- Home
- A-Z Publications
- Publications
Publications
Hydrogen Stress Cracking Behaviour in Dissimilar Welded Joints of Duplex Stainless Steel and Carbon Steel
Jun 2021
Publication
As the need for duplex stainless steel (DSS) increases it is necessary to evaluate hydrogen stress cracking (HSC) in dissimilar welded joints (WJs) of DSS and carbon steel. This study aims to investigate the effect of the weld microstructure on the HSC behaviour of dissimilar gas-tungsten arc welds of DSS and carbon steel. In situ slow-strain rate testing (SSRT) with hydrogen charging was conducted for transverse WJs which fractured in the softened heat-affected zone of the carbon steel under hydrogen-free conditions. However HSC occurred at the martensite band and the interface of the austenite and martensite bands in the type-II boundary. The band acted as an HSC initiation site because of the presence of a large amount of trapped hydrogen and a high strain concentration during the SSRT with hydrogen charging. Even though some weld microstructures such as the austenite and martensite bands in type-II boundaries were harmless under normal hydrogen-free conditions they had a negative effect in a hydrogen atmosphere resulting in the premature rupture of the weld. Eventually a premature fracture occurred during the in situ SSRT in the type-II boundary because of the hydrogen-enhanced strain-induced void (HESIV) and hydrogen-enhanced localised plasticity (HELP) mechanisms.
Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts
Aug 2017
Publication
Fischer-Tropsch synthesis (FTS) is an increasingly important approach for producing liquid fuels and chemicals via syngas—that is synthesis gas a mixture of carbon monoxide and hydrogen—generated from coal natural gas or biomass. In FTS dispersed transition metal nanoparticles are used to catalyze the reactions underlying the formation of carbon-carbon bonds. Catalytic activity and selectivity are strongly correlated with the electronic and geometric structure of the nanoparticles which depend on the particle size morphology and crystallographic phase of the nanoparticles. In this article we review recent works dealing with the aspects of bulk and surface sensitivity of the FTS reaction. Understanding the different catalytic behavior in more detail as a function of these parameters may guide the design of more active selective and stable FTS catalysts.
A Review of Hydrogen as a Fuel in Internal Combustion Engines
Sep 2021
Publication
The demand for fossil fuels is increasing because of globalization and rising energy demands. As a result many nations are exploring alternative energy sources and hydrogen is an efficient and practical alternative fuel. In the transportation industry the development of hydrogen-powered cars aims to maximize fuel efficiency and significantly reduce exhaust gas emission and concentration. The impact of using hydrogen as a supplementary fuel for spark ignition (SI) and compression ignition (CI) engines on engine performance and gas emissions was investigated in this study. By adding hydrogen as a fuel in internal combustion engines the torque power and brake thermal efficiency of the engines decrease while their brake-specific fuel consumption increase. This study suggests that using hydrogen will reduce the emissions of CO UHC CO2 and soot; however NOx emission is expected to increase. Due to the reduction of environmental pollutants for most engines and the related environmental benefits hydrogen fuel is a clean and sustainable energy source and its use should be expanded.
What Will Fuel Transport Systems of the Future?
Nov 2011
Publication
This paper seeks to decry the notion of a single solution or “silver bullet” to replace petroleum products with renewable transport fuel. At different times different technological developments have been in vogue as the panacea for future transport needs: for quite some time hydrogen has been perceived as a transport fuel that would be all encompassing when the technology was mature. Liquid biofuels have gone from exalted to unsustainable in the last ten years. The present flavor of the month is the electric vehicle. This paper examines renewable transport fuels through a review of the literature and attempts to place an analytical perspective on a number of technologies.
Safety Analysis and Risk Control of Shore-Based Bunkering Operations for Hydrogen Powered Ships
Sep 2021
Publication
In order to ensure the safety of shore-based hydrogen bunkering operations this paper takes a 2000-ton bulk hydrogen powered ship as an example. Firstly the HAZID method is used to identify the hazards of hydrogen bunkering then the probability of each scenario is analyzed and then the consequences of scenarios with high risk based on FLACS software is simulated. Finally the personal risk of bunkering operation is evaluated and the bunkering restriction area is defined. The results show that the personal risk of shore-based bunkering operation of hydrogen powered ship is acceptable but the following risk control measures should be taken: (1) The bunkering restriction area shall be delineated and only the necessary operators are allowed to enter the area and control the any form of potential ignition source; (2) The hose is the high risk hazards during bunkering. The design form of bunkering arm and bunkering hose is considered to shorten the length of the hose as far as possible; (3) A safe distance between shore-based hydrogenation station and the building outside the station should be guaranteed. The results have a guiding role in effectively reducing the risk of hydrogen bunkering operation.
Hydrogen Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges
May 2021
Publication
The global energy transition towards a carbon neutral society requires a profound transformation of electricity generation and consumption as well as of electric power systems. Hydrogen has an important potential to accelerate the process of scaling up clean and renewable energy however its integration in power systems remains little studied. This paper reviews the current progress and outlook of hydrogen technologies and their application in power systems for hydrogen production re-electrification and storage. The characteristics of electrolysers and fuel cells are demonstrated with experimental data and the deployments of hydrogen for energy storage power-to-gas co- and tri-generation and transportation are investigated using examples from worldwide projects. The current techno-economic status of these technologies and applications is presented in which cost efficiency and durability are identified as the main critical aspects. This is also confirmed by the results of a statistical analysis of the literature. Finally conclusions show that continuous efforts on performance improvements scale ramp-up technical prospects and political support are required to enable a cost-competitive hydrogen economy.
Experimental Study and Model Predictions on Helium Release in an Enclosure with Single or Multiple Vents
Sep 2021
Publication
This paper presents experiments performed at Canadian Nuclear Laboratories (CNL) to examine the dispersion behaviour of helium in a polycarbonate enclosure that was representative of a residential parking garage. The purpose was to gain a better understanding of the effect of buoyancy- or winddriven natural ventilation on hydrogen dispersion behaviour. Although hydrogen dispersion studies have been reported extensively in the literature gaps still exist in predictive methods for hazard analysis. Helium a simulant for hydrogen was injected near the centre of the floor with a flow rate ranging from 5 to 75 standard litres per minute through an upward-facing nozzle resulting in an injection Richardson number ranging between 10-1 and 102. The location of the nozzle varied from the bottom of the enclosure to near the ceiling to examine the impact of the nozzle elevation on the development of a stratified layer in the upper region of the enclosure. When the injection nozzle was placed at a sufficiently low elevation the vertical helium profile always consisted of a homogenous layer at the top overlaying a stratified layer at the bottom. To simulate outdoor environmental conditions a fan was placed in front of each vent to examine the effect of opposing or assisting wind on the dispersion. The helium transients in the uniform layer predicted with analytical models were in good agreement with the measured transients for the tests with injection at lower elevations or with no wind. Model improvements are required for adequately predicting transients with significantly stratified profiles or with wind.
Discussion on the Feasibility of the Integration of Wind Power and Coal Chemical Industries for Hydrogen Production
Oct 2021
Publication
To improve the utilization rate of the energy industry and reduce high energy consumption and pollution caused by coal chemical industries in north western China a planning scheme of a wind‐coal coupling energy system was developed. This scheme involved the analysis method evaluation criteria planning method and optimization operation check for the integration of a comprehensive evaluation framework. A system was established to plan the total cycle revenue to maximize the net present value of the goal programming model and overcome challenges associated with the development of new forms of energy. Subsequently the proposed scheme is demonstrated using a 500‐MW wind farm. The annual capacity of a coal‐to‐methanol system is 50000. Results show that the reliability of the wind farm capacity and the investment subject are the main factors affecting the feasibility of the wind‐coal coupled system. Wind power hydrogen production generates O2 and H2 which are used for methanol preparation and electricity production in coal chemical systems respectively. Considering electricity price constraints and environmental benefits a methanol production plant can construct its own wind farm matching its output to facilitate a more economical wind‐coal coupled system. Owing to the high investment cost of wind power plants an incentive mechanism for saving energy and reducing emissions should be provided for the wind‐ coal coupled system to ensure economic feasibility and promote clean energy transformation.
Free Stream Behavior of Hydrogen Released from a Fluidic Oscillating Nozzle
May 2021
Publication
The H2 internal combustion engine (ICE) is a key technology for complete decarbonization of the transport sector. To match or exceed the power density of conventional combustion engines H2 direct injection (DI) is essential. Therefore new injector concepts that meet the requirements of a H2 operation have to be developed. The macroscopic free stream behavior of H2 released from an innovative fluidic oscillating nozzle is investigated and compared with that of a conventional multi-hole nozzle. This work consists of H2 flow measurements and injection tests in a constant volume chamber using the Schlieren method and is accompanied by a LES simulation. The results show that an oscillating H2 free stream has a higher penetration velocity than the individual jets of a multi-hole nozzle. This behavior can be used to inject H2 far into the combustion chamber in the vertical direction while the piston is still near bottom dead center. As soon as the oscillation of the H2 free stream starts the spray angle increases and therefore H2 is also distributed in the horizontal direction. In this phase of the injection process spray angles comparable to those of a multi-hole nozzle are achieved. This behavior has a positive effect on H2 homogenization which is desirable for the combustion process.
Stronger Together: Multi-annual Variability of Hydrogen Production Supported by Wind Power in Sweden
Mar 2021
Publication
Hydrogen produced from renewable electricity will play an important role in deep decarbonisation of industry. However adding large electrolyser capacities to a low-carbon electricity system also increases the need for additional electricity generation from variable renewable energies. This will require hydrogen production to be variable unless other sources provide sufficient flexibility. Existing sources of flexibility in hydro-thermal systems are hydropower and thermal generation which are both associated with sustainability concerns. In this work we use a dispatch model for the case of Sweden to assess the power system operation with large-scale electrolysers assuming that additional wind power generation matches the electricity demand of hydrogen production on average. We evaluate different scenarios for restricting the flexibility of hydropower and thermal generation and include 29 different weather years to test the impact of variable weather regimes. We show that (a) in all scenarios electrolyser utilisation is above 60% on average (b) the inter-annual variability of hydrogen production is substantial if thermal power is not dispatched for electrolysis and (c) this problem is aggravated if hydropower flexibility is also restricted. Therefore either long-term storage of hydrogen or backup hydrogen sources may be necessary to guarantee continuous hydrogen flows. Large-scale dispatch of electrolysis capacity supported by wind power makes the system more stable if electrolysers ramp down in rare hours of extreme events with low renewable generation. The need for additional backup capacities in a fully renewable electricity system will thus be reduced if wind power and electrolyser operation are combined in the system.
Numerical Evaluation of the Effect of Fuel Blending with CO2 and H2 on the Very Early Corona‐Discharge Behavior in Spark Ignited Engines
Feb 2022
Publication
Reducing green‐house gases emission from light‐duty vehicles is compulsory in order to slow down the climate change. The application of High Frequency Ignition systems based on the Corona discharge effect has shown the potential to extend the dilution limit of engine operating conditions promoting lower temperatures and faster combustion events thus higher thermal and indicating efficiency. Furthermore predicting the behavior of Corona ignition devices against new sustainable fuel blends including renewable hydrogen and biogas is crucial in order to deal with the short‐intermediate term fleet electric transition. The numerical evaluation of Corona‐induced discharge radius and radical species under those conditions can be helpful in order to capture local effects that could be reached only with complex and expensive optical investigations. Using an ex‐ tended version of the Corona one‐dimensional code previously published by the present authors the simulation of pure methane and different methane–hydrogen blends and biogas–hydrogen blends mixed with air was performed. Each mixture was simulated both for 10% recirculated exhaust gas dilution and for its corresponding dilute upper limit which was estimated by means of chemical kinetics simulations integrated with a custom misfire detection criterion.
Improved VSG Control Strategy Based on the Combined Power Generation System with Hydrogen Fuel Cells and Super Capacitors
Oct 2021
Publication
Due to their environmental protection and high power generation efficiency the control technology of hydrogen fuel cells (HFCs) connected to the microgrid has become a research hotspot. However when they encounter peak demand or transient events the lack of power cannot be compensated immediately by HFCs which results in sudden changes of the voltage and frequency. The improved virtual synchronous generator (VSG) control strategy based on HFCs and supercapacitors (SCs) combined power generation system is proposed to overcome this shortcoming in this paper. The small-signal model for designing the combined system parameters is provided which are in accordance with the system loop gain phase angle margin and adjustment time requirements. Besides the voltage and current double closed-loop based on sequence control is introduced in the VSG controller. The second-order generalized integrator (SOGI) is utilized to separate the positive and negative sequence components of the output voltage. At the same time a positive and negative sequence voltage outer loop is designed to suppress the negative sequence voltage under unbalanced conditions thereby reducing the unbalance of the output voltage. Finally simulation results in MATLAB/Simulink environment verify that the proposed method has better dynamic characteristics and higher steady-state accuracy compared with the traditional VSG control
HyDeploy Report: Summary of European Hydrogen Blending Projects
Jun 2018
Publication
Across Europe permitted blend levels of hydrogen blending into the gas grid are appreciably higher than that currently permitted in the UK up to 12% mol/mol compared with 0.1% mol/mol. Whilst there is some routine blending undertaking – typically power to gas applications three major projects have been undertaken to demonstrate operation of a gas distribution network at higher blend levels of hydrogen.<br/>A Dutch project was completed in 2011 which demonstrated successful operation into a network with new appliances at 20% mol/mol. A German project was completed in 2015 which demonstrated successful operation into an existing gas network with existing appliances at their permitted level of 10% mol/mol. In France an extensive programme is underway to inject hydrogen into a network at 20% mol/mol due to commence injection in 2018.<br/>Each of these projects undertook extensive pre-trial activities and operational data was collected during the Dutch and German trials. The programme of pre-trial work for the French project was particularly extensive and mirrored the work done by HyDeploy. This led to a permit being granted for the French project at 20% mol/mol with injection into the network imminent.<br/>The HyDeploy team has engaged with each of the project teams who have been very co-operative; this has enabled scientific sharing of best practice. In all cases the projects were successful. The participants in the Dutch project were particularly keen to have been able to undertake a similar trial to HyDeploy; a larger trial into existing appliances. However political changes in Holland have precluded that at this time such progress was not limited by technical findings from the work.<br/>A high level overview of the projects and the data provided is summarised in this report. More detailed information is referenced and covered in more detail where required in the appropriate individual topic reports supporting the Exemption.<br/>Click on supplements tab to view the other documents from this report
Hydrogen-Assisted Brittle Fracture Behavior of Low Alloy 30CrMo Steel Based on the Combination of Experimental and Numerical Analyses
Jul 2021
Publication
Compact-tension (CT) specimens made of low alloy 30CrMo steels were hydrogen-charged and then subjected to the fracture toughness test. The experimental results revealed that the higher crack propagation and the lower crack growth resistance (CTOD-R curve) are significantly noticeable with increasing hydrogen embrittlement (HE) indexes. Moreover the transition in the microstructural fracture mechanism from ductile (microvoid coalescence (MVC)) without hydrogen to a mixed quasi-cleavage (QC) fracture and QC + intergranular (IG) fracture with hydrogen was observed. The hydrogen-enhanced decohesion (HEDE) mechanism was characterized as the dominant HE mechanism. According to the experimental testing the coupled problem of stress field and hydrogen diffusion field with cohesive zone stress analysis was employed to simulate hydrogen-assisted brittle fracture behavior by using ABAQUS software. The trapezoidal traction-separation law (TSL) was adopted and the initial TSL parameters from the best fit to the load-displacement and J-integral experimental curves without hydrogen were calibrated for the critical separation of 0.0393 mm and the cohesive strength of 2100 MPa. The HEDE was implemented through hydrogen influence in the TSL and to estimate the initial hydrogen concentration based on matching numerical and experimental load-line displacement curves with hydrogen. The simulation results show that the general trend of the computational CTOD-R curves corresponding to initial hydrogen concentration is almost the same as that obtained from the experimental data but in full agreement the computational CTOD values being slightly higher. Comparative analysis of numerical and experimental results shows that the coupled model can provide design and prediction to calculate hydrogen-assisted fracture behavior prior to extensive laboratory testing provided that the material properties and properly calibrated TSL parameters are known.
Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle
Apr 2016
Publication
The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar) step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH) is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle) and solar-to-fuel energy conversion efficiency (ηsolar´to´fuel) attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar´to´fuel both increase with decreasing TH due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance in the case where TH = 2280 K ηcycle = 24.4% and ηsolar´to´fuel = 29.5% (without heat recuperation) while ηcycle = 31.3% and ηsolar´to´fuel = 37.8% (with 40% heat recuperation).
Development of Visible-Light-Driven Rh–TiO2-CeO2 Hybrid Photocatalysts for Hydrogen Production
Jul 2021
Publication
Visible-light-driven hydrogen production through photocatalysis has attracted enormous interest owing to its great potential to address energy and environmental issues. However photocatalysis possesses several limitations to overcome for practical applications such as low light absorption efficiency rapid charge recombination and poor stability of photocatalysts. Here the preparation of efficient noble metal–semiconductor hybrid photocatalysts for photocatalytic hydrogen production is presented. The prepared ternary Rh–TiO2–CeO2 hybrid photocatalysts exhibited excellent photocatalytic performance toward the hydrogen production reaction compared with their counterparts ascribed to the synergistic combination of Rh TiO2 and CeO2.
Statistics, Lessons Learnt and Recommendations from the Analysis of the Hydrogen Incidents and Accidents Database (HIAD 2.0)
Sep 2021
Publication
The Hydrogen Incidents and Accidents Database (HIAD) is an international open communication platform collecting systematic data on hydrogen-related undesired incidents which was initially developed in the frame of HySafe an EC co-funded Network of Excellence in the 6th Frame Work Programme by the Joint Research Centre of the European Commission (EC-JRC). It was updated by JRC as HIAD 2.01 in 2016 with the support of the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU). Since the launch of the European Hydrogen Safety Panel2 (EHSP) initiative in 2017 by FCH 2 JU the EHSP has worked closely with JRC to upload additional/new incidents to HIAD 2.0 and analyze them to gather statistics lessons learnt and recommendations through Task Force 3. The first report to summarise the findings of the analysis was published by FCH 2 JU in September 2019. Since the publication of the first report the EHSP and JRC have continuously worked together to enlarge HIAD 2.0 by adding newly occurred incidents as well as quality historic incidents which were not previously uploaded to HIAD 2.0. This has facilitated the number of validated incidents in HIAD 2.0 to increase from 272 in 2018 to 593 in March 2021. This number is also dynamic and continues to increase as new incidents are being continuously added by both EHSP and JRC; and validated by JRC. The overall quality of the published incidents has also been improved whenever possible. For example additional information has been added to some existing incidents. Since mid-2020 EHSP Task Force TF3 has further analysed the 485 events which were in the database as of July 2020. For completeness of the statistics these include the events considered in our first report3 as well as the newly added/validated events since then. In this process the EHSP has also re-visited the lessons learnt in the first report to harmonise the approaches of analysis and improve the overall analysis. The analysis has comprehensively covered statistics lessons learnt and recommendations. The increased number of incidents has also made it viable to extract statistics from the available incidents at the time of the analysis including previously available incidents. It should be noted that some incidents reported is of low quality therefore it was not included in the statistical analysis.
Decarbonization Roadmaps for ASEAN and their Implications
Apr 2022
Publication
The objective of this paper is to derive for the first time decarbonization roadmaps for the ten nations of ASEAN. This study first presents a regional view of ASEAN’s fossil and renewable energy usage and energy-related CO2 emission. Results show that renewable energies have been losing ground to fossil energies in the last two decades and fossil fuels will likely continue to be an important part of ASEAN’s energy mix for the next few decades. Therefore decarbonizing efforts should focus not only on increasing the share of renewable energies in electricity generation but also on technologies to reduce CO2 emission from fossil power and industrial plants. This study next performs a technology mapping exercise for all ten ASEAN countries to determine decarbonization technologies that have high impact and high readiness for individual countries. Besides installing more sustainable renewable energies common themes coming from these roadmaps include switching from coal to gas for power generation using carbon capture and storage (CCS) technologies to decarbonize fossil and industrial plants replacing internal combustion vehicles by electric vehicles and for countries that have coal and natural gas resources upgrading them to blue hydrogen by chemical processes and using CCS to mitigate the emitted CO2. Blue hydrogen can be used to decarbonize hard-to-decarbonize industries. Policy implications of these roadmaps include imposing a credible carbon tax establishing a national hydrogen strategy intergovernmental coordination to establish regional CCS corridors funding research and development to improve carbon capture efficiency on a plant level and resolving sustainability issues of hydropower and bioenergy in ASEAN.
Intelligent Natural Gas and Hydrogen Pipeline Dispatching Using the Coupled Thermodynamics-Informed Neural Network and Compressor Boolean Neural Network
Feb 2022
Publication
Natural gas pipelines have attracted increasing attention in the energy industry thanks to the current demand for green energy and the advantages of pipeline transportation. A novel deep learning method is proposed in this paper using a coupled network structure incorporating the thermodynamics-informed neural network and the compressor Boolean neural network to incorporate both functions of pipeline transportation safety check and energy supply predictions. The deep learning model is uniformed for the coupled network structure and the prediction efficiency and accuracy are validated by a number of numerical tests simulating various engineering scenarios including hydrogen gas pipelines. The trained model can provide dispatchers with suggestions about the number of phases existing during the transportation as an index showing safety while the effects of operation temperature pressure and compositional purity are investigated to suggest the optimized productions.
Hydrogen Production on Demand by Redox-mediated Electrocatalysis: A Kinetic Study
Aug 2020
Publication
Producing hydrogen from water using a redox mediator on solid electrocatalyst particles in a reactor offers several advantages over classical electrolysis in terms of safety membrane degradation purity and flexibility. Herein vanadium-mediated hydrogen evolution on a commercial and low-cost Mo2C electrocatalyst is studied through the development of a reaction kinetics model. Based on a proposed mechanistic reaction scheme we established a kinetic rate law dependent on the concentration of V2+ the state-of-charge of the vanadium electrolyte from a vanadium redox flow battery and the amount of available catalytic sites on solid Mo2C. Kinetic experiments in transient conditions reveals a first-order dependence on both the concentration of V2+ and the concentration of catalytic active sites and a power law with an exponential factor of 0.57 was measured on the molar ratio V2+/V3+ i.e. on the electrochemical driving force generated on the Mo2C particles. The kinetic rate law was validated by studying the rate of reaction in steady-state conditions using a specially developed rotating ring-disk device (RRD) methodology. The kinetic model was demonstrated to be a useful tool to predict the hydrogen production via the chemical oxidation of V2+ over Mo2C at low pH (> 1 M H2SO4). For a perspective the model was implemented in a semi-batch reactor. The simulations highlight the optimal state-of-charge (SOC) to carry out the reaction in an efficient way for a given demand in hydrogen.
No more items...