most important lesson is that the hydrogen transition has already begun – but it needs continued policy support and political commitment. Carbon-intensive industries such as steel and chemicals are clearly interested and willing to invest billions but need policy support to avoid carbon leakage to high-carbon competitors before they commit. The gas grid is ready and many operators and utility companies are eager but they need clearance to experiment with blending in hydrogen. Hydrogen road vehicles still face many regulatory hurdles. There are several clusters that can serve as models and nuclei for the future European hydrogen economy in different parts of Europe. However these nuclei will need more public funding and regulatory support for them to grow.
Link to document on Oxford Institute for Energy Studies website
Perhaps the most important lesson is that the hydrogen transition has already begun – but it needs continued policy support and political commitment. Carbon-intensive industries such as steel and chemicals are clearly interested and willing to invest billions but need policy support to avoid carbon leakage to high-carbon competitors before they commit. The gas grid is ready and many operators and utility companies are eager but they need clearance to experiment with blending in hydrogen. Hydrogen road vehicles still face many regulatory hurdles. There are several clusters that can serve as models and nuclei for the future European hydrogen economy in different parts of Europe. However these nuclei will need more public funding and regulatory support for them to grow.
Link to document on Oxford Institute for Energy Studies website
The Impact of Operating Conditions on the Performance of a CH4 Dry Reforming Membrane Reactor for H2 Production
May 2020
Publication
Biogas is a promising resource for the production of H2 since it liberates energy by recycling waste along with the reduction of CO2. In this paper the biogas dry reforming membrane reactor is proposed to produce H2 for use in fuel cells. Pd/Cu alloy membrane is used to enhance the performance of the biogas dry reforming reactor. This study aims at understanding the effect of operating parameters such as feed ratio of sweep gas pressure in the reactor and reaction temperature on the performance of the biogas dry reforming membrane reactor. The effect of the molar ratio of the supplied CH4:CO2 feed ratio of the sweep gas and the valve located at the outlet of the reaction chamber on the performance of biogas dry reforming are investigated. Besides the thermal efficiency of the proposed reactor is also evaluated. The results show that the concentration of H2 in the closed valve condition is higher than that of the open valve and the optimum feed ratio of the sweep gas to produce H2 is 1 irrespective of the molar ratio of supplied CH4:CO2. Also H2 selectivity and CO selectivity increases and decreases respectively when the reaction temperature increases irrespective of the molar ratio of supplied CH4:CO2. Therefore the thermal efficiency of the closed valve is higher than that of the opened valve. Also the thermal efficiency is the maximum when the feed ratio of the sweep gas is 1 due to high H2 production performance.
Validation of GreenH2armony® as a Tool for the Computation of Harmonised Life-Cycle Indicators of Hydrogen
Apr 2020
Publication
The Life Cycle Assessment (LCA) methodology is often used to check the environmental suitability of hydrogen energy systems usually involving comparative studies. However these comparative studies are typically affected by inconsistent methodological choices between the case studies under comparison. In this regard protocols for the harmonisation of methodological choices in LCA of hydrogen are available. The step-by-step application of these protocols to a large number of case studies has already resulted in libraries of harmonised carbon energy and acidification footprints of hydrogen. In order to foster the applicability of these harmonisation protocols a web-based software for the calculation of harmonised life-cycle indicators of hydrogen has recently been developed. This work addresses—for the first time—the validation of such a tool by checking the deviation between the available libraries of harmonised carbon energy and acidification footprints of hydrogen and the corresponding tool-based harmonised results. A high correlation (R2 > 0.999) was found between the library- and tool-based harmonised life-cycle indicators of hydrogen thereby successfully validating the software. Hence this tool has the potential to effectively promote the use of harmonised life-cycle indicators for robust comparative LCA studies of hydrogen energy systems significantly mitigating misinterpretation.
A Holistic Consideration of Megawatt Electrolysis as a Key Component of Sector Coupling
May 2022
Publication
In the future hydrogen (H2) will play a significant role in the sustainable supply of energy and raw materials to various sectors. Therefore the electrolysis of water required for industrial‐ scale H2 production represents a key component in the generation of renewable electricity. Within the scope of fundamental research work on cell components for polymer electrolyte membrane (PEM) electrolyzers and application‐oriented living labs an MW electrolysis system was used to further improve industrial‐scale electrolysis technology in terms of its basic structure and systems‐ related integration. The planning of this work as well as the analytical and technical approaches taken along with the essential results of research and development are presented herein. The focus of this study is the test facility for a megawatt PEM electrolysis stack with the presentation of the design processing and assembly of the main components of the facility and stack.
Storage System of Renewable Energy Generated Hydrogen for Chemical Industry
Nov 2012
Publication
Chemical industry is the base of the value chains and has strong influence on the competitiveness of almost all branches in economics. To develop the technologies for sustainability and climate protection and at the same time to guarantee the supply of raw material is a big challenge for chemical industry. In the project CO2RRECT (CO2 - Reaction using Regenerative Energies and Catalytic Technologies) funded by the German federal ministry of Education and Research carbon dioxide is used as the source of carbon for chemical products with certain chemical processes. Hydrogen that is needed in these processes is produced by electrolyzing water with renewable energy. To store a large amount of hydrogen different storage systems are studied in this project including liquid hydrogen tanks/cryo tanks high pressure tanks pipelines and salt cavities. These systems are analyzed and compared considering their storage capacity system costs advantages and disadvantages. To analyze capital and operational expenditure of the hydrogen storage systems a calculation methodology is also developed in this work.
Life Cycle Inventory Data Generation by Process Simulation for Conventional, Feedstock Recycling and Power-to-X Technologies for Base Chemical Production
Jan 2022
Publication
The article presents the methodology and applicable data for the generation of life cycle inventory for conventional and alternative processes for base chemical production by process simulation. Addressed base chemicals include lower olefins BTX aromatics methanol ammonia and hydrogen. Assessed processes include conventional chemical production processes from naphtha LPG natural gas and heavy fuel oil; feedstock recycling technologies via gasification and pyrolysis of refuse derived fuel; and power-to-X technologies from hydrogen and CO2. Further process variations with additional hydrogen input are covered. Flowsheet simulation in Aspen Plus is applied to generate datasets with conclusive mass and energy balance under uniform modelling and assessment conditions with available validation data. Process inventory data is generated with no regard to the development stage of the respective technology but applicable process data with high technology maturity is prioritized for model validation. The generated inventory data can be applied for life cycle assessments. Further the presented modelling and balancing framework can be applied for inventory data generation of similar processes to ensure comparability in life cycle inventory data.
Flare Gas Monetization and Greener Hydrogen Production via Combination with Crypto Currency Mining and Carbon Dioxide Capture
Jan 2022
Publication
In view of the continuous debates on the environmental impact of blockchain technologies in particular crypto currency mining accompanied by severe carbon dioxide emissions a technical solution has been considered assuming direct monetization of associated petroleum gas currently being flared. The proposed approach is based on the technology of low-temperature steam reforming of hydrocarbons which allows flare gas conditioning towards the requirements for fuel for gas piston and gas turbine power plants. The generation of electricity directly at the oil field and its use for on-site crypto currency mining transforms the process of wasteful flaring of valuable hydrocarbons into an economically attractive integrated processing of natural resources. The process is not carbon neutral and is not intended to compete zero-emission technologies but its combination with technologies for carbon dioxide capture and re-injection into the oil reservoir can both enhance the oil recovery and reduce carbon dioxide emissions into the atmosphere. The produced gas can be used for local transport needs while the generated heat and electricity can be utilized for on-site food production and biological carbon dioxide capture in vertical greenhouse farms. The suggested approach allows significant decrease in the carbon dioxide emissions at oil fields and although it may seem paradoxically on-site cryptocurrency mining actually may lead to a decrease in the carbon footprint. The amount of captured CO2 could be transformed into CO2 emission quotas which can be spent for the production of virtually “blue” hydrogen by steam reforming of natural gas in locations where the CO2 capture is technically impossible and/or unprofitable.
Factors Affecting Hydrogen Adsorption in Metal–Organic Frameworks: A Short Review
Jun 2021
Publication
Metal–organic frameworks (MOFs) have significant potential for hydrogen storage. The main benefit of MOFs is their reversible and high-rate hydrogen adsorption process whereas their biggest disadvantage is related to their operation at very low temperatures. In this study we describe selected examples of MOF structures studied for hydrogen adsorption and different factors affecting hydrogen adsorption in MOFs. Approaches to improving hydrogen uptake are reviewed including surface area and pore volume in addition to the value of isosteric enthalpy of hydrogen adsorption. Nanoconfinement of metal hydrides inside MOFs is proposed as a new approach to hydrogen storage. Conclusions regarding MOFs with incorporated metal nanoparticles which may be used as nanoscaffolds and/or H2 sorbents are summarized as prospects for the near future.
Energy Transition: Measurement Needs Within the Hydrogen Industry
Dec 2017
Publication
Hydrogen in the UK is beginning to shift from hypothetical debates to practical demonstration projects. An ever-growing evidence base has showcased how the costs of hydrogen and its barriers to entry are reducing such that it now has practical potential to contribute to the decarbonisation of the UK's energy sector.
Despite this hydrogen has yet to have wide commercial uptake due in part to a number of barriers where measurement plays a critical role. To accelerate the shift towards the hydrogen economy these challenges have been identified and prioritised by NPL.
The report Energy transition: Measurement needs within the hydrogen industry outlines the challenges identified. The highest priority issues are:
This Document can be downloaded from their website
Despite this hydrogen has yet to have wide commercial uptake due in part to a number of barriers where measurement plays a critical role. To accelerate the shift towards the hydrogen economy these challenges have been identified and prioritised by NPL.
The report Energy transition: Measurement needs within the hydrogen industry outlines the challenges identified. The highest priority issues are:
- Material development for fuel cells and electrolysers to reduce costs and assess critical degradation mechanisms – extending lifetime and durability is key to the commercialisation of these technologies.
- Impact assessment of added odorant to hydrogen to aid leak detection. Measurement of its impact during pipeline transportation and on the end-use application (particularly fuel cell technology) will be important to provide assurance that it will not affect lifetime and durability.
- Determination of the blend ratio when hydrogen is mixed with natural gas in the gas grid. Accurate flow rate measurement and validated metering methods are needed to ensure accurate billing of the consumer.
- Measurement of the combustion properties of hydrogen including flame detection and propagation temperature and nitrogen oxides (NOx) emissions should it be used for heat applications to ensure existing and new appliances are suitable for hydrogen.
- Assessment of the suitability of existing gas infrastructure and materials for hydrogen transportation. Building an understanding of what adaptations might need to be made to avoid for example air permeation metal embrittlement and hydrogen leakage.
- Validated techniques for hydrogen storage which will require measurement of the efficiency and capacity of each mechanism through robust metering leakage detection and purity analysis to ensure they are optimised for the storage of hydrogen gas.
This Document can be downloaded from their website
H2 Green Hydrogen Discussion Paper: Victorian Hydrogen Investment Program
Nov 2019
Publication
This discussion paper is for stakeholders who would like to shape the development of Victoria’s emerging green hydrogen sector identifying competitive advantages and priority focus areas for industry and the Victorian Government.<br/>The Victorian Government is using this paper to focus on the economic growth and sector development opportunities emerging for a Victorian hydrogen industry powered by renewable energy also known as ‘green’ hydrogen. In addition this paper seeks input from all stakeholders on how where and when the Victorian Government can act to establish a thriving green hydrogen economy.<br/>Although green hydrogen is the only type of hydrogen production within the scope of this discussion paper the development of the VHIP aligns with the policies projects and initiatives which support these other forms of hydrogen production. The VHIP is considering the broad policy landscape and actively coordinating with related hydrogen programs policies and strategies under development including the Council of Australian Governments (COAG) Energy Council’s National Hydrogen Strategy to ensure a complementary approach. In Victoria there are several programs and strategies in development and underway that have linkages with hydrogen and the VHIP.
Photoelectrochemical Hydrogen Production by Screen-Printed Copper Oxide Electrodes
May 2021
Publication
In this work copper oxides-based photocathodes for photoelectrochemical cells (PEC) were produced for the first time by screen printing. A total 7 × 10−3 g/m2 glycerine trioleate was found as optimum deflocculant amount to assure stable and homogeneous inks based on CuO nano-powder. The inks were formulated considering different binder amounts and deposited producing films with homogenous thickness microstructure and roughness. The as-produced films were thermally treated to obtain Cu2O- and Cu2O/CuO-based electrodes. The increased porosity obtained by adding higher amounts of binder in the ink positively affected the electron transfer from the surface of the electrode to the electrolyte thus increasing the corresponding photocurrent values. Moreover the Cu2O/CuO system showed a higher charge carrier and photocurrent density than the Cu2O-based one. The mixed Cu2O/CuO films allowed the most significant hydrogen production especially in slightly acid reaction conditions.
Electrolyzer Modeling and Real-time Control for Optimized Production of Hydrogen Gas
Oct 2020
Publication
We present a method that operates an electrolyzer to meet the demand of a hydrogen refueling station in a cost-effective manner by solving a model-based optimal control problem. To formulate the underlying problem we first conduct an experimental characterization of a Siemens SILYZER 100 polymer electrolyte membrane electrolyzer with 100 kW of rated power. We run experiments to determine the electrolyzer’s conversion efficiency and thermal dynamics as well as the overload-limiting algorithm used in the electrolyzer. The resulting detailed nonlinear models are used to design a real-time optimal controller which is then implemented on the actual system. Each minute the controller solves a deterministic receding-horizon problem which seeks to minimize the cost of satisfying a given hydrogen demand while using a storage tank to take advantage of time-varying electricity prices and photovoltaic inflow. We illustrate in simulation the significant cost reduction achieved by our method compared to others in the literature and then validate our method by demonstrating it in real-time operation on the actual system.
Technology Investment Roadmap First Low Emissions Technology Statement – 2020 Global Leadership in Low Emissions Technologies
Sep 2020
Publication
Australia’s Technology Investment Roadmap is a strategy to accelerate development and commercialisation of low emissions technologies.
Annual low emissions statements are key milestones of the roadmap process. These statements prioritise low emissions technologies with potential to deliver the strongest economic and emissions reduction outcomes for Australia. They focus government investment on new and emerging technologies.
In this Statement
The first Low Emissions Technology Statement presents a vision of a prosperous Australia recognised as a global low emissions technology leader
Annual low emissions statements are key milestones of the roadmap process. These statements prioritise low emissions technologies with potential to deliver the strongest economic and emissions reduction outcomes for Australia. They focus government investment on new and emerging technologies.
In this Statement
The first Low Emissions Technology Statement presents a vision of a prosperous Australia recognised as a global low emissions technology leader
- priority technologies and economic stretch goals
- Australia’s big technology challenges and opportunities
- Technology Investment Framework
- monitoring transparency and impact evaluation
Energy System Requirements of Fossil-free Steelmaking using Hydrogen Direct Reduction
May 2021
Publication
The iron and steel industry is one of the world’s largest industrial emitters of greenhouse gases. One promising option for decarbonising the industry is hydrogen direct reduction of iron (H-DR) with electric arc furnace (EAF) steelmaking powered by zero carbon electricity. However to date little attention has been given to the energy system requirements of adopting such a highly energy-intensive process. This study integrates a newly developed long-term energy system planning tool with a thermodynamic process model of H-DR/EAF steelmaking developed by Vogl et al. (2018) to assess the optimal combination of generation and storage technologies needed to provide a reliable supply of electricity and hydrogen. The modelling tools can be applied to any country or region and their use is demonstrated here by application to the UK iron and steel industry as a case study. It is found that the optimal energy system comprises 1.3 GW of electrolysers 3 GW of wind power 2.5 GW of solar 60 MW of combined cycle gas with carbon capture 600 GWh/600 MW of hydrogen storage and 30 GWh/130 MW of compressed air energy storage. The hydrogen storage requirements of the industry can be significantly reduced by maintaining some dispatchable generation for example from 600 GWh with no restriction on dispatchable generation to 140 GWh if 20% of electricity demand is met using dispatchable generation. The marginal abatement costs of a switch to hydrogen-based steelmaking are projected to be less than carbon price forecasts within 5–10 years.
No more items...