A Model-Based Systems Engineering Approach for Effective Decision Support of Modern Energy Systems Depicted with Clean Hydrogen Production
Abstract
A holistic approach to decision-making in modern energy systems is vital due to their increase in complexity and interconnectedness. However, decision makers often rely on narrowlyfocused strategies, such as economic assessments, for energy system strategy selection. The approach in this paper helps considers various factors such as economic viability, technological feasibility, environmental impact, and social acceptance. By integrating these diverse elements, decision makers can identify more economically feasible, sustainable, and resilient energy strategies. While existing focused approaches are valuable since they provide clear metrics of a potential solution (e.g., an economic measure of profitability), they do not offer the much needed system-as-a-whole understanding. This lack of understanding often leads to selecting suboptimal or unfeasible solutions, which is often discovered much later in the process when a change may not be possible. This paper presents a novel evaluation framework to support holistic decision-making in energy systems. The framework is based on a systems thinking approach, applied through systems engineering principles and model-based systems engineering tools, coupled with a multicriteria decision analysis approach. The systems engineering approach guides the development of feasible solutions for novel energy systems, and the multicriteria decision analysis is used for a systematic evaluation of available strategies and objective selection of the best solution. The proposed framework enables holistic, multidisciplinary, and objective evaluations of solutions and strategies for energy systems, clearly demonstrates the pros and cons of available options, and supports knowledge collection and retention to be used for a different scenario or context. The framework is demonstrated in case study evaluation solutions for a novel energy system of clean hydrogen generation.