Power Cost and CO2 Emissions for a Microgrid with Hydrogen Storage and Electric Vehicles
Abstract
Hydrogen is considered the primary energy source of the future. The best use of hydrogen is in microgrids that have renewable energy sources (RES). These sources have a small impact on the environment when it comes to carbon dioxide (CO2 ) emissions and a power generation cost close to that of conventional power plants. Therefore, it is important to study the impact on the environment and the power cost. The proposed microgrid comprises loads, RESs (micro-hydro and photovoltaic power plants), a hydrogen storage tank, an electric battery and fuel cell vehicles. The power cost and CO2 emissions are calculated and compared for various scenarios, including the four seasons of the year, compared with the work of other researchers. The purpose of this paper is to continuously supply the loads and vehicles. The results show that the microgrid sources and hydrogen storage can supply consumers during the spring and summer. For winter and autumn, the power grid and steam reforming of natural gas must be used to cover the demand. The highest power costs and CO2 emissions are for winter, while the lowest are for spring. The power cost increases during winter between 20:00 and 21:00 by 336%. The CO2 emissions increase during winter by 8020%.