- Home
- A-Z Publications
- Publications
Publications
Development of Renewable Energy Multi-energy Complementary Hydrogen Energy System (A Case Study in China): A Review
Aug 2020
Publication
The hydrogen energy system based on the multi-energy complementary of renewable energy can improve the consumption of renewable energy reduce the adverse impact on the power grid system and has the characteristics of green low carbon sustainable etc. which is currently a global research hotspot. Based on the basic principles of hydrogen production technology this paper introduces the current hydrogen energy system topology and summarizes the technical advantages of renewable energy complementary hydrogen production and the complementary system energy coordination forms. The problems that have been solved or reached consensus are summarized and the current status of hydrogen energy system research at home and abroad is introduced in detail. On this basis the key technologies of multi-energy complementation of hydrogen energy system are elaborated especially in-depth research and discussion on coordinated control strategies energy storage and capacity allocation energy management and electrolysis water hydrogen production technology. The development trend of the multi-energy complementary system and the hydrogen energy industry chain is also presented which provides a reference for the development of hydrogen production technology and hydrogen energy utilization of the renewable energy complementary system.
Photocatalytic Hydrogen Evolution from Biomass Conversion
Feb 2021
Publication
Biomass has incredible potential as an alternative to fossil fuels for energy production that is sustainable for the future of humanity. Hydrogen evolution from photocatalytic biomass conversion not only produces valuable carbon-free energy in the form of molecular hydrogen but also provides an avenue of production for industrially relevant biomass products. This photocatalytic conversion can be realized with efficient sustainable reaction materials (biomass) and inexhaustible sunlight as the only energy inputs. Reported herein is a general strategy and mechanism for photocatalytic hydrogen evolution from biomass and biomass-derived substrates (including ethanol glycerol formic acid glucose and polysaccharides). Recent advancements in the synthesis and fundamental physical/mechanistic studies of novel photocatalysts for hydrogen evolution from biomass conversion are summarized. Also summarized are recent advancements in hydrogen evolution efciency regarding biomass and biomass-derived substrates. Special emphasis is given to methods that utilize unprocessed biomass as a substrate or synthetic photocatalyst material as the development of such will incur greater benefts towards a sustainable route for the evolution of hydrogen and production of chemical feedstocks.
System Analysis and Requirements Derivation of a Hydrogen-electric Aircraft Powertrain
Sep 2022
Publication
In contrast to sustainable aviation fuels for use in conventional combustion engines hydrogen-electric powertrains constitute a fundamentally novel approach that requires extensive effort from various engineering disciplines. A transient system analysis has been applied to a 500 kW shaft-power-class powertrain. The model was fed with high-level system requirements to gain a fundamental understanding of the interaction between sub-systems and components. Transient effects such as delays in pressure build up heat transfer and valve operation substantially impact the safe and continuous operation of the propulsion system throughout a typical mission profile which is based on the Daher TBM850. The lumped-parameters network solver provides results quickly which are used to derive requirements for subsystems and components which support their in-depth future development. E.g. heat exchanger transfer rates and pressure drop of the motor's novel hydrogen cooling system are established. Furthermore improvements to the system architecture such as a compartmentalization of the tank are identified.
A Review of the Integrated Renewable Energy Systems for Sustainable Urban Mobility
Aug 2022
Publication
Several challenges have emerged due to the increasing deterioration of urban mobility and its severe impacts on the environment and human health. Primary dependence on internal combustion engines that use petrol or diesel has led to poor air quality time losses noise traffic jams and further environmental pollution. Hence the transitions to using rail and or seaway-based public transportation cleaner fuels and electric vehicles are some of the ultimate goals of urban and national decision-makers. However battery natural gas hybrid and fuel cell vehicles require charging stations to be readily available with a sustainable energy supply within urban regions in different residential and business neighborhoods. This study aims to provide an updated and critical review of the concept and recent examples of urban mobility and transportation modes. It also highlights the adverse impacts of several air pollutants emitted from internal combustion engine vehicles. It also aims to shed light on several possible systems that integrate the electric vehicle stations with renewable energy sources. It was found that using certain components within the integrated system and connecting the charging stations with a grid can possibly provide an uninterrupted power supply to electric vehicles leading to less pollution which would encourage users to use more clean vehicles. In addition the environmental impact assessments as well as several implementation challenges are discussed. To this end the main implementation issues related to consumer incentives infrastructure and recommendations are also reported.
Increasing the Energy Efficiency of Gas Boosters for Hydrogen Storage and for Refueling Stations
Feb 2023
Publication
A new electrically driven gas booster is described as an alternative to the classical air-driven gas boosters known for their poor energetic efficiency. These boosters are used in small scale Hydrogen storage facilities and in refueling stations for Hydrogen vehicles. In such applications the overall energy count is of significance and must include the efficiency of the compression stage. The proposed system uses an electric motor instead of the pneumatic actuator and increases the total efficiency of the compression process. Two mechanical principles are studied for the transformation of the rotational motion of the motor to the linear displacement of the compressor pistons. The strongly fluctuating power of the compressor is smoothed by an active capacitive auxiliary storage device connected to the DC circuit of the power converter. The proposed system has been verified by numeric simulation including the thermodynamic phenomena the kinetics of the new compressor drive and the the operation of the circuits of the power smoothing system.
The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production
Feb 2023
Publication
Hydrogen has become the most promising energy carrier for the future. The spotlight is now on green hydrogen produced with water electrolysis powered exclusively by renewable energy sources. However several other technologies and sources are available or under development to satisfy the current and future hydrogen demand. In fact hydrogen production involves different resources and energy loads depending on the production method used. Therefore the industry has tried to set a classification code for this energy carrier. This is done by using colors that reflect the hydrogen production method the resources consumed to produce the required energy and the number of emissions generated during the process. Depending on the reviewed literature some colors have slightly different definitions thus making the classifications imprecise. Therefore this techno-economic analysis clarifies the meaning of each hydrogen color by systematically reviewing their production methods consumed energy sources and generated emissions. Then an economic assessment compares the costs of the various hydrogen colors and examines the most feasible ones and their potential evolution. The scientific community and industry’s clear understanding of the advantages and drawbacks of each element of the hydrogen color spectrum is an essential step toward reaching a sustainable hydrogen economy
Optimal Design of Photovoltaic, Biomass, Fuel Cell, Hydrogen Tank Units and Electrolyzer Hybrid System for a Remote Area in Egypt
Jul 2022
Publication
In this paper a new isolated hybrid system is simulated and analyzed to obtain the optimal sizing and meet the electricity demand with cost improvement for servicing a small remote area with a peak load of 420 kW. The major configuration of this hybrid system is Photovoltaic (PV) modules Biomass gasifier (BG) Electrolyzer units Hydrogen Tank units (HT) and Fuel Cell (FC) system. A recent optimization algorithm namely Mayfly Optimization Algorithm (MOA) is utilized to ensure that all load demand is met at the lowest energy cost (EC) and minimize the greenhouse gas (GHG) emissions of the proposed system. The MOA is selected as it collects the main merits of swarm intelligence and evolutionary algorithms; hence it has good convergence characteristics. To ensure the superiority of the selected MOA the obtained results are compared with other well-known optimization algorithms namely Sooty Tern Optimization Algorithm (STOA) Whale Optimization Algorithm (WOA) and Sine Cosine Algorithm (SCA). The results reveal that the suggested MOA achieves the best system design achieving a stable convergence characteristic after 44 iterations. MOA yielded the best EC with 0.2106533 $/kWh the net present cost (NPC) with 6170134 $ the loss of power supply probability (LPSP) with 0.05993% and GHG with 792.534 t/y.
A CFD Analysis of Liquid Hydrogen Vessel Explosions using the ADREA-HF Code
Sep 2021
Publication
Despite hydrogen is one of the most suitable candidates in replacing fossil fuels its very low densityrepresents a drawback when it is stored. The liquefaction process can increase the hydrogen densityand therefore enhance its storage capacity. The boiling liquid expanding vapour explosion (BLEVE) isa typical accident scenario that must be always considered when liquefied gases are stored. Inparticular BLEVE is a physical explosion with low probabilities and high consequences which mayoccur after the catastrophic rupture of a vessel containing a liquid with a temperature above its boilingpoint at atmospheric pressure. In this paper a parametric CFD analysis of the BLEVE phenomenonwas conducted by means of the CFD code ADREA-HF for liquid hydrogen (LH2) vessels. Firstly theCFD model is validated against a well-documented CO2 BLEVE experiment. Next hydrogen BLEVEcases are examined. The physical parameters were chosen based on the BMW tests carried out in the1990s on LH2 tanks designed for automotive purposes. Different filling degrees initial pressures andtemperatures of the tank content are simulated to comprehend how the blast wave is influenced by theinitial conditions. The aim of this study is twofold: provide new insights and observations on theBLEVE dynamics and demonstrate the CFD tool effectiveness for conducting the consequenceanalysis and thus aiding the risk assessment of liquefied gas vessel explosion. Good agreement wasshown between the simulation outcomes and the experimental results.
Design and Multi-scenario Optimization of a Hybrid Power System Based on a Working Gas Turbine: Energy, Exergy, Exergoeconomic and Environmental Evaluation
Sep 2022
Publication
The rising demand for electricity along with the need to minimize carbon footprints has motivated academics to investigate the flexible and efficient integration of energy conversion technologies. A novel hybrid power generation system based on environmentally friendly and cost-effective technologies to recover the waste heat of a working gas turbine is designed and assessed in different scenarios of multi-objective optimization from energy exergy exergoeconomic and environmental (4E) perspectives. In the proposed system a steam methane reformer and a water gas shift reactor are utilized for hydrogen production while a polymer electrolyte membrane fuel cell (PEMFC) and steam/organic Rankine cycles are run for generating additional power. Aspen Plus in conjunction with Fortran Microsoft Excel and MATLAB is used to model and simulate the designed plant. The response surface methodology (RSM) is utilized to determine accurate surrogate models to describe the evaluation criteria and the Non-dominated Sorting Genetic Algorithm II technique is employed to seek the optimal conditions. Moreover TOPSIS and LINMAP decision-making approaches are used to find the best final solution among Pareto frontiers. The analysis of variance (ANOVA) and sensitivity analysis are also applied to evaluate the importance of the design variables. In this regard three single-objective optimizations and four multi-objective optimization scenarios based on the maximization of the ecological coefficient of performance (ECOP) and the minimization of CO2 emissions and total system product cost (C˙ p) are carried out. It is demonstrated that the system’s evaluation criteria have the highest and lowest sensitivity to the variation of reformer temperature and ORC pressure respectively. From the triple-objective optimization procedure the decision variables including reformer temperature ORC pressure Rankine cycle I pressure and Rankine cycle II pressure are 544 ◦C 4.35 bar 158.12 bar and 52.82 bar respectively. At these conditions the total hybrid system’s energy efficiency exergy efficiency exergy destruction net generated power and total investment cost rate are 45.96% 46.83% 215.72 MW 203.67 MW and 9791 $/h respectively. The findings of this paper conclude that it is necessary to address all objective functions simultaneously in the system’s ultimate optimum design. Furthermore the objective of this paper becomes even more apparent when there is no choice but to cut greenhouse gas emissions while also addressing the rising global energy demand.
A Review of the Use of Electrolytic Cells for Energy and Environmental Applications
Feb 2023
Publication
There is a significant push to reduce carbon dioxide (CO2) emissions and develop low-cost fuels from renewable sources to replace fossil fuels in applications such as energy production. As a result CO2 conversion has gained widespread attention as it can reduce the accumulation of CO2 in the atmosphere and produce fuels and valuable industrial chemicals including carbon monoxide alcohols and hydrocarbons. At the same time finding ways to store energy in batteries or energy carriers such as hydrogen (H2) is essential. Water electrolysis is a powerful technology for producing high-purity H2 with negligible emission of greenhouse gases and compatibility with renewable energy sources. Additionally the electrolysis of organic compounds such as lignin is a promising method for localised H2 production as it requires lower cell voltages than conventional water electrolysis. Industrial wastewater can be employed in those organic electrolysis systems due to their high organic content decreasing industrial pollution through wastewater disposal. Electrocoagulation indirect electrochemical oxidation anodic oxidation and electro-Fenton are effective electrochemical methods for treating industrial wastewater. Furthermore bioenergy technology possesses a remarkable potential for producing H2 and other value-added chemicals (e.g. methane formic acid hydrogen peroxide) along with wastewater treatment. This paper comprehensively reviews these approaches by analysing the literature in the period 2012–2022 pointing out the high potential of using electrolytic cells for energy and environmental applications.
Beyond the triangle of renewable Energy Acceptance: The Five Dimensions of Domestic Hydrogen Acceptance
Aug 2022
Publication
The ‘deep’ decarbonization of the residential sector is a priority for meeting national climate change targets especially in countries such as the UK where natural gas has been the dominant fuel source for over half a century. Hydrogen blending and repurposing the national grid to supply low-carbon hydrogen gas may offer respective short- and long-term solutions to achieving emissions reduction across parts of the housing sector. Despite this imperative the social acceptance of domestic hydrogen energy technologies remains underexplored by sustainability scholars with limited insights regarding consumer perceptions and expectations of the transition. A knowledge deficit of this magnitude is likely to hinder effective policymaking and may result in sub-optimal rollout strategies that derail the trajectory of the net zero agenda. Addressing this knowledge gap this study develops a conceptual framework for examining the consumer-facing side of the hydrogen transition. The paper affirms that the spatiotemporal patterns of renewable energy adoption are shaped by a range of interacting scales dimensions and factors. The UK’s emerging hydrogen landscape and its actor-network is characterized as a heterogenous system composed of dynamic relationships and interdependencies. Future studies should engage with domestic hydrogen acceptance as a co-evolving multi-scalar phenomenon rooted in the interplay of five distinct dimensions: attitudinal socio-political community market and behavioral acceptance. If arrived to behavioral acceptance helps realize the domestication of hydrogen heating and cooking established on grounds on cognitive sociopolitical and sociocultural legitimacy. The research community should internalize the complexity and richness of consumer attitudes and responses through a more critical and reflexive approach to the study of social acceptance.
Perspective on the Hydrogen Economy as a Pathway to Reach Net-zero CO2 Emissions in Europe
Jan 2022
Publication
The envisioned role of hydrogen in the energy transition – or the concept of a hydrogen economy – has varied through the years. In the past hydrogen was mainly considered a clean fuel for cars and/or electricity production; but the current renewed interest stems from the versatility of hydrogen in aiding the transition to CO2 neutrality where the capability to tackle emissions from distributed applications and complex industrial processes is of paramount importance. However the hydrogen economy will not materialise without strong political support and robust infrastructure design. Hydrogen deployment needs to address multiple barriers at once including technology development for hydrogen production and conversion infrastructure co-creation policy market design and business model development. In light of these challenges we have brought together a group of hydrogen researchers who study the multiple interconnected disciplines to offer a perspective on what is needed to deploy the hydrogen economy as part of the drive towards net-zero-CO2 societies. We do this by analysing (i) hydrogen end-use technologies and applications (ii) hydrogen production methods (iii) hydrogen transport and storage networks (iv) legal and regulatory aspects and (v) business models. For each of these we provide key take home messages ranging from the current status to the outlook and needs for further research. Overall we provide the reader with a thorough understanding of the elements in the hydrogen economy state of play and gaps to be filled.
Economic Analysis of a Hydrogen Power Plant in the Portuguese Electricity Market
Feb 2023
Publication
Hydrogen is regarded as a flexible energy carrier with multiple applications across several sectors. For instance it can be used in industrial processes transports heating and electrical power generation. Green hydrogen produced from renewable sources can have a crucial role in the pathway towards global decarbonization. However the success of green hydrogen production ultimately depends on its economic sustainability. In this context this work evaluates the economic performance of a hydrogen power plant participating in the electricity market and supplying multiple hydrogen consumers. The analysis includes technical and economical details of the main components of the hydrogen power plant. Its operation is simulated using six different scenarios which admit the production of either grey or green hydrogen. The scenarios used for the analysis include data from the Iberian electricity market for the Portuguese hub. An important conclusion is that the combination of multiple services in a hydrogen power plant has a positive effect on its economic performance. However as of today consumers who would wish to acquire green hydrogen would have to be willing to pay higher prices to compensate for the shorter periods of operation of hydrogen power plants and for their intrinsic losses. Nonetheless an increase in green hydrogen demand based on a greater environmental awareness can lead to the need to not only build more of these facilities but also to integrate more services into them. This could promote the investment in hydrogen-related technologies and result in changes in capital and operating costs of key components of these plants which are necessary to bring down production costs.
Boosting Carbon Efficiency of the Biomass to Liquid Process with Hydrogen from Power: The Effect of H2/CO Ratio to the Fischer-Tropsch Reactors on the Production and Power Consumption
Jun 2019
Publication
Carbon efficiency of a biomass to liquid process can be increased from ca. 30 to more than 90% by adding hydrogen generated from renewable power. The main reason is that in order to increase the H2/CO ratio after gasification to the value required for Fischer-Tropsch (FT) synthesis the water gas shift reaction step can be avoided; instead a reversed water gas shift reactor is introduced to convert produced CO2 to CO. Process simulations are done for a 46 t/h FT biofuel production unit. Previous results are confirmed and it is shown how the process can be further improved. The effect of changing the H2/CO ratio to the Fischer-Tropsch synthesis reactors is studied with the use of three different kinetic models. Keeping the CO conversion in the reactors constant at 55% the volume of the reactors decreases with increasing H2/CO ratio because the reaction rates increase with the partial pressure of hydrogen. Concurrently the production of C5+ products and the consumption of hydrogen increases. However the power required per extra produced liter fuel also increases pointing at optimum conditions at a H2/CO feed ratio significantly lower than 2. The trends are the same for all three kinetic models although one of the models is less sensitive to the hydrogen partial pressure. Finally excess renewable energy can be transformed to FT syncrude with an efficiency of 0.8–0.88 on energy basis.
Decentral Production of Green Hydrogen for Energy Systems: An Economically and Environmentally Viable Solution for Surplus Self-Generated Energy in Manufacturing Companies?
Feb 2023
Publication
Power-to-X processes where renewable energy is converted into storable liquids or gases are considered to be one of the key approaches for decarbonizing energy systems and compensating for the volatility involved in generating electricity from renewable sources. In this context the production of “green” hydrogen and hydrogen-based derivatives is being discussed and tested as a possible solution for the energy-intensive industry sector in particular. Given the sharp ongoing increases in electricity and gas prices and the need for sustainable energy supplies in production systems non-energy-intensive companies should also be taken into account when considering possible utilization paths for hydrogen. This work focuses on the following three utilization paths: “hydrogen as an energy storage system that can be reconverted into electricity” “hydrogen mobility” for company vehicles and “direct hydrogen use”. These three paths are developed modeled simulated and subsequently evaluated in terms of economic and environmental viability. Different photovoltaic system configurations are set up for the tests with nominal power ratings ranging from 300 kWp to 1000 kWp. Each system is assigned an electrolyzer with a power output ranging between 200 kW and 700 kW and a fuel cell with a power output ranging between 5 kW and 75 kW. There are also additional variations in relation to the battery storage systems within these basic configurations. Furthermore a reference variant without battery storage and hydrogen technologies is simulated for each photovoltaic system size. This means that there are ultimately 16 variants to be simulated for each utilization path. The results show that these utilization paths already constitute a reasonable alternative to fossil fuels in terms of costs in variants with a suitable energy system design. For the “hydrogen as an energy storage system” path electricity production costs of between 43 and 79 ct/kWh can be achieved with the 750 kWp photovoltaic system. The “hydrogen mobility” is associated with costs of 12 to 15 ct/km while the “direct hydrogen use” path resulted in costs of 8.2 €/kg. Environmental benefits are achieved in all three paths by replacing the German electricity mix with renewable energy sources produced on site or by substituting hydrogen for fossil fuels. The results confirm that using hydrogen as a storage medium in manufacturing companies could be economically and environmentally viable. These results also form the basis for further studies e.g. on detailed operating strategies for hydrogen technologies in scenarios involving a combination of multiple utilization paths. The work also presents the simulation-based method developed in this project which can be transferred to comparable applications in further studies.
Annealing Effects on SnO2 Thin Film for H2 Gas Sensing
Sep 2022
Publication
Hydrogen (H2 ) is attracting attention as a renewable energy source in various fields. However H2 has a potential danger that it can easily cause a backfire or explosion owing to minor external factors. Therefore H2 gas monitoring is significant particularly near the lower explosive limit. Herein tin dioxide (SnO2 ) thin films were annealed at different times. The as-obtained thin films were used as sensing materials for H2 gas. Here the performance of the SnO2 thin film sensor was studied to understand the effect of annealing and operating temperature conditions of gas sensors to further improve their performance. The gas sensing properties exhibited by the 3-h annealed SnO2 thin film showed the highest response compared to the unannealed SnO2 thin film by approximately 1.5 times. The as-deposited SnO2 thin film showed a high response and fast response time to 5% H2 gas at 300 ◦C of 257.34% and 3 s respectively.
Spontaneous Ignition of Cryo-Compressed Hydrogen in a T-Shaped Channel System
Aug 2022
Publication
Sudden releases of pressurised hydrogen may spontaneously ignite by the so-called “diffusion ignition” mechanism. Several experimental and numerical studies have been performed on spontaneous ignition for compressed hydrogen at ambient temperature. However there is no knowledge of the phenomenon for compressed hydrogen at cryogenic temperatures. The study aims to close this knowledge gap by performing numerical experiments using a computational fluid dynamics model validated previously against experiments at atmospheric temperatures to assess the effect of temperature decrease from ambient 300 K to cryogenic 80 K. The ignition dynamics is analysed for a T-shaped channel system. The cryo-compressed hydrogen is initially separated from the air in the T-shaped channel system by a burst disk (diaphragm). The inertia of the burst disk is accounted for in the simulations. The numerical experiments were carried out to determine the hydrogen storage pressure limit leading to spontaneous ignition in the configuration under investigation. It is found that the pressure limit for spontaneous ignition of the cryo-compressed hydrogen at temperature 80 K is 9.4 MPa. This is more than 3 times larger than pressure limit for spontaneous ignition of 2.9 MPa in the same setup at ambient temperature of 300 K.
Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective
Oct 2022
Publication
Green hydrogen—a carbon-free renewable fuel—has the capability to decarbonise a variety of sectors. The generation of green hydrogen is currently restricted to water electrolysers. The use of freshwater resources and critical raw materials however limits their use. Alternative water splitting methods for green hydrogen generation via photocatalysis and photoelectrocatalysis (PEC) have been explored in the past few decades; however their commercial potential still remains unexploited due to the high hydrogen generation costs. Novel PEC-based simultaneous generation of green hydrogen and wastewater treatment/high-value product production is therefore seen as an alternative to conventional water splitting. Interestingly the organic/inorganic pollutants in wastewater and biomass favourably act as electron donors and facilitate the dual-functional process of recovering green hydrogen while oxidising the organic matter. The generation of green hydrogen through the dual-functional PEC process opens up opportunities for a “circular economy”. It further enables the end-of-life commodities to be reused recycled and resourced for a better life-cycle design while being economically viable for commercialisation. This review brings together and critically analyses the recent trends towards simultaneous wastewater treatment/biomass reforming while generating hydrogen gas by employing the PEC technology. We have briefly discussed the technical challenges associated with the tandem PEC process new avenues techno-economic feasibility and future directions towards achieving net neutrality.
The New Model of Energy Cluster Management and Functioning
Sep 2022
Publication
This article was aimed to answer the question of whether local energy communities have a sufficient energy surplus for storage purposes including hydrogen production. The article presents an innovative approach to current research and a discussion of the concepts of the collective prosumer and virtual prosumer that have been implemented in the legal order and further amended in the law. From this perspective it was of utmost importance to analyze the model of functioning of an energy cluster consisting of energy consumers energy producers and hydrogen storage whose goal is to maximize the obtained benefits assuming the co-operative nature of the relationship. The announced and clear perspective of the planned benefits will provide the cluster members a measurable basis for participation in such an energy community. However the catalogue of benefits will be conditioned by the fulfillment of several requirements related to both the scale of covering energy demand from own sources and the need to store surplus energy. As part of the article the results of analyses together with a functional model based on real data of the local energy community are presented.
From Biogas to Hydrogen: A Techno-Economic Study on the Production of Turquoise Hydrogen and Solid Carbons
Sep 2022
Publication
Biogas is a renewable feedstock that can be used to produce hydrogen through the decomposition of biomethane. However the economics of the process are not well studied and understood especially in cases where solid carbons are also produced and which have a detrimental effect on the performance of the catalysts. The scale as well as product diversification of a biogas plant to produce hydrogen and other value-added carbons plays a crucial role in determining the feasibility of biogasto-hydrogen projects. Through a techno-economic study using the discounted cash flow method it has been shown that there are no feasible sizes of plants that can produce hydrogen at the target price of USD 3/kg or lower. However for self-funded anaerobic digestor plants retrofitting modular units for hydrogen production would only make financial sense at biogas production capacities of more than 412 m3/h. A sensitivity analysis has also shown that the cost competitiveness is dependent on the type of carbon formed and low-grade carbon black has a negative effect on economic feasibility. Hydrogen produced from biogas would thus not be able to compete with grey hydrogen production but rather with current green hydrogen production costs.
No more items...