Romania
Synthesis and Characterisation of Platinum-cobalt-manganese Ternary Alloy Catalysts Supported on Carbon Nanofibers: An Alternative Catalyst for Hydrogen Evolution Reaction
Mar 2020
Publication
A systematic method for obtaining a novel electrode structure based on PtCoMn ternary alloy catalyst supported on graphitic carbon nanofibers (CNF) for hydrogen evolution reaction (HER) in acidic media is proposed. Ternary alloy nanoparticles (Co0.6Mn0.4 Pt) with a mean crystallite diameter under 10 nm were electrodeposited onto a graphitic support material using a two-step pulsed deposition technique. Initially a surface functionalisation of the carbon nanofibers is performed with the aid of oxygen plasma. Subsequently a short galvanostatic pulse electrodeposition technique is applied. It has been demonstrated that if pulsing current is employed compositionally controlled PtCoMn catalysts can be achieved. Variations of metal concentration ratios in the electrolyte and main deposition parameters such as current density and pulse shape led to electrodes with relevant catalytic activity towards HER. The samples were further characterised using several physico-chemical methods to reveal their morphology structure chemical and electrochemical properties. X-ray diffraction confirms the PtCoMn alloy formation on the graphitic support and energy dispersive X-ray spectroscopy highlights the presence of the three metallic components from the alloy structure. The preliminary tests regarding the electrocatalytic activity of the developed electrodes display promising results compared to commercial Pt/C catalysts. The PtCoMn/CNF electrode exhibits a decrease in hydrogen evolution overpotential of about 250 mV at 40 mA cm−2 in acidic solution (0.5 M H2SO4) when compared to similar platinum based electrodes (Pt/CNF) and a Tafel slope of around 120 mV dec−1 indicating that HER takes place under the Volmer-Heyrovsky mechanismm
Gas Switching Reforming for Flexible Power and Hydrogen Production to Balance Variable Renewables
May 2019
Publication
Variable renewable energy (VRE) is expected to play a major role in the decarbonization of the electricity sector. However decarbonization via VRE requires a fleet of flexible dispatchable plants with low CO2 emissions to supply clean power during times with limited wind and sunlight. These plants will need to operate at reduced capacity factors with frequent ramps in electricity output posing techno-economic challenges. This study therefore presents an economic assessment of a new near-zero emission power plant designed for this purpose. The gas switching reforming combined cycle (GSR-CC) plant can produce electricity during times of low VRE output and hydrogen during times of high VRE output. This product flexibility allows the plant to operate continuously even when high VRE output makes electricity production uneconomical. Although the CO2 avoidance cost of the GSR-CC plant (€61/ton) was similar to the benchmark post-combustion CO2 capture plant under baseload operation GSR-CC clearly outperformed the benchmark in a more realistic scenario where continued VRE expansion forces power plants into mid-load operation (45% capacity factor). In this scenario GSR-CC promises a 5 %-point higher annualized investment return than the post-combustion benchmark. GSR-CC therefore appears to be a promising concept for a future scenario with high VRE market share and CO2 prices provided that a large market for clean hydrogen is established.
Hydrogen Production Using Solar Energy - Technical Analysis
Mar 2019
Publication
This paper presents a case study concerning a plant for hydrogen production and storage having a daily capacity of 100kg. The plant is located in Cluj-Napoca Romania. It produces hydrogen by means of water electrolysis while the energy is provided using solar energy. We performed the calculations for four different technical solutions used for the hydrogen production and storage plant and also we considered three scenarios regarding the sub-systems of the hydrogen production and storage plant efficiency. The conclusion of this study is that one can maximize the conversion of solar radiation into chemical energy in the form of hydrogen by hybridizing the solar hydrogen production system namely using both electrical energy as well as thermal energy in the form of steam.
Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies
Jan 2021
Publication
With the development of technologies in recent decades and the imposition of international standards to reduce greenhouse gas emissions car manufacturers have turned their attention to new technologies related to electric/hybrid vehicles and electric fuel cell vehicles. This paper focuses on electric fuel cell vehicles which optimally combine the fuel cell system with hybrid energy storage systems represented by batteries and ultracapacitors to meet the dynamic power demand required by the electric motor and auxiliary systems. This paper compares the latest proposed topologies for fuel cell electric vehicles and reveals the new technologies and DC/DC converters involved to generate up-to-date information for researchers and developers interested in this specialized field. From a software point of view the latest energy management strategies are analyzed and compared with the reference strategies taking into account performance indicators such as energy efficiency hydrogen consumption and degradation of the subsystems involved which is the main challenge for car developers. The advantages and disadvantages of three types of strategies (rule-based strategies optimization-based strategies and learning-based strategies) are discussed. Thus future software developers can focus on new control algorithms in the area of artificial intelligence developed to meet the challenges posed by new technologies for autonomous vehicles.
Development of a Tangential Neutron Radiography System for Monitoring the Fatigue Cracks in Hydrogen Fuel Tanks
Jun 2016
Publication
Purpose- To present an overview of the research and development carried out in a European funded framework 7 (FP7) project called SafeHPower for the implementation of neutron radiography to inspect fatigue cracks in vehicle and storage hydrogen fuel tanks. Project background– Hydrogen (H2) is the most promising replacement fuel for road transport due to its abundance efficiency low carbon footprint and the absence of harmful emissions. For the mass market of hydrogen to take off the safety issue surrounding the vehicle and storage hydrogen tanks needs to be addressed. The problem is the residual and additional stresses experienced by the tanks during the continuous cyclic loading between ambient and storage pressure which can result in the development of fatigue cracks. Steel tanks used as storage containers at service stations and depots and/or the composite tanks lined with steel are known to suffer from hydrogen embrittlement (HE). Another issue is the explosive nature of hydrogen (when it is present in the 18-59% range) where it is mixed with oxygen which can lead to catastrophic consequences including loss of life. Monitoring systems that currently exist in the market impose visual examination tests pressure tests and hydrostatic tests after the tank installation [1] [2]. Three inspection systems have been developed under this project to provide continuous monitoring solutions. Approach and scope- One of the inspection systems based on the neutron radiography (NR) technology that was developed in different phases with the application of varied strategies has been presented here. Monte Carlo (MCNP) simulation results to design and develop a bespoke collimator have been presented. A limitation of using an inertial electrostatic Deuterium-Tritium (D-T) pulsed neutron generator for fast neutron radiography has been discussed. Radiographs from the hydrogen tank samples obtained using thermal neutrons from a spallation neutron source at ISIS Rutherford laboratory UK have been presented. Furthermore radiograph obtained using thermal neutrons from a portable D-T neutron generator has been presented. In conclusion a proof in principle has been made to show that the defects in the hydrogen fuel tank can be detected using thermal neutron radiography.
Controllable H2 Generation by Formic Acid Decomposition on a Novel Pd/Templated Carbon Catalyst
Nov 2020
Publication
A novel Pd/templated carbon catalyst (Pd/TC) was developed characterized and tested in the dehydrogenation of formic acid (FA) under mild conditions with the possibility to control the H2 generation rate in the absence or presence of HCOONa (SF) by adjusting the Pd:FA and/or FA:SF ratios. The characterization results of the templated carbon obtained by the chemical vapor deposition of acetylene on NaY zeolite revealed different structural and morphological properties compared to other C-based supports. Therefore it was expected to induce a different catalytic behavior for the Pd/TC catalyst. Indeed the TC-supported Pd catalyst exhibited superior activity in the decomposition of FA even at room temperature with turnover frequencies (TOFs) of up to 143.7 and 218.8 h−1 at 60 °C. The H2 generation rate increased with an increasing temperature while the H2 yield increased with a decreasing FA concentration. Constant generation of gaseous flow (H2 + CO2) was achieved for 11 days by the complete dehydrogenation of FA at room temperature using a 2 M FA solution and Pd:FA = 1:2100. The presence of SF in the reaction medium significantly enhanced the H2 generation rate (535 h−1 for FA:SF = 3:1 and 60 °C).
Paving the Way to the Fuel of the Future—Nanostructured Complex Hydrides
Dec 2022
Publication
Hydrides have emerged as strong candidates for energy storage applications and their study has attracted wide interest in both the academic and industry sectors. With clear advantages due to the solid-state storage of hydrogen hydrides and in particular complex hydrides have the ability to tackle environmental pollution by offering the alternative of a clean energy source: hydrogen. However several drawbacks have detracted this material from going mainstream and some of these shortcomings have been addressed by nanostructuring/nanoconfinement strategies. With the enhancement of thermodynamic and/or kinetic behavior nanosized complex hydrides (borohydrides and alanates) have recently conquered new estate in the hydrogen storage field. The current review aims to present the most recent results many of which illustrate the feasibility of using complex hydrides for the generation of molecular hydrogen in conditions suitable for vehicular and stationary applications. Nanostructuring strategies either in the pristine or nanoconfined state coupled with a proper catalyst and the choice of host material can potentially yield a robust nanocomposite to reliably produce H2 in a reversible manner. The key element to tackle for current and future research efforts remains the reproducible means to store H2 which will build up towards a viable hydrogen economy goal. The most recent trends and future prospects will be presented herein.
Hybrid Electric Powertrain with Fuel Cells for a Series Vehicle
May 2018
Publication
Recent environmental and climate change issues make it imperative to persistently approach research into the development of technologies designed to ensure the sustainability of global mobility. At the European Union level the transport sector is responsible for approximately 28% of greenhouse gas emissions and 84% of them are associated with road transport. One of the most effective ways to enhance the de-carbonization process of the transport sector is through the promotion of electric propulsion which involves overcoming barriers related to reduced driving autonomy and the long time required to recharge the batteries. This paper develops and implements a method meant to increase the autonomy and reduce the battery charging time of an electric car to comparable levels of an internal combustion engine vehicle. By doing so the cost of such vehicles is the only remaining significant barrier in the way of a mass spread of electric propulsion. The chosen method is to hybridize the electric powertrain by using an additional source of fuel; hydrogen gas stored in pressurized cylinders is converted in situ into electrical energy by means of a proton exchange membrane fuel cell. The power generated on board can then be used under the command of a dedicated management system for battery charging leading to an increase in the vehicle’s autonomy. Modeling and simulation results served to easily adjust the size of the fuel cell hybrid electric powertrain. After optimization an actual fuel cell was built and implemented on a vehicle that used the body of a Jeep Wrangler from which the thermal engine associated subassemblies and gearbox were removed. Once completed the vehicle was tested in traffic conditions and its functional performance was established.
Artificial Neural Networks for Predicting Hydrogen Production in Catalytic Dry Reforming: A Systematic Review
May 2021
Publication
Dry reforming of hydrocarbons alcohols and biological compounds is one of the most promising and effective avenues to increase hydrogen (H2 ) production. Catalytic dry reforming is used to facilitate the reforming process. The most popular catalysts for dry reforming are Ni-based catalysts. Due to their inactivation at high temperatures these catalysts need to use metal supports which have received special attention from researchers in recent years. Due to the existence of a wide range of metal supports and the need for accurate detection of higher H2 production in this study a systematic review and meta-analysis using ANNs were conducted to assess the hydrogen production by various catalysts in the dry reforming process. The Scopus Embase and Web of Science databases were investigated to retrieve the related articles from 1 January 2000 until 20 January 2021. Forty-seven articles containing 100 studies were included. To determine optimal models for three target factors (hydrocarbon conversion hydrogen yield and stability test time) artificial neural networks (ANNs) combined with differential evolution (DE) were applied. The best models obtained had an average relative error for the testing data of 0.52% for conversion 3.36% for stability and 0.03% for yield. These small differences between experimental results and predictions indicate a good generalization capability.
Hydrogen as Energy Sources—Basic Concepts
Sep 2021
Publication
This paper covers the hydrogen technologies regarding the role of hydrogen as an energy carrier and the possibilities of its production and use. It is initially presented the modalities and the efficiency of the current technologies of obtaining hydrogen detailing its obtaining by the electrolysis of the water the electrochemical efficiency and the specific consumption of electricity as well as the thermodynamics of the electrochemical processes. The following paragraph addresses hydrogen conversion possibilities. This paragraph details the thermodynamic analysis of the fuel cell the external characteristic of the fuel cell and the types of fuel cell. The last paragraph addresses the possibilities of using the fuel cells for electrical vehicles and cogeneration systems for buildings.In this context the traditional transport and distribution grid will have to adapt to the new realities as they will need to actively participate in the internal energy market by the transformation of the traditional electricity grid in energy flow from unidirectional to bidirectional through the production of hydrogen offering the same facilities as the gas grid.
A Review of Recent Developments in Molecular Dynamics Simulations of the Photoelectrochemical Water Splitting Process
Jun 2021
Publication
In this review we provide a short overview of the Molecular Dynamics (MD) method and how it can be used to model the water splitting process in photoelectrochemical hydrogen production. We cover classical non-reactive and reactive MD techniques as well as multiscale extensions combining classical MD with quantum chemical and continuum methods. Selected examples of MD investigations of various aqueous semiconductor interfaces with a special focus on TiO2 are discussed. Finally we identify gaps in the current state-of-the-art where further developments will be needed for better utilization of MD techniques in the field of water splitting.
The Smart Community: Strategy Layers for a New Sustainable Continental Framework
Feb 2023
Publication
The topic investigated in this article is a comparison contrast and integration effort of European strategies for sustainable development with the evolving market initiatives that are beginning to fuel the fourth industrial revolution. Several regulatory initiatives from continental bodies come into effect to radically change access to finances for business development based on sustainability goals and an analysis of the legislation and trends becomes essential for an effective pivot tactic in the face of adversity as well as change management policies to pre-emptively adapt and perform. The general research question is “what the strategic tools are best employed to overcome the hurdles laid forth by the drastic changes legally required for a sustainable future?” The research methods include a quantitative analysis of norms regulations and legislation including strategic initiatives circulated in the European Union governmental bodies integrated with qualitative research of the literature. The study finds and draws synergies between national strategies that have recently been drafted or are currently evolving with sustainability-centric initiatives such as the hydrogen initiative the nuclear initiative the natural gas initiative the renewables initiative the synthetics and biomass initiative the ESG initiative the digital initiative. The findings are to contribute to the business administration field by providing an appropriate image of the organizational design model in the sustainability era and a strategy framework to build the optimum long-term vision founded on continental regulatory initiatives that have come into effect.
Sustainable Hydrogen Production from Seawater Electrolysis: Through Fundamental Electrochemical Principles to the Most Recent Development
Nov 2022
Publication
Among the many potential future energy sources hydrogen stands out as particularly promising. Because it is a green and renewable chemical process water electrolysis has earned much interest among the different hydrogen production techniques. Seawater is the most abundant source of water and the ideal and cheapest electrolyte. The first part of this review includes the description of the general theoretical concepts: chemical physical and electrochemical that stands on the basis of water electrolysis. Due to the rapid development of new electrode materials and cell technology research has focused on specific seawater electrolysis parameters: the cathodic evolution of hydrogen; the concurrent anodic evolution of oxygen and chlorine; specific seawater catalyst electrodes; and analytical methods to describe their catalytic activity and seawater electrolyzer efficiency. Once the specific objectives of seawater electrolysis have been established through the design and energy performance of the electrolyzer the study further describes the newest challenges that an accessible facility for the electrochemical production of hydrogen as fuel from seawater must respond to for sustainable development: capitalizing on known and emerging technologies; protecting the environment; utilizing green renewable energies as sources of electricity; and above all economic efficiency as a whole.
Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications
Dec 2019
Publication
The climate changes that are becoming visible today are a challenge for the global research community. The stationary applications sector is one of the most important energy consumers. Harnessing the potential of renewable energy worldwide is currently being considered to find alternatives for obtaining energy by using technologies that offer maximum efficiency and minimum pollution. In this context new energy generation technologies are needed to both generate low carbon emissions as well as identifying planning and implementing the directions for harnessing the potential of renewable energy sources. Hydrogen fuel cell technology represents one of the alternative solutions for future clean energy systems. This article reviews the specific characteristics of hydrogen energy which recommends it as a clean energy to power stationary applications. The aim of review was to provide an overview of the sustainability elements and the potential of using hydrogen as an alternative energy source for stationary applications and for identifying the possibilities of increasing the share of hydrogen energy in stationary applications respectively. As a study method was applied a SWOT analysis following which a series of strategies that could be adopted in order to increase the degree of use of hydrogen energy as an alternative to the classical energy for stationary applications were recommended. The SWOT analysis conducted in the present study highlights that the implementation of the hydrogen economy depends decisively on the following main factors: legislative framework energy decision makers information and interest from the end beneficiaries potential investors and existence of specialists in this field.
Recent Development in Nanoconfined Hydrides for Energy Storage
Jun 2022
Publication
Hydrogen is the ultimate vector for a carbon-free sustainable green-energy. While being the most promising candidate to serve this purpose hydrogen inherits a series of characteristics making it particularly difficult to handle store transport and use in a safe manner. The researchers’ attention has thus shifted to storing hydrogen in its more manageable forms: the light metal hydrides and related derivatives (ammonia-borane tetrahydridoborates/borohydrides tetrahydridoaluminates/alanates or reactive hydride composites). Even then the thermodynamic and kinetic behavior faces either too high energy barriers or sluggish kinetics (or both) and an efficient tool to overcome these issues is through nanoconfinement. Nanoconfined energy storage materials are the current state-of-the-art approach regarding hydrogen storage field and the current review aims to summarize the most recent progress in this intriguing field. The latest reviews concerning H2 production and storage are discussed and the shift from bulk to nanomaterials is described in the context of physical and chemical aspects of nanoconfinement effects in the obtained nanocomposites. The types of hosts used for hydrogen materials are divided in classes of substances the mean of hydride inclusion in said hosts and the classes of hydrogen storage materials are presented with their most recent trends and future prospects.
CO2 Emissions Reduction through Increasing H2 Participation in Gaseous Combustible—Condensing Boilers Functional Response
Apr 2022
Publication
Considering the imperative reduction in CO2 emissions both from household heating and hot water producing facilities one of the mainstream directions is to reduce hydrocarbons in combustibles by replacing them with hydrogen. The authors analyze condensing boilers operating when hydrogen is mixed with standard gaseous fuel (CH4 ). The hydrogen (H2 ) volumetric participation in the mixture is considered to vary in the range of 0 to 20%. The operation of the condensing boilers will be numerically modeled by computational programs and prior validated by experimental studies concluded in a European Certified Laboratory. The study concluded that an increase in the combustible flow with 16% will compensate the maximum H2 concentration situation with no other implications on the boiler’s thermal efficiency together with a decrease in CO2 emissions by approximately 7%. By assuming 0.9 (to/year/boiler) the value of CO2 emissions reduction for the condensing boiler determined in the paper and extrapolating it for the estimated number of boilers to be sold for the period 2019–2024 a 254700-ton CO2/year reduction resulted.
On the Possibility to Simulate the Operation of a SI Engine using Alternative Gaseous Fuels
Nov 2019
Publication
A thermodynamic combustion model developed in AVL BOOST software was used in order to evaluate the pollutant emissions performance and efficiency parameters of a spark ignition engine Renault K7M-710 fueled with compressed natural gas hydrogen and blends of compressed natural gas and hydrogen (hythane). Multiple research studies have concluded that for the near future hythane could be the most promising alternative fuel because it has the advantages of both its components. In our previous work the model was validated for the performance and efficiency parameters by comparison of simulation results with experimental data acquired when the engine was fueled with gasoline. In this work the model was improved and can predict the values of pollutant emissions when the engine is running with the studied alternative fuels. As the percentage of hydrogen in hythane is increased the power of the engine rises the brake specific fuel consumption carbon dioxide carbon monoxide and total unburned hydrocarbon emissions decrease while nitrogen oxides increase. The values of peak fire pressure maximum pressure derivative and peak fire temperature in cycle are higher leading to an increased probability of knock occurrence. To avoid this phenomenon an optimum correlation between the natural gas-hydrogen blend the air-fuel ratio the spark advance and the engine operating condition needs to be found.
Optimal Synergy between Photovoltaic Panels and Hydrogen Fuel Cells for Green Power Supply of a Green Building—A Case Study
Jun 2021
Publication
Alternative energy resources have a significant function in the performance and decarbonization of power engendering schemes in the building application domain. Additionally “green buildings” play a special role in reducing energy consumption and minimizing CO2 emissions in the building sector. This research article analyzes the performance of alternative primary energy sources (sun and hydrogen) integrated into a hybrid photovoltaic panel/fuel cell system and their optimal synergy to provide green energy for a green building. The study addresses the future hydrogen-based economy which involves the supply of hydrogen as the fuel needed to provide fuel cell energy through a power distribution infrastructure. The objective of this research is to use fuel cells in this field and to investigate their use as a green building energy supply through a hybrid electricity generation system which also uses photovoltaic panels to convert solar energy. The fuel cell hydrogen is supplied through a distribution network in which hydrogen production is outsourced and independent of the power generation system. The case study creates virtual operating conditions for this type of hybrid energy system and simulates its operation over a one-year period. The goal is to demonstrate the role and utility of fuel cells in virtual conditions by analyzing energy and economic performance indicators as well as carbon dioxide emissions. The case study analyzes the optimal synergy between photovoltaic panels and fuel cells for the power supply of a green building. In the simulation an optimally configured hybrid system supplies 100% of the energy to the green building while generating carbon dioxide emissions equal to 11.72% of the average value calculated for a conventional energy system providing similar energy to a standard residential building. Photovoltaic panels account for 32% of the required annual electricity production and the fuel cells generate 68% of the total annual energy output of the system.
The Direct Effect of Enriching the Gaseous Combustible with 23% Hydrogen in Condensing Boilers’ Operation
Dec 2022
Publication
Following the international trend of using hydrogen as combustible in many industry branches this paper investigates the impact of mixing methane gas with 23% hydrogen (G222) on condensing boilers’ operation. After modeling and testing several boilers with heat exchange surface different designs the authors gathered enough information to introduce a new concept namely High-Performance Condensing Boiler (HPCB). All the boilers that fit into this approach have the same operational parameters at nominal heat load including the CO2 concentrations in flue gases. After testing a flattened pipes condensing boiler a CO2 emission reduction coefficient of 1.1 was determined when converting from methane gas to G222 as combustible. Thus by inserting into the national grid a G222 mixture an important reduction in greenhouse gases can be achieved. For a 28 kW condensing boiler the annual reduction in CO2 emissions averages 1.26 tons value which was experimentally obtained and is consistent with the theoretical evaluation.
Hydrogen–Natural Gas Blending in Distribution Systems—An Energy, Economic, and Environmental Assessment
Aug 2022
Publication
Taking into account the international policies in the field of environmental protection in the world in general and in the European Union in particular the reduction of greenhouse gas (GHG) emissions and primarily of carbon dioxide has become one of the most important objectives. This can be obtained through various renewable energy sources and non-polluting technologies such as the mixing of hydrogen and natural gas. Combining hydrogen with natural gas is an emerging trend in the energy industry and represents one of the most important changes in the efforts to achieve extensive decarbonisation. The importance of this article consists of carrying out a techno-economic study based on the simulation of annual consumptions regarding the construction and use of production capacities for hydrogen to be used in mixtures with natural gas in various percentages in the distribution network of an important operator in Romania. In order to obtain relevant results natural gas was treated as a mixture of real gases with a known composition as defined in the chromatographic bulletin. The survey presents a case study for the injection of 5% 10% and 20% hydrogen in the natural gas distribution system of Bucharest the largest city in Romania. In addition to conducting this techno-economic study the implications for final consumers of this technical solution in reducing greenhouse gas emissions—mainly those of carbon dioxide from combustion—are also presented.
Hydrogen—An Alternative Fuel for Automotive Diesel Engines Used in Transportation
Nov 2020
Publication
Considering the current environmental restrictions particularly those imposed on fossil fuel exploitation hydrogen stands out as a very promising alternative for the power and transportation sectors. This paper investigates the effects of the employment of hydrogen in a K9K automotive diesel engine. Experiments were conducted at a speed of 2000 min−1 with various engine load levels of 40% 55% 70% and 85%; several quantities were monitored to evaluate the performance with hydrogen use in terms of brake-specific energetic consumption (BSEC) fuel economy maximum pressure and heat-release characteristics. It was found that at 55% engine load the engine efficiency increased by 5.3% with hydrogen addition achieving a diesel fuel economy of 1.32 kg/h. The rate of increase of the peak pressure and maximum pressure started to increase as a consequence of the higher fuel quantity that burned in the premixed combustion phase while still remaining within reliable operational limits. The accelerated combustion and augmented heat release rate resulted in a combustion duration that was reduced by 3◦ CA (crank angle degree) achieving a mass fraction burned percentage of 10% to 90% earlier in the cycle and the combustion variability was also influenced. Hydrogen use assured the decrease of CO2 HC NOx and smoke emission levels in comparison with classic fueling.
Complex Metal Borohydrides: From Laboratory Oddities to Prime Candidates in Energy Storage Applications
Mar 2022
Publication
Despite being the lightest element in the periodic table hydrogen poses many risks regarding its production storage and transport but it is also the one element promising pollutionfree energy for the planet energy reliability and sustainability. Development of such novel materials conveying a hydrogen source face stringent scrutiny from both a scientific and a safety point of view: they are required to have a high hydrogen wt.% storage capacity must store hydrogen in a safe manner (i.e. by chemically binding it) and should exhibit controlled and preferably rapid absorption–desorption kinetics. Even the most advanced composites today face the difficult task of overcoming the harsh re-hydrogenation conditions (elevated temperature high hydrogen pressure). Traditionally the most utilized materials have been RMH (reactive metal hydrides) and complex metal borohydrides M(BH4 )x (M: main group or transition metal; x: valence of M) often along with metal amides or various additives serving as catalysts (Pd2+ Ti4+ etc.). Through destabilization (kinetic or thermodynamic) M(BH4 )x can effectively lower their dehydrogenation enthalpy providing for a faster reaction occurring at a lower temperature onset. The present review summarizes the recent scientific results on various metal borohydrides aiming to present the current state-of-the-art on such hydrogen storage materials while trying to analyze the pros and cons of each material regarding its thermodynamic and kinetic behavior in hydrogenation studies.
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasification combined cycles (IGCC) employing the gas switching combustion (GSC) technology for CO2 capture and membrane assisted water gas shift (MAWGS) reactors for hydrogen production. Three GSC-MAWGS-IGCC plants are evaluated based on different gasification technologies: Shell High Temperature Winkler and GE. These advanced plants are compared to two benchmark IGCC plants one without and one with CO2 capture. All plants utilize state-of-the-art H-class gas turbines and hot gas clean-up for maximum efficiency. Under baseload operation the GSC plants returned CO2 avoidance costs in the range of 24.9–36.9 €/ton compared to 44.3 €/ton for the benchmark. However the major advantage of these plants is evident in the more realistic mid-load scenario. Due to the ability to keep operating and sell hydrogen to the market during times of abundant wind and sun the best GSC plants offer a 6–11%-point higher annual rate of return than the benchmark plant with CO2 capture. This large economic advantage shows that the flexible GSC plants are a promising option for balancing VRE provided a market for the generated clean hydrogen exists.
Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus
Nov 2020
Publication
In this paper the optimal and safe operation of a hybrid power system based on a fuel cell system and renewable energy sources is analyzed. The needed DC power resulting from the power flow balance on the DC bus is ensured by the FC system via the air regulator or the fuel regulator controlled by the power-tracking control reference or both regulators using a switched mode of the above-mentioned reference. The optimal operation of a fuel cell system is ensured by a search for the maximum of multicriteria-based optimization functions focused on fuel economy under perturbation such as variable renewable energy and dynamic load on the DC bus. Two search controllers based on the global extremum seeking scheme are involved in this search via the remaining fueling regulator and the boost DC–DC converter. Thus the fuel economy strategies based on the control of the air regulator and the fuel regulator respectively on the control of both fueling regulators are analyzed in this study. The fuel savings compared to fuel consumed using the static feed-forward control are 6.63% 4.36% and 13.72% respectively under dynamic load but without renewable power. With renewable power the needed fuel cell power on the DC bus is lower so the fuel cell system operates more efficiently. These percentages are increased to 7.28% 4.94% and 14.97%.
Performance Evaluation of Renewable Energy Systems: Photovoltaic, Wind Turbine, Battery Bank, and Hydrogen Storage
Sep 2023
Publication
The analysis aims to determine the most efficient and cost-effective way of providing power to a remote site. The two primary sources of power being considered are photovoltaics and small wind turbines while the two potential storage media are a battery bank and a hydrogen storage fuel cell system. Subsequently the hydrogen is stored within a reservoir and employed as required by the fuel cell. This strategy offers a solution for retaining surplus power generated during peak production phases subsequently utilizing it during periods when the renewable power sources are generating less power. To evaluate the performance of the hydrogen storage system the analysis included a sensitivity analysis of the wind speed and the cost of the hydrogen subsystem. In this analysis the capital and replacement costs of the electrolyzer and hydrogen storage tank were linked to the fuel cell capital cost. As the fuel cell cost decreases the cost of the electrolyzer and hydrogen tank also decreases. The optimal system type graph showed that the hydrogen subsystem must significantly decrease in price to become competitive with the battery bank.
Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society
Aug 2023
Publication
The increase in demand and thus the need to lower its price has kept C-based fuels as the main source. In this context the use of oil and gas has led to increased climate change resulting in greenhouse gases. The high percentage of emissions over 40% is due to the production of electricity heat or/and energy transport. This is the main reason for global warming and the extreme and increasingly common climate change occurrences with all of nature being affected. Due to this reason in more and more countries there is an increased interest in renewable energies from sustainable sources with a particular emphasis on decarbonisation. One of the energies analysed for decarbonisation that will play a role in future energy systems is hydrogen. The development of hydrogen–natural gas mixtures is a major challenge in the field of energy and fuel technology. This article aims to highlight the major challenges associated with researching hydrogen–natural gas blends. Meeting this challenge requires a comprehensive research and development effort including exploring appropriate blending techniques optimising performance addressing infrastructure requirements and considering regulatory considerations. Overcoming this challenge will enable the full potential of hydrogen–natural gas blends to be realised as a clean and sustainable energy source. This will contribute to the global transition to a greener and more sustainable future. Several international European and Romanian studies projects and legislative problems are being analysed. The mix between H2 and natural gas decreases fugitive emissions. In contrast using hydrogen increases the risk of fire more than using natural gas because hydrogen is a light gas that easily escapes and ignites at almost any concentration in the air.
Experimental Aspects of the Hydrogen Use at Diesel Engine
May 2017
Publication
In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion aspect discussed on the 2015 Paris Climate Conference contribute to the necessity of searching of alternative energy from durable and renewable resources. The purpose of the paper is the use of hydrogen fuelling at truck diesel engine in order to improves engine efficiency and pollutant performance hydrogen being injected into the inlet manifold. Experimental results show better energetic and pollution performance of the dual fuelled engine due to the improvement of the combustion process and reduction of carbon content.
Main Trends and Research Directions in Hydrogen Generation Using Low Temperature Electrolysis: A Systematic Literature Review
Aug 2022
Publication
Hydrogen (H2 ) is the most abundant element in the universe and it is also a neutral energy carrier meaning the environmental effects of using it are strictly related to the effects of creating the means of producing of that amount of Hydrogen. So far the H2 generation by water electrolysis research field did not manage to break the efficiency barrier in order to consider H2 production as a technology that sustains financially its self-development. However given the complexity of this technology and the overall environmental impacts an up-to-date research and development status review is critical. Thus this study aims to identify the main trends achievements and research directions of the H2 generation using pure and alkaline water electrolysis providing a review of the state of the art in the specific literature. Methods: In order to deliver this a Systematic Literature Review was carried out using PRISMA methodology highlighting the research trends and results in peer review publish articles over more than two years (2020–2022). Findings: This review identifies niches and actual status of the H2 generation by water and alkaline water electrolysis and points out in numbers the boundaries of the 2020–2022 timeline research.
Studies Concerning Electrical Repowering of a Training Airplane Using Hydrogen Fuel Cells
Mar 2024
Publication
The increase in greenhouse gas emissions as well as the risk of fossil fuel depletion has prompted a transition to electric transportation. The European Union aims to substantially reduce pollutant emissions by 2035 through the use of renewable energies. In aviation this transition is particularly challenging mainly due to the weight of onboard equipment. Traditional electric motors with radial magnetic flux have been replaced by axial magnetic flux motors with reduced weight and volume high efficiency power and torque. These motors were initially developed for electric vehicles with in-wheel motors but have been adapted for aviation without modifications. Worldwide there are already companies developing propulsion systems for various aircraft categories using such electric motors. One category of aircraft that could benefit from this electric motor development is traditionally constructed training aircraft with significant remaining flight resource. Electric repowering would allow their continued use for pilot training preparing them for future electrically powered aircraft. This article presents a study on the feasibility of repowering a classic training aircraft with an electric propulsion system. The possibilities of using either a battery or a hybrid source composed of a battery and a fuel cell as an energy source are explored. The goal is to utilize components already in production to eliminate the research phase for specific aircraft components.
Aspects of an Experimental Study of Hydrogen Use at Automotive Diesel Engine
Feb 2023
Publication
Hydrogen may represents a good alternative fuel that can be used to fuel internal combustion engines in order to ameliorate energetic and emissions performance. The paper presents some experimental aspects registered at hydrogen use to fuel a diesel engine different substitute ratios being use in the area of 18–34% at 40% engine load and speed of 2000 rev/min. The engine is equipped with an open ECU and the control of the cyclic dosses of diesel fuel and hydrogen are adjusted in order to maintain the engine power performance. The in-cylinder pressure diagrams show the increase of the maximum pressure with 17% from 78.5 bar to 91.8 bar for the maximum substitute ratio. Also values of maximum pressure rise rate start to increase for hydrogen addition in correlation with the increase of fuel amount burned into the premixed stage without exceed the normal values with assure the normal and reliable engine operation. Higher Lower Heating Value and combustion speed of hydrogen assure the increase in thermal efficiency the brake specific energy consumption decreases with 5.4%–7.8% at substitute ratios of 20–27%. The CO2 emission level decreases with 20% for maximum hydrogen cyclic dose. In terms of pollutant emission level at hydrogen use the emission level of the NOx decreases with 50% and the smoke number decreases with 73.8% comparative to classic fuelling at the maximum hydrogen cyclic dose.
Life Cycle Assessment of Natural Gas-based Chemical Looping for Hydrogen Production
Dec 2014
Publication
Hydrogen production from natural gas combined with advanced CO2 capture technologies such as iron-based chemical looping (CL) is considered in the present work. The processes are compared to the conventional base case i.e. hydrogen production via natural gas steam reforming (SR) without CO2 capture. The processes are simulated using commercial software (ChemCAD) and evaluated from a technical point of view considering important key performance indicators such as hydrogen thermal output net electric power carbon capture rate and specific CO2 emissions. The environmental evaluation is performed using Life Cycle Analysis (LCA) with the following system boundaries considered: i) hydrogen production from natural gas coupled to CO2 capture technologies based on CL ii) upstream processes such as: extraction and processing of natural gas ilmenite and catalyst production and iii) downstream processes such as: H2 and CO2 compression transport and storage. The LCA assessment was carried out using the GaBi6 software. Different environmental impact categories following here the CML 2001 impact assessment method were calculated and used to determine the most suitable technology. Sensitivity analyses of the CO2 compression transport and storage stages were performed in order to examine their effect on the environmental impact categories.
Multilevel Governance, PV Solar Energy, and Entrepreneurship: The Generation of Green Hydrogen as a Fuel of Renewable Origin
Sep 2022
Publication
In Spain the institutional framework for photovoltaic energy production has experienced distinct stages. From 2007 to 2012 the feed-in-tariff system led to high annual growth rates of this renewable energy but after the suppression of the policy of public subsidies the sector stagnated. In recent years green hydrogen an innocuous gas in the atmosphere has become a driving force that stimulates photovoltaic energy production. Since 2020 encouraged by the European energy strategies and corresponding funds Spain has established a regulation to promote green hydrogen as a form of energy resource. Adopting the new institutional economics (NIE) approach this article investigates the process of changing incentives for the energy business sector and its impact on photovoltaic energy production. The results show an increase in the number of both projects approved or on approval and companies involved in green hydrogen that are planning to use photovoltaic energy in Spain thus engendering the creation of a new photovoltaic business environment based on innovation and sustainability.
CO2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles
Jun 2023
Publication
During the last few years electric and hydrogen vehicles have become an alternative to cars that use internal combustion engines. The number of electric and hydrogen vehicles sold has increased due to support from local governments and because car manufacturers will stop the production of internal combustion engines in the near future. The emissions of these vehicles while being driven are zero but they still have an impact on the environment due to their fuel. In this article an analysis of carbon dioxide (CO2 ) emissions for two types of vehicles: battery electric vehicles (BEVs) powered by electricity and fuel cell electric vehicles (FCEVs) powered by hydrogen is presented. The analysis considers different values for the mix of power generation and hydrogen production options in comparison to other studies. The CO2 emissions were calculated and compared for the two types of vehicles. The results show that the CO2 emissions of BEVs are lower when compared to FCEVs if the hydrogen is obtained from pollutant sources and is higher if the hydrogen is obtained from nuclear power and renewable energy sources. When compared to conventional combustion engine vehicles BEVs have lower CO2 emissions while the emissions of FCEVs are dependent on the hydrogen production method.
Energy Efficiency Analysis of a Fuel Cell Bus Model Using Real Scenarios Generated by Data Collection
Feb 2024
Publication
Modernizing public transportation is crucial given the ongoing call for sustainable mobility. Growing concerns about climate change and the increasingly stringent emissions standards have compelled public transport operators to embrace alternative propulsion vehicles on a broader scale. For the past years the Battery Electric Buses (BEBs) have been the vehicle of choice for public transportation. However an emerging contender in this sector is the Fuel Cell Electric Bus (FCEB). This paper aims to evaluate the way one such vehicle would perform in terms of energy efficiency while being exploited in an urban scenario generated from collected data.
Green Hydrogen, a Solution for Replacing Fossil Fuels to Reduce CO2 Emissions
Aug 2024
Publication
The article examines the role of green hydrogen in reducing CO2 emissions in the transition to climate neutrality highlighting both its benefits and challenges. It starts by discussing the production of green hydrogen from renewable sources and provides a brief analysis of primary resource structures for energy production in European countries including Romania. Despite progress there remains a significant reliance on fossil fuels in some countries. Economic technologies for green hydrogen production are explored with a note that its production alone does not solve all issues due to complex and costly compression and storage operations. The concept of impure green hydrogen derived from biomass gasification pyrolysis fermentation and wastewater purification is also discussed. Economic efficiency and future trends in green hydrogen production are outlined. The article concludes with an analysis of hydrogen-methane mixture combustion technologies offering a conceptual framework for economically utilizing green hydrogen in the transition to a green hydrogen economy.
Power Cost and CO2 Emissions for a Microgrid with Hydrogen Storage and Electric Vehicles
Nov 2023
Publication
Hydrogen is considered the primary energy source of the future. The best use of hydrogen is in microgrids that have renewable energy sources (RES). These sources have a small impact on the environment when it comes to carbon dioxide (CO2 ) emissions and a power generation cost close to that of conventional power plants. Therefore it is important to study the impact on the environment and the power cost. The proposed microgrid comprises loads RESs (micro-hydro and photovoltaic power plants) a hydrogen storage tank an electric battery and fuel cell vehicles. The power cost and CO2 emissions are calculated and compared for various scenarios including the four seasons of the year compared with the work of other researchers. The purpose of this paper is to continuously supply the loads and vehicles. The results show that the microgrid sources and hydrogen storage can supply consumers during the spring and summer. For winter and autumn the power grid and steam reforming of natural gas must be used to cover the demand. The highest power costs and CO2 emissions are for winter while the lowest are for spring. The power cost increases during winter between 20:00 and 21:00 by 336%. The CO2 emissions increase during winter by 8020%.
Hydrogen in Natural Gas Grids: Prospects and Recommendations About Gas Flow Meters
Aug 2024
Publication
To inject green hydrogen (H2) into the existing natural gas (NG) infrastructure is one way to decarbonize the European energy system. However asset readiness is necessary to be successful. Preliminary analysis and experimental results about the compatibility of hydrogen and natural gas mixtures (H2NG) with the actual gas grids make the scientific community confident about the feasibility. Nevertheless specific technical questions need more research. A significant topic of debate is the impact of H2NG mixtures on the performance of state-ofthe-art fiscal measuring devices which are essential for accurate billing. Identifying and addressing any potential degradation in their metrological performance due to H2NG is critical for decision-making. However the literature lacks data about the gas meters’ technologies currently installed in the NG grids such as a comprehensive overview of their readiness at different concentrations while data are fragmented among different sources. This paper addresses these gaps by analyzing the main characteristics and categorizing more than 20000 gas meters installed in THOTH2 project partners’ grids and by summarizing the performance of traditional technologies with H2NG mixtures and pure H2 based on literature review operators experience and manufacturers knowledge. Based on these insights recommendations are given to stakeholders on overcoming the identified barriers to facilitate a smooth transition.
The Technical and Economic Aspects of Integrating Energy Sectors for Climate Neutrality
Sep 2024
Publication
With the development of an energy sector based on renewable primary sources structural changes are emerging for the entire national energy system. Initially it was estimated that energy generation based on fossil fuels would decrease until its disappearance. However the evolution of CO2 capture capacity leads to a possible coexistence for a certain period with the renewable energy sector. The paper develops this concept of the coexistence of the two systems with the positioning of green hydrogen not only within the renewable energy sector but also as a transformation vector for carbon dioxide captured in the form of synthetic fuels such as CH4 and CH3OH. The authors conducted pilot-scale research on CO2 capture with green H2 both for pure (captured) CO2 and for CO2 found in combustion gases. The positive results led to the respective recommendation. The research conducted by the authors meets the strict requirements of the current energy phase with the authors considering that wind and solar energy alone are not sufficient to meet current energy demand. The paper also analyzes the economic aspects related to price differences for energy produced in the two sectors as well as their interconnection. The technical aspect as well as the economic aspect of storage through various other solutions besides hydrogen has been highlighted. The development of the renewable energy sector and its demarcation from the fossil fuel energy sector even with the transcendent vector represented by green hydrogen leads to the deepening of dispersion aspects between the electricity sector and the thermal energy sector a less commonly mentioned aspect in current works but of great importance. The purpose of this paper is to highlight energy challenges during the current transition period towards climate neutrality along with solutions proposed by the authors to be implemented in this phase. The current stage of combustion of the CH4 − H2 mixture imposes requirements for the capture of the resulting CO2.
Marine Renewable-Driven Green Hydrogen Production Toward a Sustainable Solution and a Low-carbon Future in Morocco
May 2024
Publication
Oceanic energy sources notably offshore wind and wave power present a significant opportunity to generate green hydrogen through water electrolysis. This approach allows for offshore hydrogen production which can be efficiently transported through existing pipelines and stored in various forms offering a versatile solution to tackle the intermittency of renewable energy sources and potentially revolutionize the entire electrical grid infrastructure. This research focusses on assessing the technical and economic feasibility of this method in six strategic coastal regions in Morocco: Laayoune Agadir Essaouira Eljadida Casablanca and Larache. Our proposed system integrates offshore wind turbines oscillating water column wave energy converters and PEM electrolyzers to meet energy demands while aligning with global sustainability objectives. Significant electricity production estimates are observed across these regions ranging from 14 MW to 20 MW. Additionally encouraging annual estimates of hydrogen production varying between 20 and 40 tonnes for specific locations showcase the potential of this approach. The system’s performance demonstrates promising efficiency rates ranging from 13% to 18% while maintaining competitive production costs. These findings underscore the ability of oceanic energy-driven green hydrogen to diversify Morocco’s energy portfolio bolster water resilience and foster sustainable development. Ultimately this research lays the groundwork for comprehensive energy policies and substantial infrastructure investments positioning Morocco on a trajectory towards a decarbonized future powered by innovative and clean technologies.
No more items...