- Home
- A-Z Publications
- Publications
Publications
Balancing GHG Mitigation and Land-use Conflicts: Alternative Northern European Energy System Scenarios
Jan 2022
Publication
Long-term power market outlooks suggest a rapid increase in renewable energy deployment as a main solution to greenhouse gas mitigation in the Northern European energy system. However the consequential area requirement is a non-techno-economic aspect that currently is omitted by many energy system optimization models. This study applies modeling to generate alternatives (MGA) technique to the Balmorel energy system model to address spatial conflicts related to increased renewable energy deployment. The approach searches for alternative solutions that minimize land-use conflicts while meeting the low-carbon target by allowing a 1% to 15% increase in system costs compared to the least-cost solution. Two alternative objectives are defined to reflect various aspects of spatial impact. The results show that the least-cost solution requires 1.2%–3.6% of the land in the modeled countries in 2040 for onshore wind and solar PV installations. A 10% increase in costs can reduce the required land area by 58% by relying more on offshore wind. Nuclear energy may also be an option if both onshore and offshore areas are to be reduced or in a less flexible system. Both offshore wind and nuclear energy technologies are associated with higher risks and pose uncertainties in terms of reaching the climate targets in time. The changes in costs and required land areas imply significantly higher annual costs ranging from 200 to 750 kEUR/km2 to avoid land use for energy infrastructure. Overall this study confirms that the energy transition strategies prioritizing land savings from energy infrastructure are feasible but high risks and costs of averted land are involved.
Anionic Structural Effect in Liquid–liquid Separation of Phenol from Model Oil by Choline Carboxylate Ionic Liquid
Feb 2019
Publication
The synthesis of low-cost and highly active electrodes for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for water splitting. In this work the novel amorphous iron-nickel phosphide (FeP-Ni) nanocone arrays as efficient bifunctional electrodes for overall water splitting have been in-situ assembled on conductive three-dimensional (3D) Ni foam via a facile and mild liquid deposition process. It is found that the FeP-Ni electrode demonstrates highly efficient electrocatalytic performance toward overall water splitting. In 1 M KOH electrolyte the optimal FeP-Ni electrode drives a current density of 10 mA/cm2 at an overpotential of 218 mV for the OER and 120 mV for the HER and can attain such current density for 25 h without performance regression. Moreover a two-electrode electrolyzer comprising the FeP-Ni electrodes can afford 10 mA/cm2 electrolysis current at a low cell voltage of 1.62 V and maintain long-term stability as well as superior to that of the coupled RuO2/NF‖Pt/C/NF cell. Detailed characterizations confirm that the excellent electrocatalytic performances for water splitting are attributed to the unique 3D morphology of nanocone arrays which could expose more surface active sites facilitate electrolyte diffusion benefit charge transfer and also favorable bubble detachment behavior. Our work presents a facile and cost-effective pathway to design and develop active self-supported electrodes with novel 3D morphology for water electrolysis.
Continuous Synthesis of Few-layer MoS2 with Highly Electrocatalytic Hydrogen Evolution
Apr 2020
Publication
As one of the most promising alternative fuels hydrogen is expected with high hopes. The electrolysis of water is regarded as the cleanest and most efficient method of hydrogen production. Molybdenum disulfide (MoS2) is deemed as one of the most promising alternatives HER catalysts owing to its high catalytic activity and low cost. Its continuous production and efficient preparation become the key problems in future industrial production. In this work we first developed a continuous micro-reaction approach with high heat and mass transfer rates to synthesize few-layer MoS2 nanoplates with abundant active sites. The defective MoS2 ultrathin nanoplates exhibit excellent HER performance with an overpotential of 260 mV at a current density of 10 mA cm-2 small Tafel slope (53.6 mV dec-1) and prominent durability which are comparable to most reported MoS2 based catalysts. Considering the existence of continuous devices it’s suitable for the synthesis of MoS2 as high-performance electrocatalysts for the industrial water electrolysis. The novel preparation method may open up a new way to synthesize all two-dimension materials toward HER.
Fabrication of CdS/β-SiC/TiO2 Tri-composites That Exploit Hole- and Electron-transfer Processes for Photocatalytic Hydrogen Production Under Visible Light
Dec 2017
Publication
In this work CdS/SiC/TiO2 tri-composite photocatalysts that exploit electron- and hole-transfer processes were fabricated using an easy two-step method in the liquid phase. The photocatalyst with a 1:1:1 M ratio of CdS/SiC/TiO2 exhibited a rate of hydrogen evolution from an aqueous solution of sodium sulfite and sodium sulfide under visible light of 137 μmol h−1 g−1 which is 9.5 times that of pure CdS. β-SiC can act as a sink for the photogenerated holes because the valence band level of β-SiC is higher than the corresponding bands in CdS and TiO2. In addition the level of the conduction band of TiO2 is lower than those of CdS and β-SiC so TiO2 can act as the acceptor of the photogenerated electrons. Our results demonstrate that hole transfer and absorption in the visible light region lead to an effective hydrogen-production scheme.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2019 Final Report
Nov 2020
Publication
The 2019 Programme Review Report presents the findings of a review into activities supported by the FCH 2 JU under the EU’s Seventh Framework Programme and Horizon 2020 by the European Commission’s Joint Research Centre (JRC ). It pays particular attention to the added value effectiveness and techno-economic efficiency of FCH 2 JU projects assigned to six review panels under two main pillars:<br/>Transport and Energy (TRANSPORT: a.trials and deployment of fuel cell applications and b.the next generation of products) (ENERGY: a.trials and deployment of fuel cell applications b.next generation of products and c.hydrogen for sectoral integration)<br/>Support for market uptake (cross-cutting activities such as standards and consumer awareness)<br/>This report covers all 81 projects that were ongoing for any time between April and October 2018 and assesses the strengths and accomplishments of each panel and areas that would benefit from further attention.
A Comparative Technoeconomic Analysis of Renewable Hydrogen Production Using Solar Energy
May 2016
Publication
A technoeconomic analysis of photoelectrochemical (PEC) and photovoltaic-electrolytic (PV-E) solar-hydrogen production of 10 000 kg H2 day−1 (3.65 kilotons per year) was performed to assess the economics of each technology and to provide a basis for comparison between these technologies as well as within the broader energy landscape. Two PEC systems differentiated primarily by the extent of solar concentration (unconcentrated and 10× concentrated) and two PV-E systems differentiated by the degree of grid connectivity (unconnected and grid supplemented) were analyzed. In each case a base-case system that used established designs and materials was compared to prospective systems that might be envisioned and developed in the future with the goal of achieving substantially lower overall system costs. With identical overall plant efficiencies of 9.8% the unconcentrated PEC and non-grid connected PV-E system base-case capital expenses for the rated capacity of 3.65 kilotons H2 per year were $205 MM ($293 per m2 of solar collection area (mS−2) $14.7 WH2P−1) and $260 MM ($371 mS−2 $18.8 WH2P−1) respectively. The untaxed plant-gate levelized costs for the hydrogen product (LCH) were $11.4 kg−1 and $12.1 kg−1 for the base-case PEC and PV-E systems respectively. The 10× concentrated PEC base-case system capital cost was $160 MM ($428 mS−2 $11.5 WH2P−1) and for an efficiency of 20% the LCH was $9.2 kg−1. Likewise the grid supplemented base-case PV-E system capital cost was $66 MM ($441 mS−2 $11.5 WH2P−1) and with solar-to-hydrogen and grid electrolysis system efficiencies of 9.8% and 61% respectively the LCH was $6.1 kg−1. As a benchmark a proton-exchange membrane (PEM) based grid-connected electrolysis system was analyzed. Assuming a system efficiency of 61% and a grid electricity cost of $0.07 kWh−1 the LCH was $5.5 kg−1. A sensitivity analysis indicated that relative to the base-case increases in the system efficiency could effect the greatest cost reductions for all systems due to the areal dependencies of many of the components. The balance-of-systems (BoS) costs were the largest factor in differentiating the PEC and PV-E systems. No single or combination of technical advancements based on currently demonstrated technology can provide sufficient cost reductions to allow solar hydrogen to directly compete on a levelized cost basis with hydrogen produced from fossil energy. Specifically a cost of CO2 greater than ∼$800 (ton CO2)−1 was estimated to be necessary for base-case PEC hydrogen to reach price parity with hydrogen derived from steam reforming of methane priced at $12 GJ−1 ($1.39 (kg H2)−1). A comparison with low CO2 and CO2-neutral energy sources indicated that base-case PEC hydrogen is not currently cost-competitive with electrolysis using electricity supplied by nuclear power or from fossil-fuels in conjunction with carbon capture and storage. Solar electricity production and storage using either batteries or PEC hydrogen technologies are currently an order of magnitude greater in cost than electricity prices with no clear advantage to either battery or hydrogen storage as of yet. Significant advances in PEC technology performance and system cost reductions are necessary to enable cost-effective PEC-derived solar hydrogen for use in scalable grid-storage applications as well as for use as a chemical feedstock precursor to CO2-neutral high energy-density transportation fuels. Hence such applications are an opportunity for foundational research to contribute to the development of disruptive approaches to solar fuels generation systems that can offer higher performance at much lower cost than is provided by current embodiments of solar fuels generators. Efforts to directly reduce CO2 photoelectrochemically or electrochemically could potentially produce products with higher value than hydrogen but many as yet unmet challenges include catalytic efficiency and selectivity and CO2 mass transport rates and feedstock cost. Major breakthroughs are required to obtain viable economic costs for solar hydrogen production but the barriers to achieve cost-competitiveness with existing large-scale thermochemical processes for CO2 reduction are even greater.
Trends in Investments, Jobs and Turnover in the Fuel Cells and Hydrogen Sector
Mar 2013
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) commissioned this report to a consultancy to get a better understanding of the past and future evolution of the European Fuel Cell and Hydrogen (FC&H) sector and the role that public support has in that evolution.
The results of this report are based on three data sources:
The results of this report are based on three data sources:
- Survey results: A survey was sent out to 458 companies that are liaised to the FCH JU. 154 people responded. (see list in annex)
- Desk research: A wide range of industry reports was consulted to supplement and cross check the results of the survey. However given the still nascent state of the industry the information gathered with this exercise was limited.
- Interviews: Key stakeholders in the European FC&H sector were interviewed to get the qualitative story behind the results from the survey and the desk research. These stakeholders varied from fuel cell manufacturers to government officials from energy companies to automotive OEMs
Hydrogen Refuelling Stations in the Netherlands: An Intercomparison of Quantitative Risk Assessments Used for Permitting
May 2018
Publication
As of 2003 15 hydrogen refuelling stations (HRSs) have been deployed in the Netherlands. To become established the HRS has to go through a permitting procedure. An important document of the permitting dossier is the quantitative risk assessment (QRA) as it assesses the risks of the HRS associated to people and buildings in the vicinity of the HRS. In the Netherlands a generic prescribed approach exists on how to perform a QRA however specific guidelines for HRSs do not exist. An intercomparison among the QRAs of permitted HRSs has revealed significant inconsistencies on various aspects of the QRA: namely the inclusion of HRS sub-systems and components the HRS sub-system and component considerations as predefined components the application of failure scenarios the determination of failure frequencies the application of input parameters the consideration of preventive and mitigation measures as well as information provided regarding the HRS surroundings and the societal risk. It is therefore recommended to develop specific QRA guidelines for HRSs.
Exploring Possible Transition Pathways for Hydrogen Energy: A Hybrid Approach Using Socio-technical Scenarios and Energy System Modelling
Jul 2014
Publication
Hydrogen remains an important option for long-term decarbonisation of energy and transport systems. However studying the possible transition paths and development prospects for a hydrogen energy system is challenging. The long-term nature of technological transitions inevitably means profound uncertainties diverging perspectives and contested priorities. Both modelling approaches and narrative storyline scenarios are widely used to explore the possible future of hydrogen energy but each approach has shortcomings.<br/>This paper presents a hybrid approach to assessing hydrogen transitions in the UK by confronting qualitative socio-technical scenarios with quantitative energy systems modelling through a process of ‘dialogue’ between scenario and model. Three possible transition pathways are explored each exploring different uncertainties and possible decision points. Conclusions are drawn for both the future of hydrogen and on the value of an approach that brings quantitative formal models and narrative scenario techniques into dialogue.
Thermodynamic, Economic and Environmental Assessment of Renewable Natural Gas Production Systems
May 2020
Publication
One of the options to reduce the dependence on fossil fuels is to produce gas with the quality of natural gas but based on renewable energy sources. It can encompass among other biogas generation from various types of biomass and its subsequent upgrading. The main aim of this study is to analyze under a combined technical economic and environmental perspective three of the most representative technologies for the production of biomethane (bio-based natural gas): (i) manure fermentation and its subsequent upgrading by CO2 removal (ii) manure fermentation and biogas methanation using renewable hydrogen from electrolysis and (iii) biomass gasification in the atmosphere of oxygen and methanation of the resulted gas. Thermodynamic economic and environmental analyses are conducted to thoroughly compare the three cases. For these purposes detailed models in Aspen Plus software were built while environmental analysis was performed using the Life Cycle Assessment methodology. The results show that the highest efficiency (66.80%) and the lowest break-even price of biomethane (19.2 €/GJ) are reached for the technology involving fermentation and CO2 capture. Concerning environmental assessment the system with the best environmental performance varies depending on the impact category analyzed being the system with biomass gasification and methanation a suitable trade-off solution for biomethane production.
Seasonal Energy Storage for Zero-emissions Multi-energy Systems Via Underground Hydrogen Storage
Jan 2020
Publication
The deployment of diverse energy storage technologies with the combination of daily weekly and seasonal storage dynamics allows for the reduction of carbon dioxide (CO2) emissions per unit energy provided. In particular the production storage and re-utilization of hydrogen starting from renewable energy has proven to be one of the most promising solutions for offsetting seasonal mismatch between energy generation and consumption. A realistic possibility for large-scale hydrogen storage suitable for long-term storage dynamics is presented by salt caverns. In this contribution we provide a framework for modelling underground hydrogen storage with a focus on salt caverns and we evaluate its potential for reducing the CO2 emissions within an integrated energy systems context. To this end we develop a first-principle model which accounts for the transport phenomena within the rock and describes the dynamics of the stored energy when injecting and withdrawing hydrogen. Then we derive a linear reduced order model that can be used for mixed-integer linear program optimization while retaining an accurate description of the storage dynamics under a variety of operating conditions. Using this new framework we determine the minimum-emissions design and operation of a multi-energy system with H2 storage. Ultimately we assess the potential of hydrogen storage for reducing CO2 emissions when different capacities for renewable energy production and energy storage are available mapping emissions regions on a plane defined by storage capacity and renewable generation. We extend the analysis for solar- and wind-based energy generation and for different energy demands representing typical profiles of electrical and thermal demands and different CO2 emissions associated with the electric grid.
Concept of Hydrogen Fired Gas Turbine Cycle with Exhaust Gas Recirculation: Assessment of Process Performance
Nov 2019
Publication
High hydrogen content fuels can be used in gas turbine for power generation with CO2 capture IGCC plants or with hydrogen from renewables. The challenge for the engine is the high reactive combustion properties making dilution necessary to mitigate NOx emissions at the expense of a significant energy cost. In the concept analysed in this study high Exhaust Gas Recirculation (EGR) rate is applied to the gas turbine to generate oxygen depleted air. As a result combustion temperature is inherently limited keeping NOx emissions low without the need for dilution or unsafe premixing. The concept is analysed by process simulation based on a reference IGCC plant with CO2 Capture. Results with dry and wet EGR options are presented as a function EGR rate. Efficiency performance is assessed against the reference power cycle with nitrogen dilution. All EGR options are shown to represent an efficiency improvement. Nitrogen dilution is found to have a 1.3% efficiency cost. Although all EGR options investigated offer an improvement dry EGR is considered as the preferred option despite the need for higher EGR rate as compared with the wet EGR. The efficiency gain is calculated to be of 1% compared with the reference case.
Freeze-dried Ammonia Borane-polyethylene Oxide Composites: Phase Behaviour and Hydrogen Release
Feb 2018
Publication
A solid-state hydrogen storage material comprising ammonia borane (AB) and polyethylene oxide (PEO) has been produced by freeze-drying from aqueous solutions from 0% to 100% AB by mass. The phase mixing behaviour of AB and PEO has been investigated using X-ray diffraction which shows that a new ‘intermediate’ crystalline phase exists different from both AB and PEO as observed in our previous work (Nathanson et al. 2015). It is suggested that hydrogen bonding interactions between the ethereal oxygen atom (–O–) in the PEO backbone and the protic hydrogen atoms attached to the nitrogen atom (N–H) of AB molecules promote the formation of a reaction intermediate leading to lowered hydrogen release temperatures in the composites compared to neat AB. PEO also acts to significantly reduce the foaming of AB during hydrogen release. A temperature-composition phase diagram has been produced for the AB-PEO system to show the relationship between phase mixing and hydrogen release.
Achieving High-rate Hydrogen Recovery from Wastewater Using Customizable Alginate Polymer Gel Matrices Encapsulating Biomass
Jul 2018
Publication
In addition to methane gas higher-value resources such as hydrogen gas are produced during anaerobic wastewater treatment. They are however immediately consumed by other organisms. To recover these high-value resources not only do the desired phenotypes need to be retained in the anaerobic reactor but the undesired ones need to be washed out. In this study a well-established alginate-based polymer gel with and without a coating layer was used to selectively encapsulate hydrogen-producing biomass in beads to achieve high-rate recovery of hydrogen during anaerobic wastewater treatment. The effect of cross-linking agents Ca2+ Sr2+ and Ba2+ as well as a composite coating on the beads consisting of alternating layers of polyethylenimine and silica hydrogel were investigated with respect to their performance specifically their mass transfer characteristics and their differential ability to retain the encapsulated biomass. Although the coating reduced the escape rate of encapsulated biomass from the beads all alginate polymer matrices without coating effectively retained biomass. Fast diffusion of dissolved organic carbon (DOC) through the polymer gel was observed in both Ca-alginate and Sr-alginate without coating. The coating however decreased either the diffusivity or the permeability of the DOC depending on whether the DOC was from synthetic wastewater (more lipids and proteins) or real brewery wastewater (more sugars). Consequently the encapsulation system with coating became diffusion limited when brewery wastewater with high chemical oxygen demand was fed resulting in a lower hydrogen production rate than the uncoated encapsulation systems. In all cases the encapsulated biomass was able to produce hydrogen even at a hydraulic residence time of 45 min. Although there are limitations to this system the used of encapsulated biomass for resource recovery from wastewater shows promise particularly for high-rate systems in which the retention of specific phenotypes is desired.
Fuel Cell and Hydrogen Technology- Europe's Journey to a Greener World
Nov 2017
Publication
On the occasion of its 10th Stakeholder forum the FCH JU published a unique and exclusive book. This book sets out the story behind both the FCH JU and fuel cell and hydrogen technology in Europe. It reviews the events leading to its creation and examines the achievements that have allowed Europe to take a leading role in fuel cell and hydrogen excellence. It also looks at what this investment in fuel cell technology will mean for the EU in the coming years
Aqueous Phase Reforming in a Microchannel Reactor: The Effect of Mass Transfer on Hydrogen Selectivity
Aug 2013
Publication
Aqueous phase reforming of sorbitol was carried out in a 1.7 m long 320 mm ID microchannel reactor with a 5 mm Pt-based washcoated catalyst layer combined with nitrogen stripping. The performance of this microchannel reactor is correlated to the mass transfer properties reaction kinetics hydrogen selectivity and product distribution. Mass transfer does not affect the rate of sorbitol consumption which is limited by the kinetics of the reforming reaction. Mass transfer significantly affects the hydrogen selectivity and the product distribution. The rapid consumption of hydrogen in side reactions at the catalyst surface is prevented by a fast mass transfer of hydrogen from the catalyst site to the gas phase in the microchannel reactor. This results in a decrease of the concentration of hydrogen at the catalyst surface which was found to enhance the desired reforming reaction rate at the expense of the undesired hydrogen consuming reactions. Compared to a fixed bed reactor the selectivity to hydrogen in the microchannel reactor was increased by a factor of 2. The yield of side products (mainly C3 and heavier hydrodeoxygenated species) was suppressed while the yield of hydrogen was increased from 1.4 to 4 moles per mole of sorbitol fed.
Hydrogen Powered Aviation: A Fact-based Study of Hydrogen Technology, Economics, and Climate Impact by 2050
Jul 2020
Publication
This report assesses the potential of hydrogen (H2) propulsion to reduce aviation’s climate impact. To reduce climate impact the industry will have to introduce further levers such as radically new technology significantly scale sustainable aviation fuels (SAF) such as synthetic fuel (synfuel) temporarily rely on offsets in large quantities or rely on a combination thereof. H2 propulsion is one such technology and this report assesses its potential in aviation. Developed with input from leading companies and research institutes it projects the technological development of H2 combustion and fuel cell-powered propulsion evaluates their technical and economic feasibility compares them to synfuel and considers implications on aircraft design airport infrastructure and fuel supply chains.
Hydrogen: The Future Energy Carrier
Jul 2010
Publication
Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand the peaking mining rate of oil the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Application of Natural Ventilation Engineering Models to Hydrogen Build Up in Confined Zones
Sep 2013
Publication
Correlative engineering models (Linden 1994) are compared to recent published (Cariteau et al. (2009) Pitts et al. (2009) Barley and Gawlick (2009) Swain et al. (1999) Merilo et al. (2010)) and unpublished (CEA experiments in a 1 m3 with two openings) experimental hydrogen or helium distribution in enclosures (with one and two openings). The modelling-experiments comparison is carried out in transient and in steady state conditions. On this basis recommendations and limits of use of these models are proposed.
Hydrogen Effects in Corrosion: Discussion
Jun 2017
Publication
This session contained talks on the characterization of hydrogen-enhanced corrosion of steels and nickel-based alloys emphasizing the different observations across length scales from atomic-scale spectrographic to macro-scale fractographic examinations.
This article is the transcription of the recorded discussion of the session ‘Hydrogen Effects in Corrosion’ at the Royal Society discussion meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. M.A.S. transcribed the session and E.L.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is the transcription of the recorded discussion of the session ‘Hydrogen Effects in Corrosion’ at the Royal Society discussion meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. M.A.S. transcribed the session and E.L.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
No more items...