Netherlands
Uncertainties in Explosion Risk Assessment for a Hydrogen Refuelling Station
Sep 2011
Publication
The project “Towards a Hydrogen Refuelling Infrastructure for Vehicles” (THRIVE) aimed at the determination of conditions to stimulate the building of a sustainable infrastructure for hydrogen as a car fuel in The Netherlands. Economic scenarios were constructed for the development of such an infrastructure for the next one to four decades. The eventual horizon will require the erection of a few hundred to more than a thousand hydrogen refuelling stations (HRS) in The Netherlands. The risk acceptability policy in The Netherlands implemented in the External Safety Establishments decree requires the assessment and management of safety risks imposed on the public by car fuelling stations. In the past a risk-informed policy has been developed for the large scale introduction of liquefied petroleum gas (LPG) as a car fuel and a similar policy will also be required if hydrogen is introduced in the public domain. A risk assessment methodology dedicated to cope with accident scenarios relevant for hydrogen applications is to be developed. Within the THRIVE project a demo risk assessment was conducted for the possible implementation of an HRS within an existing station for conventional fuels. The studied station is located in an urban area occupied with housing and commercial activities. The HRS is based on delivery and on-site storage of liquid hydrogen and dispensing of high pressure gaseous hydrogen into vehicles. The main challenges in the risk assessment were in the modelling of release and dispersion of liquid hydrogen. Definition of initial conditions for computational fluid dynamics (CFD) modelling to evaluate dispersion of a cold hydrogen air mixture appears rather complex and is not always fully understood. The modelling assumptions in the initial conditions determine to a large extent the likelihood and severity of potential explosion effects. The paper shows the results of the investigation and the sensitivity to the basic assumptions in the model input.
HIAD – Hydrogen Incident and Accident Database
Sep 2011
Publication
The Hydrogen Incident and Accident Database (HIAD) is being developed as a repository of systematic data describing in detail hydrogen-related undesired events (incidents or accidents). It is an open web-based information system serving various purposes such as a data source for lessons learnt risk communication and partly risk assessment. The paper describes the features of the three HIAD modules – the Data Entry Module (DEM) the Data Retrieval Module (DRM) and the Data Analysis Module (DAM) – and the potential impact the database may have on hydrogen safety. The importance of data quality assurance process is also addressed.
Test Methodologies for Hydrogen Sensor Performance Assessment: Chamber vs. Flow-through Test Apparatus
Sep 2017
Publication
Certification of hydrogen sensors to meet standards often prescribes using large-volume test chambers. However feedback from stakeholders such as sensor manufacturers and end-users indicates that chamber test methods are often viewed as too slow and expensive for routine assessment. Flow-through test methods are potentially an efficient and cost-effective alternative for sensor performance assessment. A large number of sensors can be simultaneously tested in series or in parallel with an appropriate flow-through test fixture. The recent development of sensors with response times of less than 1s mandates improvements in equipment and methodology to properly capture the performance of this new generation of fast sensors; flow methods are a viable approach for accurate response and recovery time determinations but there are potential drawbacks. According to ISO 26142 flow-through test methods may not properly simulate ambient applications. In chamber test methods gas transport to the sensor is dominated by diffusion which is viewed by some users as mimicking deployment in rooms and other confined spaces. Conversely in flow-through methods forced flow transports the gas to the sensing element. The advective flow dynamics may induce changes in the sensor behaviour relative to the quasi-quiescent condition that may prevail in chamber test methods. The aim of the current activity in the JRC and NREL sensor laboratories is to develop a validated flow-through apparatus and methods for hydrogen sensor performance testing. In addition to minimizing the impact on sensor behaviour induced by differences in flow dynamics challenges associated with flow-through methods include the ability to control environmental parameters (humidity pressure and temperature) during the test and changes in the test gas composition induced by chemical reactions with upstream sensors. Guidelines on flow-through test apparatus design and protocols for the evaluation of hydrogen sensor performance have been developed. Various commercial sensor platforms (e.g. thermal conductivity catalytic and metal semiconductor) were used to demonstrate the advantages and issues with the flow-through methodology.
Influence of the Gas Injector Configuration on the Temperature Evolution During Refueling of On-board Hydrogen Tanks
Jul 2016
Publication
In this article we show a refuelling strategy analysis using different injector configurations to refuel a 70 MPa composite reinforced type 4 tank. The gas has been injected through single openings of different diameters (3 mm 6 mm and 10 mm) and alternatively through multiple small holes (4 × 3 mm). For each injector configuration slow (12 min) and faster (3 min) fillings have been performed. The gas temperature has been measured at different positions inside the tank as well as the temperatures of the wall materials at various locations: on the external surface and at the interface between the liner and the fiber reinforced composite. In general the larger the injector diameter and the slower the filling the higher the chance that the gas develops vertical temperature gradients (a so-called gas temperature stratification) resulting in higher than average temperatures near the top of the tank and lower than average at its bottom. While the single 3 mm opening injector causes homogeneous gas temperatures for both filling speeds both the 6 mm and 10 mm opening injectors induce gas temperature stratification during the 12 min fillings. The injector with multiple holes has an area comparable to the 6 mm single opening injector: in general this more complex geometry tends to limit the inhomogeneity of gas temperatures during slow fillings. When gas temperature stratification develops the wall materials temperature is also locally affected. This results in a higher than average temperature at the top of the tank and higher the slower the filling.
Opportunities for Hydrogen Energy Technologies Considering the National Energy & Climate Plans
Aug 2020
Publication
The study analyses the role of hydrogen in the National Energy and Climate Plans (NECPs) and identifies and highlights opportunities for hydrogen technologies to contribute to effective and efficient achievement of the 2030 climate and energy targets of the EU and its Member States.<br/>The study focuses on the potential and opportunities of renewable hydrogen produced by electrolysers using renewable electricity and of low-carbon hydrogen produced by steam methane reforming combined with CCS. The opportunities for and impacts of hydrogen deployment are assessed and summarised in individual fiches per Member State.<br/>The study analyses to what extent policy measures and industrial initiatives are already being taken to facilitate large-scale implementation of hydrogen in the current and the next decades. The study concludes by determining the CO2 reduction potential beyond what is foreseen in the NECPs through hydrogen energy technologies estimating the reduction of fossil fuel imports and reliance the prospective cost and the value added and jobs created. National teams working on decarbonisation roadmaps and updates of the NECPs are welcome to consider the opportunities and benefits of hydrogen deployment identified in this study.
The Emotional Dimensions of Energy Projects: Anger, Fear, Joy and Pride About the First Hydrogen Fuel Station in the Netherlands
May 2018
Publication
Citizens’ emotional responses to energy technology projects influence the success of the technology’s implementation. Contrary to popular belief these emotions can have a systematic base. Bringing together insights from appraisal theory and from technology acceptance studies this study develops and tests hypotheses regarding antecedents of anger fear joy and pride about a local hydrogen fuel station (HFS). A questionnaire study was conducted among 271 citizens living near the first publicly accessible HFS in the Netherlands around the time of its implementation. The results show that anger is significantly explained by (from stronger to weaker effects) perceived procedural and distributive unfairness and fear by distributive unfairness perceived safety procedural unfairness gender and prior awareness. Joy is significantly explained by perceived environmental outcomes and perceived usefulness and pride by prior awareness perceived risks trust in industry and perceived usefulness. The study concludes that these predictors are understandable practical and moral considerations which can and should be taken into account when developing and executing a project.
Reversible Ammonia-based and Liquid Organic Hydrogen Carriers for High-density Hydrogen Storage: Recent Progress
Feb 2019
Publication
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers with a particular focus on the challenge of ensuring easily regenerable high-density hydrogen storage.
The Role of the Substrate on the Mechanical and Thermal Stability of Pd Thin Films During Hydrogen (De)sorption
Nov 2020
Publication
In this work we studied the mechanical and thermal stability of ~100 nm Pd thin films magnetron sputter deposited on a bare oxidized Si(100) wafer a sputtered Titanium (Ti) intermediate layer and a spin-coated Polyimide (PI) intermediate layer. The dependence of the film stability on the film morphology and the film-substrate interaction was investigated. It was shown that a columnar morphology with elongated voids at part of the grain boundaries is resistant to embrittlement induced by the hydride formation (α↔β phase transitions). For compact film morphology depending on the rigidity of the intermediate layer and the adherence to the substrate complete transformation (Pd-PI-SiO2/Si) or partly suppression (Pd-Ti-SiO2/Si) of the α to β-phase was observed. In the case of Pd without intermediate layer (Pd-SiO2/Si) buckling delamination occurred. The damage and deformation mechanisms could be understood by the analysis of the stresses and dislocation (defects) behavior near grain boundaries and the film-substrate interface. From diffraction line-broadening combined with microscopy analysis we showed that in Pd thin films stresses relax at critical stress values via different relaxation pathways depending on film-microstructure and film-substrate interaction. On the basis of the in-situ hydriding experiments it was concluded that a Pd film on a flexible PI intermediate layer exhibits free-standing film-like behavior besides being strongly clamped on a stiff SiO2/Si substrate.
Towards a CO2-neutral Steel Industry: Justice Aspects of CO2 Capture and Storage, Biomass- and Green Hydrogen-based Emission Reductions
Apr 2022
Publication
A rapid transition towards a CO2-neutral steel industry is required to limit climate change. Such a transition raises questions of justice as it entails positive and negative impacts unevenly distributed across societal stakeholders. To enable stakeholders to address such concerns this paper assesses the justice implications of three options that reduce emissions: CO2 capture and storage (CCS) on steel (up to 70%) bio-based steelmaking (up to 50%) and green hydrogen-based steel production (up to 100%). We select justice indicators from the energy climate labour and environmental justice literature and assess these indicators qualitatively for each of the technological routes based on literature and desk research. We find context-dependent differences in justness between the different technological routes. The impact on stakeholders varies across regions. There are justice concerns for local communities because of economic dependence on and environmental impact of the industry. Communities elsewhere are impacted through the siting of infrastructure and feedstock production. CCS and bio-based steelmaking routes can help retain industry and associated economic benefits on location while hydrogen-based steelmaking may deal better with environmental concerns. We conclude that besides techno-economic and environmental information transparency on sector-specific justice implications of transforming steel industries is essential for decision-making on technological routes
Fuel Cell Electric Vehicles and Hydrogen Balancing 100 Percent Renewable and Integrated National Transportation and Energy Systems
Feb 2021
Publication
Future national electricity heating cooling and transport systems need to reach zero emissions. Significant numbers of back-up power plants as well as large-scale energy storage capacity are required to guarantee the reliability of energy supply in 100 percent renewable energy systems. Electricity can be partially converted into hydrogen which can be transported via pipelines stored in large quantities in underground salt caverns to overcome seasonal effects and used as electricity storage or as a clean fuel for transport. The question addressed in this paper is how parked and grid-connected hydrogen-fuelled Fuel Cell Electric Vehicles might balance 100 per cent renewable electricity heating cooling and transport systems at the national level in Denmark Germany Great Britain France and Spain? Five national electricity heating cooling and transport systems are modeled for the year 2050 for the five countries assuming only 50 percent of the passenger cars to be grid-connected Fuel Cell Electric Vehicles the remaining Battery Electric Vehicles. The grid-connected Fuel Cell Electric Vehicle fleet can always balance the energy systems and their usage is low having load factors of 2.1–5.5 percent corresponding to an average use of 190–480 h per car per year. At peak times occurring only a few hours per year 26 to 43 percent of the grid-connected Fuel Cell Electric Vehicle are required and in particular for energy systems with high shares of solar energy such as Spain balancing by grid-connected Fuel Cell Electric Vehicles is mainly required during the night which matches favorably with driving usage.
Prospects and Challenges for Green Hydrogen Production and Utilization in the Philippines
Apr 2022
Publication
The Philippines is exploring different alternative sources of energy to make the country less dependent on imported fossil fuels and to reduce significantly the country's CO2 emissions. Given the abundance of renewable energy potential in the country green hydrogen from renewables is a promising fuel because it can be utilized as an energy carrier and can provide a source of clean and sustainable energy with no emissions. This paper aims to review the prospects and challenges for the potential use of green hydrogen in several production and utilization pathways in the Philippines. The study identified green hydrogen production routes from available renewable energy sources in the country including geothermal hydropower wind solar biomass and ocean. Opportunities for several utilization pathways include transportation industry utility and energy storage. From the analysis this study proposes a roadmap for a green hydrogen economy in the country by 2050 divided into three phases: green hydrogen as industrial feedstock green hydrogen as fuel cell technology and commercialization of green hydrogen. On the other hand the analysis identified several challenges including technical economic and social aspects as well as the corresponding policy implications for the realization of a green hydrogen economy that can be applied in the Philippines and other developing countries.
Control of Electrons’ Spin Eliminates Hydrogen Peroxide Formation During Water Splitting
Jul 2017
Publication
The production of hydrogen through water splitting in a photoelectrochemical cell suffers from an overpotential that limits the efficiencies. In addition hydrogen-peroxide formation is identified as a competing process affecting the oxidative stability of photoelectrodes. We impose spin-selectivity by coating the anode with chiral organic semiconductors from helically aggregated dyes as sensitizers; Zn-porphyrins and triarylamines. Hydrogen peroxide formation is dramatically suppressed while the overall current through the cell correlating with the water splitting process is enhanced. Evidence for a strong spin-selection in the chiral semiconductors is presented by magnetic conducting (mc-)AFM measurements in which chiral and achiral Zn-porphyrins are compared. These findings contribute to our understanding of the underlying mechanism of spin selectivity in multiple electron-transfer reactions and pave the way toward better chiral dye-sensitized photoelectrochemical cells.
Quantitative Risk Analysis of a Hazardous Jet Fire Event for Hydrogen Transport in Natural Gas Transmission Pipelines
Jan 2021
Publication
With the advent of large-scale application of hydrogen transportation becomes crucial. Reusing the existing natural gas transmission system could serve as catalyst for the future hydrogen economy. However a risk analysis of hydrogen transmission in existing pipelines is essential for the deployment of the new energy carrier. This paper focuses on the individual risk (IR) associated with a hazardous hydrogen jet fire and compares it with the natural gas case. The risk analysis adopts a detailed flame model and state of the art computational software to provide an enhanced physical description of flame characteristics.<br/>This analysis concludes that hydrogen jet fires yield lower lethality levels that decrease faster with distance than natural gas jet fires. Consequently for large pipelines hydrogen transmission is accompanied by significant lower IR. Howbeit ignition effects increasingly dominate the IR for decreasing pipeline diameters and cause hydrogen transmission to yield increased IR in the vicinity of the pipeline when compared to natural gas.
Comparison Between Carbon Molecular Sieve and Pd-Ag Membranes in H2-CH4 Separation at High Pressure
Aug 2020
Publication
From a permeability and selectivity perspective supported thin-film Pd–Ag membranes are the best candidates for high-purity hydrogen recovery for methane-hydrogen mixtures from the natural gas grid. However the high hydrogen flux also results in induced bulk-to-membrane mass transfer limitations (concentration polarization) especially when working at low hydrogen concentration and high pressure which further reduces the hydrogen permeance in the presence of mixtures. Additionally Pd is a precious metal and its price is lately increasing dramatically. The use of inexpensive CMSM could become a promising alternative. In this manuscript a detailed comparison between these two membrane technologies operating under the same working pressure and mixtures is presented.<br/>First the permeation properties of CMSM and Pd–Ag membranes are compared in terms of permeance and purity and subsequently making use of this experimental investigation an economic evaluation including capital and variable costs has been performed for a separation system to recover 25 kg/day of hydrogen from a methane-hydrogen mixture. To widen the perspective also a sensitivity analysis by changing the pressure difference membrane lifetime membrane support cost and cost of Pd/Ag membrane recovery has been considered. The results show that at high pressure the use of CMSM is to more economic than the Pd-based membranes at the same recovery and similar purity.
A Personal Retrospect on Three Decades of High Temperature Fuel Cell Research; Ideas and Lessons Learned
Feb 2021
Publication
In 1986 the Dutch national fuel cell program started. Fuel cells were developed under the paradigm of replacing conventional technology. Coal-fired power plants were to be replaced by large-scale MCFC power plants fuelled by hydrogen in a full-scale future hydrogen economy. With today's knowledge we will reflect on these and other ideas with respect to high temperature fuel cell development including the choice for the type of high temperature fuel cell. It is explained that based on thermodynamics proton conducting fuel cells would have been a better choice and the direct carbon fuel cell even more so with electrochemical gasification of carbon as the ultimate step. The specific characteristics of fuel cells and multisource multiproduct systems were not considered whereas we understand now that these can provide huge driving forces for the implementation of fuel cells compared to just replacing conventional combined heat and power production technology.
The Curious Case of the Conflicting Roles of Hydrogen in Global Energy Scenarios
Oct 2019
Publication
As energy systems transition from fossil-based to low-carbon they face many challenges particularly concerning energy security and flexibility. Hydrogen may help to overcome these challenges with potential as a transport fuel for heating energy storage conversion to electricity and in industry. Despite these opportunities hydrogen has historically had a limited role in influential global energy scenarios. Whilst more recent studies are beginning to include hydrogen the role it plays in different scenarios is extremely inconsistent. In this perspective paper reasons for this inconsistency are explored considering the modelling approach behind the scenario scenario design and data assumptions. We argue that energy systems are becoming increasingly complex and it is within these complexities that new technologies such as hydrogen emerge. Developing a global energy scenario that represents these complexities is challenging and in this paper we provide recommendations to help ensure that emerging technologies such as hydrogen are appropriately represented. These recommendations include: using the right modelling tools whilst knowing the limits of the model; including the right sectors and technologies; having an appropriate level of ambition; and making realistic data assumptions. Above all transparency is essential and global scenarios must do more to make available the modelling methods and data assumptions used.
A Review at the Role of Storage in Energy Systems with a Focus on Power to Gas and Long-term Storage
Aug 2017
Publication
A review of more than 60 studies (plus m4ore than 65 studies on P2G) on power and energy models based on simulation and optimization was done. Based on these for power systems with up to 95% renewables the electricity storage size is found to be below 1.5% of the annual demand (in energy terms). While for 100% renewables energy systems (power heat mobility) it can remain below 6% of the annual energy demand. Combination of sectors and diverting the electricity to another sector can play a large role in reducing the storage size. From the potential alternatives to satisfy this demand pumped hydro storage (PHS) global potential is not enough and new technologies with a higher energy density are needed. Hydrogen with more than 250 times the energy density of PHS is a potential option to satisfy the storage need. However changes needed in infrastructure to deal with high hydrogen content and the suitability of salt caverns for its storage can pose limitations for this technology. Power to Gas (P2G) arises as possible alternative overcoming both the facilities and the energy density issues. The global storage requirement would represent only 2% of the global annual natural gas production or 10% of the gas storage facilities (in energy equivalent). The more options considered to deal with intermittent sources the lower the storage requirement will be. Therefore future studies aiming to quantify storage needs should focus on the entire energy system including technology vectors (e.g. Power to Heat Liquid Gas Chemicals) to avoid overestimating the amount of storage needed.
Measuring Accuracy and Computational Capacity Trade-offs in an Hourly Integrated Energy System Model
Feb 2021
Publication
Improving energy system modelling capabilities can directly affect the quality of applied studies. However some modelling trade-offs are necessary as the computational capacity and data availability are constrained. In this paper we demonstrate modelling trade-offs resulting from the modification in the resolution of four modelling capabilities namely transitional scope European electricity interconnection hourly demand-side flexibility description and infrastructure representation. We measure the cost of increasing resolution in each capability in terms of computational time and several energy system modelling indicators notably system costs emission prices and electricity import and export levels. The analyses are performed in a national-level integrated energy system model with a linear programming approach that includes the hourly electricity dispatch with European nodes. We determined that reducing the transitional scope from seven to two periods can reduce the computational time by 75% while underestimating the objective function by only 4.6%. Modelers can assume a single European Union node that dispatches electricity at an aggregated level which underestimates the objective function by 1% while halving the computational time. Furthermore the absence of shedding and storage flexibility options can increase the curtailed electricity by 25% and 8% respectively. Although neglecting flexibility options can drastically decrease the computational time it can increase the sub-optimality by 31%. We conclude that an increased resolution in modelling flexibility options can significantly improve the results. While reducing the computational time by half the lack of electricity and gas infrastructure representation can underestimate the objective function by 4% and 6% respectively.
Trace Level Analysis of Reactive ISO 14687 Impurities in Hydrogen Fuel Using Laser-based Spectroscopic Detection Methods
Oct 2020
Publication
Hydrogen fuelled vehicles can play a key role in the decarbonisation of transport and reducing emissions. To ensure the durability of fuel cells a specification has been developed (ISO 14687) setting upper limits to the amount fraction of a series of impurities. Demonstrating conformity with this standard requires demonstrating by measurement that the actual levels of the impurities are below the thresholds. Currently the industry is unable to do so for measurement standards and sensitive dedicated analytical methods are lacking. In this work we report on the development of such measurement standards and methods for four reactive components: formaldehyde formic acid hydrogen chloride and hydrogen fluoride. The primary measurement standard is based on permeation and the analytical methods on highly sensitive and selective laser-based spectroscopic techniques. Relative expanded uncertainties at the ISO 14687 threshold level in hydrogen of 4% (formaldehyde) 8% (formic acid) 5% (hydrogen chloride) and 8% (hydrogen fluoride) have been achieved.
Methane Pyrolysis in a Molten Gallium Bubble Column Reactor for Sustainable Hydrogen Production: Proof of Concept & Techno-economic Assessment
Dec 2020
Publication
Nowadays nearly 50% of the hydrogen produced worldwide comes from Steam Methane Reforming (SMR) at an environmental burden of 10.5 tCO2 eq/tH2 accelerating the consequences of global warming. One way to produce clean hydrogen is via methane pyrolysis using melts of metals and salts. Compared to SMR significant less CO2 is produced due to conversion of methane into hydrogen and carbon making this route more sustainable to generate hydrogen. Hydrogen is produced with high purity and solid carbon is segregated and deposited on the molten bath. Carbon may be sold as valuable co-product making industrial scale promising. In this work methane pyrolysis was performed in a quartz bubble column using molten gallium as heat transfer agent and catalyst. A maximum conversion of 91% was achieved at 1119 °C and ambient pressure with a residence time of the bubbles in the liquid of 0.5 s. Based on in-depth analysis of the carbon it can be characterized as carbon black. Techno-economic and sensitivity analyses of the industrial concept were done for different scenarios. The results showed that if co-product carbon is saleable and a CO2 tax of 50 euro per tonne is imposed to the processes the molten metal technology can be competitive with SMR.
No more items...