Russian Federation
Effect of Hydrogen on the Deformation Behavior and Localization of Plastic Deformation of the Ultrafine-Grained Zr–1Nb Alloy
Oct 2020
Publication
In this paper comparison studies of the hydrogen effect on the structural and phase state deformation behavior and mechanical properties of the fine- (average grain size 4 µm) and ultrafine-grained (average element size 0.3 and 0.4 µm) Zr–1wt.%Nb (hereinafter Zr–1Nb) alloy under tension at temperatures in the range of 293–873 K were conducted. The formation of an ultrafine-grained structure is established to increase the strength characteristics of the Zr–1Nb alloy by a factor of 1.5–2 with a simultaneous reduction of its resistance to the localization of plastic deformation at the macro level and the value of deformation to failure. The presence of hydrogen in the Zr–1Nb alloy in the form of a solid solution and hydride precipitates increases its resistance to the localization of plastic deformation at the macro level if the alloy has an ultrafine-grained structure and decreases if the structure of the alloy is fine-grained. In the studied temperature range the Zr–1Nb alloy in the ultrafine-grained state has a higher resistance to hydrogen embrittlement than the alloy in the fine-grained state.
Experimental Study of Hydrogen Releases Combustion
Sep 2009
Publication
The objectives of the presented experimental work were investigation of hydrogen release distribution and combustion modelling possible emergency situation at industry scale. Results of large scale experiments on distribution and combustion in an open and congested area are presented. The mass of hydrogen in experiments varied from 50g to 1000g with release rate from 180 to 220 g/s. Qualitative characteristics of high momentum hydrogen jet releases distribution and subsequent combustion were obtained. It is shown that obstacles slow down jet speed promote combustible mixture formation in a large volume and accelerate combustion process. The maximum overpressure in experiments with additional congested area reached ΔР = 0.4 atm. Using partial confinement of congested area turbulent combustion regime with the maximum overpressure more than 10 atm. was obtained.
Experimental Study of Explosion Wave Propagation in Hydrogen-Air Mixtures of Variable Compositions
Sep 2009
Publication
Results are given of experimental study of propagation of explosion waves in hydrogen-air mixtures of different compositions under conditions of cumulation. The investigations are performed in a setup consisting of two parts namely the upper part in the form of a metal cone and the lower part in the form of a rubber envelope hermetically attached to the cone. The upper and lower parts of the experimental setup are separated by a thin rubber film and may be filled with hydrogen-air mixtures of different compositions.
Safe Testing of Catalytic Devices in Hydrogen-Air Flow
Sep 2009
Publication
Any experimental study of catalysts and catalytic recombining devices for removal of hydrogen gas from industrial environments is known to carry a risk of ignition of hydrogen. Experiments conducted in an atmosphere with a high concentration of hydrogen present a particular danger. Here a technique is reported that allows conducting such experiments with relative safety. This technique has been developed and applied by the company ‘Russian Energy Technologies’ for the last five years without any significant incident.<br/>A “Gas stream method” for testing and analysis of the characteristics of a catalyst for hydrogen/oxygen recombination is proposed. Tests with a variety of catalysts in a passive recombining device were carried out in a climatic chamber (86 l in volume) with a hydrogen/air mixture containing up to 20% (v/v) hydrogen flowing through it. The balance equation for hydrogen and oxygen flows entering reacting and exiting the chamber led to a formula for calculating the efficiency of a catalyst or a catalytic device under stationary conditions.<br/>Fluctuations in local temperatures of the catalyst and other parts of the chamber along with variation in the concentration of hydrogen gave the authors an insight into the thermal regime of an active catalyst. This enabled them to develop new catalysts for removal of hydrogen from the environment using industrial recombining devices.
Improvements in Two-Step Model of Hydrogen Detonative Combustion: Model Description and Sensitivity to its Parameters
Sep 2009
Publication
In the present paper the two-stage model of detonative combustion of hydrogen is presented. The following improvements are described: accurate description of the heat release stage of combustion; the clear physics-based procedure for calculation of the parameters of the proposed model; sample calculations of the detonation wave in hydrogen/air mixtures in wide range of conditions showing that the proposed model performs well in a wide range of conditions (pressures temperatures mixture compositions). The results of the 2D simulations of the detonation cell are presented for the hydrogen/oxygen/argon mixture as example to show the performance and accuracy of the model presented in this paper.
Hydrogen-Air Explosive Envelope Behaviour in Confined Space at Different Leak Velocities
Sep 2009
Publication
The report summarizes experimental results on the mechanisms and kinetics of hydrogen-air flammable gas cloud formation and evolution due to foreseeable (less than 10-3 kg/sec) hydrogen leaks into confined spaces with different shapes sizes and boundary conditions. The goals were - 1) to obtain qualitative information on the basic gas-dynamic patterns of flammable cloud formation at different leak velocities (between 935 and 905 m/sec) for a fixed leak flowrate and 2) to collect quantitative data on spatial and temporal characteristics of the revealed patterns. Data acquisition was performed using a spatially distributed reconfigurable net of 24 hydrogen gauges with short response time. This experimental innovation permits to study spatial features of flammable cloud evolution in detail which previously was attainable only from CFD computations. Two qualitatively different gas dynamic patterns were documented for the same leak flowrate. In one limiting case (sufficiently low speed of leak) the overall gas-dynamic pattern can be described by the well-known “filling box” model. In another limited case (high velocity of leak) it is proposed to describe the peculiarities of gas-dynamic behavior of flammable cloud by the term of a “fading up box” model. From the safety view point the “fading up box” case is more hazardous than the “filling box” case. Differences in macroscopic and kinetic behavior which are essential for safety provision are presented. Empirical non-dimensional criterion for discrimination of the two revealed basic patterns for hydrogen leaks into confined spaces with comparable length scale is proposed. The importance of the revealed “fading up box” gas-dynamic pattern is discussed for development of an advanced hydrogen gauges system design and safety criteria.
High-pressure PEM Water Electrolysis and Corresponding Safety Issues
Sep 2009
Publication
In this paper safety considerations related to the operation of proton-exchange membrane (PEM) water electrolysers (hydrogen production capacity up to 1 Nm3/h and operating pressure up to 130 bars) are presented. These results were obtained in the course of the GenHyPEM project a research program on high-pressure PEM water electrolysis supported by the European Commission. Experiments were made using a high-pressure electrolysis stack designed for operation in the 0–130 bars pressure range at temperatures up to 90 °C. Besides hazards related to the pressure itself hydrogen concentration in the oxygen gas production and vice-versa (resulting from membrane crossover permeation effects) have been identified as the most significant risks. Results show that the oxygen concentration in hydrogen at 130 bars can be as high as 2.66 vol %. This is a value still outside the flammability limit for hydrogen–oxygen mixtures (3.9–95.8 vol %) but safety measures are required to prevent explosion hazards. A simple model based on the diffusion of dissolved gases is proposed to account for gas cross-permeation effects. To reduce contamination levels different solutions are proposed. First thicker membranes can be used. Second modified or composite membranes with lower gas permeabilities can be used. Third as reported earlier external catalytic gas recombiners can be used to promote H2/O2 recombination and reduce contamination levels in the gas production. Finally other considerations related to cell and stack design are also discussed to further reduce operation risks.
Hydrogen Storage: Thermodynamic Analysis of Alkyl-Quinolines and Alkyl-Pyridines as Potential Liquid Organic Hydrogen Carriers (LOHC)
Dec 2021
Publication
The liquid organic hydrogen carriers (LOHC) are aromatic molecules which can be considered as an attractive option for the storage and transport of hydrogen. A considerable amount of hydrogen up to 7–8% wt. can be loaded and unloaded with a reversible chemical reaction. Substituted quinolines and pyridines are available from petroleum coal processing and wood preservation or they can be synthesized from aniline. Quinolines and pyridines can be considered as potential LOHC systems provided they have favorable thermodynamic properties which were the focus of this current study. The absolute vapor pressures of methyl-quinolines were measured using the transpiration method. The standard molar enthalpies of vaporization of alkyl-substituted quinolines and pyridines were derived from the vapor pressure temperature dependencies. Thermodynamic data on vaporization and formation enthalpies available in the literature were collected evaluated and combined with our own experimental results. The theoretical standard molar gas-phase enthalpies of formation of quinolines and pyridines calculated using the quantum-chemical G4 methods agreed well with the evaluated experimental data. Reliable standard molar enthalpies of formation in the liquid phase were derived by combining high-level quantum chemistry values of gas-phase enthalpies of formation with experimentally determined enthalpies of vaporization. The liquid-phase hydrogenation/dehydrogenation reaction enthalpies of alkyl-substituted pyridines and quinolines were calculated and compared with the data for other potential liquid organic hydrogen carriers. The comparatively low enthalpies of reaction make these heteroaromatics a seminal LOHC system.
Hydrogen Safety Aspects Related to High Pressure - PEM Water Electrolysis
Sep 2007
Publication
Polymer electrolyte membrane (PEM) water electrolysis has demonstrated its potentialities in terms of cell efficiency (energy consumption ≈ 4.0-4.2 kW/Nm3 H2) and gas purity (> 99.99% H2). Current research activities are aimed at increasing operating pressure up to several hundred bars for direct storage of hydrogen in pressurized vessels. Compared to atmospheric pressure electrolysis high-pressure operation yields additional problems especially with regard to safety considerations. In particular the rate of gases (H2 and O2) cross-permeation across the membrane and their water solubility both increase with pressure. As a result gas purity is affected in both anodic and cathodic circuits and this can lead to the formation of explosive gas mixtures. To prevent such risks two different solutions reported in this communication have been investigated. First the chemical modification of the solid polymer electrolyte in order to reduce cross-permeation phenomena. Second the use of catalytic H2/O2 recombiners to maintain H2 levels in O2 and O2 levels in H2 at values compatible with safety requirements.
Modelling of Lean Uniform and Non-Uniform Hydrogen-Air Mixture Explosions in a Closed Vessel
Sep 2009
Publication
Simulation of hydrogen-air mixture explosions in a closed large-scale vessel with uniform and nonuniform mixture compositions was performed by the group of partners within the EC funded project “Hydrogen Safety as an Energy Carrier” (HySafe). Several experiments were conducted previously by Whitehouse et al. in a 10.7 m3 vertically oriented (5.7-m high) cylindrical facility with different hydrogen-air mixture compositions. Two particular experiments were selected for simulation and comparison as a Standard Benchmark Exercise (SBEP) problem: combustion of uniform 12.8% (vol.) hydrogen-air mixture and combustion of non-uniform hydrogen-air mixture with average 12.6% (vol.) hydrogen concentration across the vessel (vertical stratification 27% vol. hydrogen at the top of the vessel 2.5% vol. hydrogen at the bottom of the vessel); both mixtures were ignited at the top of the vessel. The paper presents modelling approaches used by the partners comparison of simulation results against the experiment data and conclusions regarding the non-uniform mixture combustion modelling in real-life applications.
Catalysts for Hydrogen Removal: Kinetic Paradox and Functioning at High Concentration of Hydrogen
Sep 2009
Publication
Platinum metals dispersed on a porous carrier e.g. -Al2O3 are used as catalysts for removal of small amounts of hydrogen from the air where the excess of oxygen is significant.<br/>The recombination reaction of H2 and O2 on smooth platinum proceeds at a high rate only in gas mixes with an excess of hydrogen. When the concentration of oxygen exceeds that of hydrogen in terms of stoichiometric ratio the process slows down sharply and eventually stops completely. In research undertaken at the Karpov Institute of Physical Chemistry (Moscow) forty years ago the electrochemical mechanism of red-ox reactions was proposed as an explanation for this inhibition by excess oxygen. The results of ellipsometric analysis pointed to the formation of a protective monolayer of PtO molecules on the Pt surface in an oxygen-rich atmosphere. It was observed that the recombination reaction proceeds at a high rate with the use of a porous catalyst at any concentrations of reactant gases. The reason for that lies in the mechanism of the catalysis: the reaction proceeds at a certain depth in the porous body of the catalyst. Hydrogen which has higher mobility penetrates in larger quantity than oxygen thus creating there the stoichiometric excess. To test the proposed mechanism of recombination the catalytic reaction was studied ) with porous carriers of various thicknesses and b) with metal grids of various porosities covering the catalyst. The data obtained have confirmed unequivocally the earlier hypothesis of hydrogenation of a porous catalyst.<br/>Such insight has allowed the authors to develop more effective prototypes of catalyst for removal of hydrogen. In particular by using a porous grid cover to remove excess heat in the reaction zone of the catalyst plate we achieved a considerable expansion of the region of hydrogen concentrations where the catalyst is both effective and reliable.
Performance-Based Requirements for Hydrogen Detection Allocation and Actuation
Sep 2009
Publication
The hydrogen detection system is a key component of the hydrogen safety systems (HSS). Any HSS forms a second layer of protection for the assets under accidental conditions when a first layer of protection - passive protection systems (separation at “safe” distance natural ventilation) are inoperable or failed. In this report a performance-based risk-informed methodology for establishing of the explicit quantitative requirements for hydrogen detectors allocation and actuation is proposed. The main steps of the proposed methodology are described. It is suggested (as a first approximation) to use in a process of quantification of a hydrogen detection system performance (from safety viewpoint) a five-tiered hierarchy namely 1) safety goals 2) risk-informed safety objectives 3) performance goal and metrics 4) rational safety criteria 5) safety factors. Unresolved issues of the proposed methodology of Safety Performance Analysis for development of the risk-informed and performance based standards on the hydrogen detection systems are synopsized.<br/><br/>
Mathematical Modeling and Simulation of Hydrogen-fueled Solid Oxide Fuel Cell System for Micro-grid Applications - Effect of Failure and Degradation on Transient Performance
May 2020
Publication
We use a detailed solid oxide fuel cell (SOFC) model for micro-grid applications to analyze the effect of failure and degradation on system performance. Design and operational constraints on a component and system level are presented. A degrees of freedom analysis identifies controlled and manipulated system variables which are important for control. Experimental data are included to model complex degradation phenomena of the SOFC unit. Rather than using a constant value a spatially distributed degradation rate as function of temperature and current density is used that allows to study trajectory based performance deterioration. The SOFC unit is assumed to consist of multiple stacks. The failure scenario studied is the loss of one individual SOFC stack e.g. due to breakage of sealing or a series of fuel cells. Simulations reveal that degradation leads to significant drifts from the design operating point. Moreover failure of individual stacks may bring the still operating power generation unit into a regime where further failures and accelerated degradation is more likely. It is shown that system design dimensioning operation and control are strongly linked. Apart from specific quantitative results perhaps the main practical contribution are the collected constraints and the degrees of freedom analysis.
Failure of PEM Water Electrolysis Cells: Case Study Involving Anode Dissolution and Membrane Thinning
Sep 2013
Publication
Polymer electrolyte membrane (PEM) water electrolysis is an efficient and environmental friendly method that can be used for the production of molecular hydrogen of electrolytic grade using zero-carbon power sources such as renewable and nuclear. However market applications are asking for cost reduction and performances improvement. This can be achieved by increasing operating current density and lifetime of operation. Concerning performance safety reliability and durability issues the membrane-electrode assembly (MEA) is the weakest cell component. Most performance losses and most accidents occurring during PEM water electrolysis are usually due to the MEA. The purpose of this communication is to report on some specific degradation mechanisms that have been identified as a potential source of performance loss and membrane failure. An accelerated degradation test has been performed on a MEA by applying galvanostatic pulses. Platinum has been used as electrocatalyst at both anode and cathode in order to accelerate degradation rate by maintaining higher cell voltage and higher anodic potential that otherwise would have occurred if conventional Ir/IrOx catalysts had been used. Experimental evidence of degradation mechanisms have been obtained by post-mortem analysis of the MEA using microscopy and chemical analysis. Details of these degradation processes are presented and discussed.
Experimental and Numerical Investigation of Hydrogen Gas Auto-ignition
Sep 2007
Publication
This paper describes hydrogen self-ignition as a result of the formation of a shock wave in front of a high-pressure hydrogen gas propagating in the tube and the semi-confined space for which the numerical and experimental investigation was done. An increase in the temperature behind the shock wave leads to the ignition on the contact surface of the mixture of combustible gas with air. The required condition of combustible self-ignition is to maintain the high temperature in the mixture for a time long enough for inflammation to take place. Experimental technique was based on a high-pressure chamber inflating with hydrogen burst disk failure and pressurized hydrogen discharge into tube of round or rectangular cross section filled with air. A physicochemical model involving the gas dynamic transport of a viscous gas the detailed kinetics of hydrogen oxidation k-ω differential turbulence model and the heat exchange was used for calculations of the self-ignition of high-pressure hydrogen. The results of our experiments and model calculations show that self-ignition in the emitted jet takes place. The stable development of self-ignition naturally depends on the orifice size and the pressure in the vessel a decrease in which leads to the collapse of the ignition process. The critical conditions are obtained.
Research of Nanomaterials as Electrodes for Electrochemical Energy Storage
Jan 2022
Publication
This paper has experimentally proved that hydrogen accumulates in large quantities in metal-ceramic and pocket electrodes of alkaline batteries during their operation. Hydrogen accumulates in the electrodes in an atomic form. After the release of hydrogen from the electrodes a powerful exothermic reaction of atomic hydrogen recombination with a large energy release occurs. This exothermic reaction is the cause of thermal runaway in alkaline batteries. For the KSL-15 battery the gravimetric capacity of sintered nickel matrix of the oxide-nickel electrode as hydrogen storage is 20.2 wt% and cadmium electrode is 11.5 wt%. The stored energy density in the metal-ceramic matrix of the oxide-nickel electrode of the battery KSL-15 is 44 kJ/g and in the cadmium electrode it is 25 kJ/g. The similar values for the KPL-14 battery are as follows. The gravimetric capacity of the active substance of the pocket oxide-nickel electrode as a hydrogen storage is 22 wt% and the cadmium electrode is 16.9 wt%. The density of the stored energy in the active substance oxide-nickel electrode is 48 kJ/g and in the active substance of the cadmium electrode it is 36.8 kJ/g. The obtained results of the accumulation of hydrogen energy in the electrodes by the electrochemical method are three times higher than any previously obtained results using the traditional thermochemical method.
Effect of Vanadium-alloying on Hydrogen Embrittlement of Austenitic High-nitrogen Steels
Dec 2018
Publication
The effect of hydrogen on tensile behavior and fracture mechanisms of V-alloying and V-free high-nitrogen austenitic steels was evaluated. Two steels with the chemical compositions of Fe-23Cr–17Mn–0.1C–0.6N (0V-HNS) and Fe-19Cr–22Mn–1.5V–0.3C–0.9N (1.5V-HNS) were electrochemically hydrogen-charged in NaCl water-solution for 100 hours. According to X-ray diffraction analysis and TEM researches V-alloying promotes particle strengthening of the 1.5V-HNS. Despite differences in chemical compositions namely carbon and nitrogen concentrations a solid solution hardening is similar for both steels because of precipitate-assisted depletion of austenite by interstitial atoms (carbon and nitrogen) in 1.5V-HNS. For hydrogen-free state the values of the yield stress and the tensile strength are higher for particle-strengthened 1.5V-HNS as compared to 0V-HNS. Hydrogen-charging increases both the yield stress and the tensile strength of the steels but hydrogen-assisted fracture micromechanisms are different for 0V-HNS and 1.5V-HNS. Hydrogen-charging drastically reduces a total elongation in 0V-HNS but provides insufficient embrittlement in 1.5V-HNS. Hydrogen-assisted brittle layers form on lateral surfaces of the specimens and the widths and fracture micromechanisms in them are different for two steels. For 0V-HNS surface layers of 84 μm in width possess transgranular brittle fracture mechanism (quasi-cleavage mode). For 1.5V-HNS the brittle surface layers (31 μm width) destroy in intergranular brittle fracture mode. The central parts of steel specimens show dimple fracture similar to hydrogen-free steels. The possible reasons for different hydrogen-induced effects in 0V-HNS and 1.5V-HNS are discussed.
A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation
Feb 2022
Publication
An increase in human activities and population growth have significantly increased the world’s energy demands. The major source of energy for the world today is from fossil fuels which are polluting and degrading the environment due to the emission of greenhouse gases. Hydrogen is an identified efficient energy carrier and can be obtained through renewable and non-renewable sources. An overview of renewable sources of hydrogen production which focuses on water splitting (electrolysis thermolysis and photolysis) and biomass (biological and thermochemical) mechanisms is presented in this study. The limitations associated with these mechanisms are discussed. The study also looks at some critical factors that hinders the scaling up of the hydrogen economy globally. Key among these factors are issues relating to the absence of a value chain for clean hydrogen storage and transportation of hydrogen high cost of production lack of international standards and risks in investment. The study ends with some future research recommendations for researchers to help enhance the technical efficiencies of some production mechanisms and policy direction to governments to reduce investment risks in the sector to scale the hydrogen economy up.
Features of the Hydrogen-Assisted Cracking Mechanism in the Low-Carbon Steel at Ex- and In-situ Hydrogen Charging
Dec 2018
Publication
Hydrogen embrittlement has been intensively studied in the past. However its governing mechanism is still under debate. Particularly the details of the formation of specific cleavage-like or quasi-cleavage fracture surfaces related to hydrogen embrittled steels are unclear yet. Recently it has been found that the fracture surface of the hydrogen charged and tensile tested low-carbon steel exhibits quasi-cleavage facets having specific smoothly curved surface which is completely different from common flat cleavage facets. In the present contribution we endeavor to shed light on the origin of such facets. For this purpose the notched flat specimens of the commercial low carbon steel were tensile tested using ex- and in-situ hydrogen charging. It is found that in the ex-situ hydrogen charged specimens the cracks originate primarily inside the specimen bulk and expand radially form the origin to the specimen surface. This process results in formation of “fisheyes” – the round-shape areas with the surface composed of curved quasi-cleavage facets. In contrast during tensile testing with in-situ hydrogen charging the cracks initiate from the surface and propagate to the bulk. This process results in the formation of the completely brittle fracture surface with the quasi-cleavage morphology - the same as that in fisheyes. The examination of the side surface of the in-situ hydrogen charged specimens revealed the straight and S-shaped sharp cracks which path is visually independent of the microstructure and crystallography but is strongly affected by the local stress fields. Nano-voids are readily found at the tips of these cracks. It is concluded that the growth of such cracks occurs by the nano-void coalescence mechanism and is responsible for the formation of fisheyes and smoothly curved quasi-cleavage facets in hydrogen charged low-carbon steel.
Stationary Hybrid Renewable Energy Systems for Railway Electrification: A Review
Sep 2021
Publication
This article provides an overview of modern technologies and implemented projects in the field of renewable energy systems for the electrification of railway transport. In the first part the relevance of the use of renewable energy on the railways is discussed. Various types of power-generating systems in railway stations and platforms along the track as well as in separate areas are considered. The focus is on wind and solar energy conversion systems. The second part is devoted to the analysis of various types of energy storage devices used in projects for the electrification of railway transport since the energy storage system is one of the key elements in a hybrid renewable energy system. Systems with kinetic storage electrochemical storage batteries supercapacitors hydrogen energy storage are considered. Particular attention is paid to technologies for accumulating and converting hydrogen into electrical energy as well as hybrid systems that combine several types of storage devices with different ranges of charge/discharge rates. A comparative analysis of various hybrid electric power plant configurations depending on the functions they perform in the electrification systems of railway transport has been carried out.
No more items...