- Home
- A-Z Publications
- Publications
Publications
An Optimization-Based Model for A Hybrid Photovoltaic-Hydrogen Storage System for Agricultural Operations in Saudi Arabia
Apr 2023
Publication
Renewable energy technologies and resources particularly solar photovoltaic systems provide cost-effective and environmentally friendly solutions for meeting the demand for electricity. The design of such systems is a critical task as it has a significant impact on the overall cost of the system. In this paper a mixed-integer linear programming-based model is proposed for designing an integrated photovoltaic-hydrogen renewable energy system to minimize total life costs for one of Saudi Arabia’s most important fields a greenhouse farm. The aim of the proposed system is to determine the number of photovoltaic (PV) modules the amount of hydrogen accumulated over time and the number of hydrogen tanks. In addition binary decision variables are used to describe either-or decisions on hydrogen tank charging and discharging. To solve the developed model an exact approach embedded in the general algebraic modeling System (GAMS) software was utilized. The model was validated using a farm consisting of 20 greenhouses a worker-housing area and a water desalination station with hourly energy demand. The findings revealed that 1094 PV panels and 1554 hydrogen storage tanks are required to meet the farm’s load demand. In addition the results indicated that the annual energy cost is $228234 with a levelized cost of energy (LCOE) of 0.12 $/kWh. On the other hand the proposed model reduced the carbon dioxide emissions to 882 tons per year. These findings demonstrated the viability of integrating an electrolyzer fuel cell and hydrogen tank storage with a renewable energy system; nevertheless the cost of energy produced remains high due to the high capital cost. Moreover the findings indicated that hydrogen technology can be used as an energy storage solution when the production of renewable energy systems is variable as well as in other applications such as the industrial residential and transportation sectors. Furthermore the results revealed the feasibility of employing renewable energy as a source of energy for agricultural operations.
Low-cost Hydrogen in the Future European Electricity System – Enabled by Flexibility in Time and Space
Nov 2022
Publication
The present study investigates four factors that govern the ability to supply hydrogen at a low cost in Europe: the scale of the hydrogen demand; the possibility to invest in large-scale hydrogen storage; process flexibility in hydrogen-consuming industries; and the geographical areas in which hydrogen demand arises. The influence of the hydrogen demand on the future European zero-emission electricity system is investigated by applying the cost-minimising electricity system investment model eNODE to hydrogen demand levels in the range of 0–2500 TWhH2. It is found that the majority of the future European hydrogen demand can be cost-effectively satisfied with VRE assuming that the expansion of wind and solar power is not hindered by a lack of social acceptance at a cost of around 60–70 EUR/MWhH2 (2.0–2.3 EUR/kgH2). The cost of hydrogen in Europe can be reduced by around 10 EUR/MWhH2 if the hydrogen consumption is positioned strategically in regions with good conditions for wind and solar power and a low electricity demand. The cost savings potential that can be obtained from full temporal flexibility of hydrogen consumption is 3-fold higher than that linked to strategic localisation of the hydrogen consumption. The cost of hydrogen per kg increases and the value of flexibility diminishes as the size of the hydrogen demand increases relative to the traditional demand for electricity and the available VRE resources. Low-cost hydrogen is thus achieved by implementing efficiency and flexibility measures for hydrogen consumers as well as increasing acceptance of VRE.
Evaluation of a Hydrogen Powered Scooter Toy Prototype
Nov 2022
Publication
Electric scooters are used as alternative ways of transport because they easily make travel faster. However the batteries can take around 5 h to charge and have an autonomy of 30 km. With the presence of the hydrogen cell a hybrid system reduces the charging times and increases the autonomy of the vehicle by using two types of fuel. An increase of up to 80% in maximum distance and of 34% in operating times is obtained with a 1:10 scale prototype with the hydrogen cell; although more energy is withdrawn the combined fuel efficiency increases too. This suggests the cell that is used has the same behavior as some official reported vehicles which have a long range but low power. This allows concluding that use of the cell is functional for load tests and that the comparison factor obtained works as input for real-scale scooter prototypes to compete with the traditional electric scooters.
Willingness of Chinese Households to Pay Extra for Hydrogen-fuelled Buses: A Survey Based on Willingness to Pay
Mar 2023
Publication
Hydrogen-fuelled buses play an important role in the construction of low-carbon cities as a means of green travel. Beijing as a pilot city of hydrogen-fuelled buses in China is very important in the promotion of hydrogen-fuelled buses in China. Unfortunately the public acceptance of hydrogen-fuelledfuelled buses and their environmental positive externality value have not been studied. In this paper we investigated the willingness of Beijing households to pay for the promotion of hydrogen-fuelled buses and its influencing factors by means of a web-based questionnaire. The spike model was also used to estimate the willingness to pay (WTP) for hydrogen buses. The results show that the WTP of Beijing households is CNY 3.19 per trip. The value of a positive environmental externality is approximately CNY 29.15 million per trip. Household income level environmental knowledge individual environmental ethics and perceived behavioural control are the main influencing factors of WTP. Therefore policymakers should strengthen publicity efforts to increase individuals’ environmental awareness and environmental ethics and optimize the layout of hydrogen-fuelled bus schedules and riding experiences to improve individuals’ perceptual and behaviour control. Finally the positive environmental externality value of hydrogen buses should be valued which will help increase investor interest.
Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid
Apr 2023
Publication
The Brazilian energy grid is considered as one of the cleanest in the world because it is composed of more than 80% of renewable energy sources. This work aimed to apply the levelized costs (LCOH) and environmental cost accounting techniques to demonstrate the feasibility of producing hydrogen (H2 ) by alkaline electrolysis powered by the Brazilian energy grid. A project of hydrogen production with a lifetime of 20 years had been evaluated by economical and sensitivity analysis. The production capacity (8.89 to 46.67 kg H2/h) production volume (25 to 100%) hydrogen sale price (1 to 5 USD/kg H2 ) and the MAR rate were varied. Results showed that at 2 USD/kg H2 all H2 production plant sizes are economically viable. On this condition a payback of fewer than 4 years an IRR greater than 31 a break-even point between 56 and 68% of the production volume and a ROI above 400% were found. The sensitivity analysis showed that the best economic condition was found at 35.56 kg H2/h of the plant size which generated a net present value of USD 10.4 million. The cost of hydrogen varied between 1.26 and 1.64 USD/kg and a LCOH of 37.76 to 48.71 USD/MWh. LCA analysis showed that the hydrogen production project mitigated from 26 to 131 thousand tons of CO2 under the conditions studied.
Everything About Hydrogen Podcast: Reaching for the Stars
Mar 2023
Publication
Today Everything About Hydrogen had a chance to speak with Paul Barrett the CEO of Hysata and dig into what makes this electrolysis company different.
The podcast can be found on their website.
The podcast can be found on their website.
Future Energy Scenarios 2021
Jul 2022
Publication
Our Future Energy Scenarios (FES) draw on hundreds of experts’ views to model four credible energy pathways for Britain over coming decades. Matthew Wright our head of strategy and regulation outlines what the 2021 outlook means for consumers society and the energy system itself.<br/>This year’s Future Energy Scenarios insight reveals a glimpse of a Britain that is powered with net zero carbon emissions.<br/>Our analysis shows that our country can achieve its legally-binding carbon reduction targets: in three out of four scenarios in the analysis the country reaches net zero carbon emissions by 2050 with Leading the Way – our most ambitious scenario – achieving it in 2047 and becoming net negative by 2050.
Is the Polish Solar-to-Hydrogen Pathway Green? A Carbon Footprint of AEM Electrolysis Hydrogen Based on an LCA
Apr 2023
Publication
Efforts to direct the economies of many countries towards low-carbon economies are being made in order to reduce their impact on global climate change. Within this process replacing fossil fuels with hydrogen will play an important role in the sectors where electrification is difficult or technically and economically ineffective. Hydrogen may also play a critical role in renewable energy storage processes. Thus the global hydrogen demand is expected to rise more than five times by 2050 while in the European Union a seven-fold rise in this field is expected. Apart from many technical and legislative barriers the environmental impact of hydrogen production is a key issue especially in the case of new and developing technologies. Focusing on the various pathways of hydrogen production the essential problem is to evaluate the related emissions through GHG accounting considering the life cycle of a plant in order to compare the technologies effectively. Anion exchange membrane (AEM) electrolysis is one of the newest technologies in this field with no LCA studies covering its full operation. Thus this study is focused on a calculation of the carbon footprint and economic indicators of a green hydrogen plant on the basis of a life cycle assessment including the concept of a solar-to-hydrogen plant with AEM electrolyzers operating under Polish climate conditions. The authors set the range of the GWP indicators as 2.73–4.34 kgCO2eq for a plant using AEM electrolysis which confirmed the relatively low emissivity of hydrogen from solar energy also in relation to this innovative technology. The economic profitability of the investment depends on external subsidies because as developing technology the AEM electrolysis of green hydrogen from photovoltaics is still uncompetitive in terms of its cost without this type of support.
A Model for Cost- and Greenhouse Gas Optimal Material and Energy Allocation of Biomass and Hydrogen
Nov 2022
Publication
BENOPT an optimal material and energy allocation model is presented which is used to assess cost-optimal and/or greenhouse gas abatement optimal allocation of renewable energy carriers across power heat and transport sectors. A high level of detail on the processes from source to end service enables detailed life-cycle greenhouse gas and cost assessments. Pareto analyses can be performed as well as thorough sensitivity analyses. The model is designed to analyse optimal biomass and hydrogen usage as a complement to integrated assessment and power system models
An Insight into Underground Hydrogen Storage in Italy
Apr 2023
Publication
Hydrogen is a key energy carrier that could play a crucial role in the transition to a low-carbon economy. Hydrogen-related technologies are considered flexible solutions to support the large-scale implementation of intermittent energy supply from renewable sources by using renewable energy to generate green hydrogen during periods of low demand. Therefore a short-term increase in demand for hydrogen as an energy carrier and an increase in hydrogen production are expected to drive demand for large-scale storage facilities to ensure continuous availability. Owing to the large potential available storage space underground hydrogen storage offers a viable solution for the long-term storage of large amounts of energy. This study presents the results of a survey of potential underground hydrogen storage sites in Italy carried out within the H2020 EU Hystories “Hydrogen Storage In European Subsurface” project. The objective of this work was to clarify the feasibility of the implementation of large-scale storage of green hydrogen in depleted hydrocarbon fields and saline aquifers. By analysing publicly available data mainly well stratigraphy and logs we were able to identify onshore and offshore storage sites in Italy. The hydrogen storage capacity in depleted gas fields currently used for natural gas storage was estimated to be around 69.2 TWh.
The Role of Direct Air Capture in EU’s Decarbonisation and Associated Carbon Intensity for Synthetic Fuels Production
May 2023
Publication
Direct air capture (DAC) is considered one of the mitigation strategies in most of the future scenarios trying to limit global temperature to 1.5 ◦C. Given the high expectations placed on DAC for future decarbonisation this study presents an extensive review of DAC technologies exploring a number of techno-economic aspects including an updated collection of the current and planned DAC projects around the world. A dedicated analysis focused on the production of synthetic methane methanol and diesel from DAC and electrolytic hydrogen in the European Union (EU) is also performed where the carbon footprint is analysed for different scenarios and energy sources. The results show that the maximum grid carbon intensity to obtain negative emissions with DAC is estimated at 468 gCO2e/kWh which is compliant with most of the EU countries’ current grid mix. Using only photovoltaics (PV) and wind negative emissions of at least −0.81 tCO2e/tCO2 captured can be achieved. The maximum grid intensities allowing a reduction of the synthetic fuels carbon footprint compared with their fossil-fuels counterparts range between 96 and 151 gCO2e/kWh. However to comply with the Renewable Energy Directive II (REDII) sustainability criteria to produce renewable fuels of non-biological origin the maximum stays between 30.2 to 38.8 gCO2e/kWh. Only when using PV and wind is the EU average able to comply with the REDII threshold for all scenarios and fuels with fuel emissions ranging from 19.3 to 25.8 gCO2e/MJ. These results highlight the importance of using renewable energies for the production of synthetic fuels compliant with the EU regulations that can help reduce emissions from difficult-to-decarbonise sectors.
A Recent Review of Primary Hydrogen Carriers, Hydrogen Production Methods, and Applications
Mar 2023
Publication
Hydrogen is a promising energy carrier especially for transportation owing to its unique physical and chemical properties. Moreover the combustion of hydrogen gas generates only pure water; thus its wide utilization can positively affect human society to achieve global net zero CO2 emissions by 2050. This review summarizes the characteristics of the primary hydrogen carriers such as water methane methanol ammonia and formic acid and their corresponding hydrogen production methods. Additionally state-of-the-art studies and hydrogen energy applications in recent years are also included in this review. In addition in the conclusion section we summarize the advantages and disadvantages of hydrogen carriers and hydrogen production techniques and suggest the challenging tasks for future research.
The European Hydrogen Market Landscape
Nov 2023
Publication
This report aims to summarise the status of the European hydrogen market landscape. It is based on the information available at the European Hydrogen Observatory (EHO) platform the leading source of data and information on hydrogen in Europe (EU27 EFTA and the UK) providing a full overview of the hydrogen market and the deployment of clean hydrogen technologies. As of the end of 2022 a total of 476 operational hydrogen production facilities across Europe boasting a cumulative hydrogen production capacity of approximately 11.30 Mt were identified. Notably the largest share of this capacity is contributed by key European countries including Germany the Netherlands Poland Italy and France which collectively account for 56% of the total hydrogen capacity. The hydrogen consumption in Europe has been estimated at approximately 8.23 Mt reflecting an average capacity utilisation rate of 73%. It's worth highlighting that conventional hydrogen production methods encompassing reforming by-product production from ethylene and styrene and by-product electrolysis collectively yield 11.28 Mt of hydrogen capacity. These conventional processes are distributed across 376 production facilities constituting 99.9% of the total production capacity in 2022. Throughout the year 2022 there were no newly commissioned hydrogen production facilities that integrated carbon capture technology into their operations. Additionally a notable presence of water electrolysis-based hydrogen production projects in Europe was identified. There was a total of 97 water electrolysis projects with 67 of them having a minimum capacity of 0.5 MW resulting in a cumulative production capacity of 174.28 MW. Furthermore 46 such projects were found to be under construction and are anticipated to contribute an additional 1199.07 MW of water electrolysis capacity upon becoming operational with the estimated timeframe ranging from January 2023 to 2025. A significant 87% of the total hydrogen production capacity in Europe is dedicated to onsite captive consumption indicating that it is primarily produced and used within the facility. The remaining 13% of capacity is specifically allocated for external distribution and sale characterizing what's known as merchant consumption. Despite the prevailing dominance of captive hydrogen production within Europe it's noteworthy that thousands of metric tonnes of hydrogen are already being traded and distributed across the continent. These transfers often occur through dedicated hydrogen pipelines or transportation via trucks. In 2022 an example of this growing trend was the hydrogen export from Belgium to the Netherlands which emerged as the single most significant hydrogen flow between European countries constituting a substantial 75% of all hydrogen traded in Europe. Belgium earned distinction as Europe's leading hydrogen exporter with 78% of the hydrogen that flowed between European countries originating 6 from its facilities. Conversely the Netherlands played a pivotal role as Europe's primary hydrogen importer accounting for an impressive 76% of the hydrogen imported into the continent. The rise of the clean hydrogen market in Europe coupled with the European Union's ambition to import 10 Mt of renewable hydrogen from non-EU sources by 2030 is expected to drive an increase in hydrogen flows both exports and imports among European countries. In 2022 the total demand for hydrogen in Europe was estimated to be 8.19 Mt. The biggest share of hydrogen demand comes from refineries which were responsible for 57% of total hydrogen use (4.6 Mt) followed by the ammonia industry with 24% (2.0 Mt). Together these two sectors consumed 81% of the total hydrogen consumption in Europe. Clean hydrogen demand while currently making up less than 0.1% of the overall hydrogen demand is notably driven by the mobility sector. Forecasts project an impressive growth trajectory in total hydrogen demand for Europe over the coming decades. Projections show a remarkable 127% surge from 2030 to 2040 followed by a substantial 63% increase from 2040 to 2050. Considering the current hydrogen demand there is a projected 51% increase until 2030. Throughout the three decades under examination the industrial sector is anticipated to maintain its predominant position consistently demonstrating the highest demand for hydrogen. However this conclusion refers to average values and variations that may exist. The total number of Hydrogen Fuel Cell Electric Vehicles (FCEV) registrations in Europe in 2022 was estimated at 1537 units. In comparison to the previous year the number of registrations increased by 31%. This surge in registrations has had a pronounced impact on the overall FCEV fleet's evolution in Europe which increased from 4050 units to 5570 (+38%). Notably passenger cars dominated the landscape constituting 86% of the total FCEV fleet. Exploring the latest advancements in hydrogen infrastructure across Europe in 2022 the hydrogen distribution network comprised spanning a total length of 1569 km. Within Europe the largest networks are situated in Belgium and Germany at 600 km and 400 km respectively. Of particular importance is the cross-border network of France Belgium and the Netherlands spanning a total of 964 km. To keep pace with the rising number of Fuel Cell Electric Vehicles (FCEVs) on European roads and promote their wider integration it is key to ensure sufficient accessibility to refuelling infrastructure. Consequently many countries are endorsing the establishment of hydrogen refuelling stations (HRS) so that they are publicly accessible on a nationwide scale. More recharging and refuelling stations for alternative fuels will be deployed in the coming years across Europe enabling the transport sector to significantly reduce its carbon footprint following the adoption of the alternative fuel infrastructure regulation (AFIR). Part of the regulation's main target is that hydrogen refuelling stations serving both cars and lorries must be deployed from 7 2030 onwards in all urban nodes and every 200 km along the TEN-T core network. Since 2015 the total number of operational and publicly accessible HRS in Europe has grown at an accelerated pace from 38 to 178 by the summer of 2023. Germany takes the lead having the largest share at approximately 54% of the total number of HRS with 96 stations currently operational. The majority of the HRS (89%) are equipped with 700 bar car dispensers. In 2022 the levelized production costs of hydrogen generated through Steam Methane Reforming (SMR) in Europe averaged approximately 6.23 €/kg H2. When incorporating a carbon capture system the average cost of hydrogen production via SMR in Europe increased to 6.38 €/kg H2. Additionally the production costs of hydrogen in Europe for 2022 utilizing grid electricity averaged 9.85 €/kg H2. Hydrogen production costs through electrolysis with a direct connection to a renewable energy source had an average estimated cost of 6.86 €/kg. As of May 2023 Europe's operational water electrolyser manufacturing capacity stands at 3.11 GW/year with an additional 2.64 GW planned by the end of 2023. Alkaline technologies make up 53% of the total capacity. Looking ahead to 2025 ongoing projects are expected to raise the total capacity to 7.65 GW/year. Fuel cell deployment in Europe has showed an increasing trend over the past decade. The total number of shipped fuel cells were forecasted on around 11200 units in 2021 and a total capacity of 190 MW. The most significant increase in capacity occurred between 2018 and the forecast of 2021 (+148.8 MW).
Integrated Demand Response Design of Integrated Energy System with Mobile Hydrogen Energy Storage in Time-Domain Two-Port Model
Dec 2022
Publication
With the development of energy integration technology demand response (DR) has gradually evolved into integrated demand response (IDR). In this study for the integrated energy system (IES) on the distribution grid side with electricity heat natural gas network and hydrogen energy equipment the analogy relationship between the thermal and mobile hydrogen energy storage networks is proposed. Moreover a unified model that reflects network commonalities across different energy forms is established. Then considering the time delay of the IES in the nontransient network a time-domain two-port model of the IES considering the time delay is established. This model shows the joint effect of time and space on system parameters. Finally this study validates the model in the application of DR. The verification results show that in DR the time-domain two-port model can accurately “cut peaks and fill valleys” for the IES and effectively reduce the operating cost of the IES system.
An Energy Systems Model of a Large Commercial Liquid Hydrogen Aircraft in a Low-carbon Future
Apr 2023
Publication
Liquid hydrogen (LH2) aircraft have the potential to achieve carbon neutrality. However if the hydrogen is produced using electricity grids that utilise fossil fuel they have a non-zero carbon dioxide (CO2) emission associated with their well-to-wing pathway. To assess the potential of LH2 in aviation decarbonisation an energy systems comparison of large commercial LH2 liquified natural gas (LNG) conventional Jet-A and LH2 dual-fuel aircraft is presented. The performance of each aircraft is compared towards 2050 over which three system changes occur: (1) LH2 aircraft technology develops; (2) both world average and region-specific grid electricity which is used to produce the hydrogen decarbonises; and (3) the International Air Transportation Association (IATA) emissions targets which are used to restrict the passenger-range performance of each aircraft tighten. In 2050 the emissions of all aircraft are thus constrained to 0.063 kg-CO2/p-km relative to 0.110 kg-CO2/p-km for the unconstrained Jet A fuelled Boeing 787-8. It is estimated that in this year an LH2 aircraft powered by fuel cells and sourcing world average electricity can travel 6000 km 20% further than the conventional Jet A aircraft that is also constrained to meet the IATA targets but not as far as the LNG aircraft. At its maximum range the LH2 aircraft carries 84% of the Jet A passenger demand. Analysis using region-specific hydrogen indicates that LH2 aircraft can travel further than LNG aircraft in North America only accounting for 17% of the global demand. 1.59 times the current aviation energy consumption is required if all conventional aircraft are replaced with LH2 designs. Under stricter emissions constraints than those outlined by the IATA LH2 outperforms LNG in Europe and the Americas accounting for 41% of the global demand. Also in these regions the range energy consumption and passenger capacity of LH2 aircraft can be improved upon by combining the advantages of LH2 with LNG in dual-fuel aircraft concepts. The use of LH2 is therefore advantageous within several prominent niches of a future decarbonising aviation system.
Knowledge and Technology Transfer via Publications, Patents, Standards: Exploring the Hydrogen Technological Innovation System
Nov 2022
Publication
Clean technologies play a crucial role in reducing greenhouse gas emissions and protecting the climate. Hydrogen is a promising energy carrier and fuel that can be used in many applications. We explore the global hydrogen technological innovation system (TIS) by analyzing the three knowledge and technology transfer channels of publications patents and standards. Since the adoption of hydrogen technologies requires trust in their safety this study specifically also focuses on hydrogen safety. Our results show that general and hydrogen safety research has increased significantly while patenting experienced stagnation. An analysis of the non-patent literature in safety patents shows little recognition of scientific publications. Similarly publications are under-represented in the analyzed 75 international hydrogen and fuel cell standards. This limited transfer of knowledge from published research to standards points to the necessity for greater involvement of researchers in standardization. We further derive implications for the hydrogen TIS and recommendations for a better and more impactful alignment of the three transfer channels.
Hydrogen in Aviation: A Simulation of Demand, Price Dynamics, and CO2 Emission Reduction Potentials
Mar 2024
Publication
Aviation contributes to anthropogenic climate change by emitting both carbon dioxide (CO2) and non-CO2 emissions through the combustion of fossil fuels. One approach to reduce the climate impact of aviation is the use of hydrogen as an alternative fuel. Two distinct technological options are presently under consideration for the implementation of hydrogen in aviation: hydrogen fuel cell architectures and the direct combustion of hydrogen. In this study a hydrogen demand model is developed that considers anticipated advancements in liquid hydrogen aircraft technologies forecasted aviation demand and aircraft startup and retirement cycles. The analysis indicates that global demand for liquid hydrogen in aviation could potentially reach 17 million tons by 2050 leading to a 9% reduction in CO2 emissions from global aviation. Thus the total potential of hydrogen in aviation extends beyond this considering that the total market share of hydrogen aircraft on suitable routes in the model is projected to be only 27% in 2050 due to aircraft retirement cycles. Additionally it is shown that achieving the potential demand for hydrogen in aviation depends on specific market prices. With anticipated declines in current production costs hydrogen fuel costs would need to reach about 70 EUR/MWh by 2050 to fulfill full demand in aviation assuming biofuels provide the cheapest option for decarbonization alongside hydrogen. If e-fuels are the sole option for decarbonization alongside hydrogen which is the more probable scenario the entire hydrogen demand potential in aviation would be satisfied according to this study’s estimates at significantly higher hydrogen prices approximately 180 EUR/MWh.
Design and Optimization of Coal to Hydrogen System Coupled with Non-Nominal Operation of Thermal Power Unit
Dec 2022
Publication
In an actual thermal power plant deep peak shaving will cause thermal power units to run under non-nominal conditions for an extended period resulting in serious problems such as increased equipment wearing low equipment utilization efficiency and decreased benefits. To this end in this work both the design and optimization method for a coal to hydrogen system which is coupled with the expected non-nominal operation of thermal power units are proposed. Aiming towards maximum profit in the context of thermal power plants a mathematical optimization model for a coal to hydrogen system based on the multi-period operating conditions of thermal power plants is established. The corresponding optimal design scheme of the coal to hydrogen system is determined using variable operating conditions. The superiority of the integrated system compared with an independent system is explored and the feasibility of the proposed method is verified by using the case study of an actual thermal power plant. The results show that compared with the independent system the economic benefits of the integrated system can increase by 13.56% where the sale of hydrogen in the coal to hydrogen system accounts for 60.3% of the total benefit. The main expenditure associated with the system is the purchase cost of feedstock coal accounting for 91.8%. Since the required power and medium-pressure steam in the coal to hydrogen process are provided by thermal power units the minimum operating load of the thermal power plant in the integrated system increases from 40% to 60.1% which significantly improves the utilization efficiency and service life of the generator units. In addition the proposed integration scheme of the system is simple and controllable which can contribute to the maintenance of the safe and stable operation of power generation and hydrogen production processes. These results are expected to provide the necessary methodological guidance for the integration and optimization of coal-fired power plants and coal to hydrogen systems.
Effect of Hydrogen-blended Natural Gas on Combustion Stability and Emission of Water Heater Burner
Jun 2022
Publication
To study the effect of hydrogen-blended natural gas on the combustion stability and emission of domestic gas water heater a test system is built in this paper taking a unit of the partial premixed burner commonly used in water heaters as the object. Under the heat load of 0.7~2.3kW the changes of flame shape burner temperature and pollutant emission of natural gas with hydrogen volume ratio of 0~40% are studied with independent control of primary air supply and mixing. The results show that: with the increase of hydrogen blending ratio the inner flame height increases firstly and then reduces while the change of burner temperature is opposite. The maximum inner flame height and the minimum temperature of the burner both appear at the hydrogen blending ratio of 10~20%. It can be seen that the limit of hydrogen blending ratio which can maintain the burner operate safely and stably under rated heat load is 40% through the maximum temperature distribution on the burner surface. The CO emission in the flue gas gradually decreases with the increase of hydrogen blending ratio while the NOx emission fluctuates slightly when the hydrogen blending ratio is less than 20% but then decreases gradually.
Odorisation of Natural Gas/Hydrogen Mixure and Pure Hydrogen
Dec 2023
Publication
MARCOGAZ has prepared this document to provide comprehensive information on the odorisation of hydrogen and natural gas (H2-NG) mixtures as well as pure hydrogen. The primary goal is to assist in determining the crucial data to be taken into account when odorising gases containing hydrogen.
The document is structured into two main sections with the initial part focusing on the theoretical interactions between hydrogen and odorants. Subsequent sections delve into the existing data related to this subject. The conclusions section offers additional considerations on the topic.
The report can be found on their website.
The document is structured into two main sections with the initial part focusing on the theoretical interactions between hydrogen and odorants. Subsequent sections delve into the existing data related to this subject. The conclusions section offers additional considerations on the topic.
The report can be found on their website.
No more items...