Hydrogen Safety Prediction and Analysis of Hydrogen Refueling Station Leakage Accidents and Process Using Multi-Relevance Machine Learning
Abstract
Hydrogen energy vehicles are being increasingly widely used. To ensure the safety of hydrogenation stations, research into the detection of hydrogen leaks is required. Offline analysis using data machine learning is achieved using Spark SQL and Spark MLlib technology. In this study, to determine the safety status of a hydrogen refueling station, we used multiple algorithm models to perform calculation and analysis: a multi-source data association prediction algorithm, a random gradient descent algorithm, a deep neural network optimization algorithm, and other algorithm models. We successfully analyzed the data, including the potential relationships, internal relationships, and operation laws between the data, to detect the safety statuses of hydrogen refueling stations.