Skip to content
1900

Hydrogen Storage Technology, and Its Challenges: A Review

Abstract

This paper aims to present an overview of the current state of hydrogen storage methods, and materials, assess the potential benefits and challenges of various storage techniques, and outline future research directions towards achieving effective, economical, safe, and scalable storage solutions. Hydrogen is recognized as a clean, secure, and costeffective green energy carrier with zero emissions at the point of use, offering significant contributions to reaching carbon neutrality goals by 2050. Hydrogen, as an energy vector, bridges the gap between fossil fuels, which produce greenhouse gas emissions, global climate change and negatively impact health, and renewable energy sources, which are often intermittent and lack sustainability. However, widespread acceptance of hydrogen as a fuel source is hindered by storage challenges. Crucially, the development of compact, lightweight, safe, and cost-effective storage solutions is vital for realizing a hydrogen economy. Various storage methods, including compressed gas, liquefied hydrogen, cryocompressed storage, underground storage, and solid-state storage (material-based), each present unique advantages and challenges. Literature suggests that compressed hydrogen storage holds promise for mobile applications. However, further optimization is desired to resolve concerns such as low volumetric density, safety worries, and cost. Cryo-compressed hydrogen storage also is seen as optimal for storing hydrogen onboard and offers notable benefits for storage due to its combination of benefits from compressed gas and liquefied hydrogen storage, by tackling issues related to slow refueling, boil-off, and high energy consumption. Material-based storage methods offer advantages in terms of energy densities, safety, and weight reduction, but challenges remain in achieving optimal stability and capacities. Both physical and material-based storage approaches are being researched in parallel to meet diverse hydrogen application needs. Currently, no single storage method is universally efficient, robust, and economical for every sector especially for transportation to use hydrogen as a fuel, with each method having its own advantages and limitations. Moreover, future research should focus on developing novel materials and engineering approaches in order to overcome existing limitations, provide higher energy density than compressed hydrogen and cryo-compressed hydrogen storage at 70 MPa, enhance costeffectiveness, and accelerate the deployment of hydrogen as a clean energy vector.

Funding source: We would like to acknowledge the Faculty of Environment, Science and Economy, University of Exeter, UK, and funding support from the Engineering and Physical Sciences Research Council (EPSRC).
Loading

Article metrics loading...

/content/journal7028
2025-03-07
2025-04-12
/content/journal7028
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error