Netherlands
A Review of Fuel Cell Systems for Maritime Applications
Jul 2016
Publication
Progressing limits on pollutant emissions oblige ship owners to reduce the environmental impact of their operations. Fuel cells may provide a suitable solution since they are fuel efficient while they emit few hazardous compounds. Various choices can be made with regard to the type of fuel cell system and logistic fuel and it is unclear which have the best prospects for maritime application. An overview of fuel cell types and fuel processing equipment is presented and maritime fuel cell application is reviewed with regard to efficiency gravimetric and volumetric density dynamic behaviour environmental impact safety and economics. It is shown that low temperature fuel cells using liquefied hydrogen provide a compact solution for ships with a refuelling interval up to a tens of hours but may result in total system sizes up to five times larger than high temperature fuel cells and more energy dense fuels for vessels with longer mission requirements. The expanding infrastructure of liquefied natural gas and development state of natural gas-fuelled fuel cell systems can facilitate the introduction of gaseous fuels and fuel cells on ships. Fuel cell combined cycles hybridisation with auxiliary electricity storage systems and redundancy improvements are identified as topics for further study
Is a 100% Renewable European Power System Feasible by 2050?
Nov 2018
Publication
In this study we model seven scenarios for the European power system in 2050 based on 100% renewable energy sources assuming different levels of future demand and technology availability and compare them with a scenario which includes low-carbon non-renewable technologies. We find that a 100% renewable European power system could operate with the same level of system adequacy as today when relying on European resources alone even in the most challenging weather year observed in the period from 1979 to 2015. However based on our scenario results realising such a system by 2050 would require: (i) a 90% increase in generation capacity to at least 1.9 TW (compared with 1 TW installed today) (ii) reliable cross-border transmission capacity at least 140GW higher than current levels (60 GW) (iii) the well-managed integration of heat pumps and electric vehicles into the power system to reduce demand peaks and biogas requirements (iv) the implementation of energy efficiency measures to avoid even larger increases in required biomass demand generation and transmission capacity (v) wind deployment levels of 7.5GWy−1 (currently 10.6GWy−1) to be maintained while solar photovoltaic deployment to increase to at least 15GWy−1 (currently 10.5GWy−1) (vi) large-scale mobilisation of Europe’s biomass resources with power sector biomass consumption reaching at least 8.5 EJ in the most challenging year (compared with 1.9 EJ today) and (vii) increasing solid biomass and biogas capacity deployment to at least 4GWy−1 and 6 GWy−1 respectively. We find that even when wind and solar photovoltaic capacity is installed in optimum locations the total cost of a 100% renewable power system (∼530 €bn y−1) would be approximately 30% higher than a power system which includes other low-carbon technologies such as nuclear or carbon capture and storage (∼410 €bn y−1). Furthermore a 100% renewable system may not deliver the level of emission reductions necessary to achieve Europe’s climate goals by 2050 as negative emissions from biomass with carbon capture and storage may still be required to offset an increase in indirect emissions or to realise more ambitious decarbonisation pathways.
Modeling Photovoltaic-electrochemical Water Splitting Devices for the Production of Hydrogen Under Real Working Conditions
Jan 2022
Publication
Photoelectrochemical splitting of water is potentially a sustainable and affordable solution to produce hydrogen from sun light. Given the infancy stage of technology development it is important to compare the different experimental concepts and identify the most promising routes. The performance of photoelectrochemical devices is typically measured and reported under ideal irradiation conditions i.e. 1 sun. However real-life operating conditions are very different and are varying in time according to daily and seasonal cycles. In this work we present an equivalent circuit model for computing the steady state performance of photoelectrochemical cells. The model allows for a computationally efficient yet precise prediction of the system performance and a comparison of different devices working in real operating conditions. To this end five different photo-electrochemical devices are modeled using experimental results from literature. The calculated performance shows good agreement with experimental data of the different devices. Furthermore the model is extended to include the effect of illumination and tilt angle on the hydrogen production efficiency. The resulting model is used to compare the devices for different locations with high and low average illumination and different tilt angles. The results show that including real illumination data has a considerable impact on the efficiency of the PV-EC device. The yearly average solar-to-hydrogen efficiency is significantly lower than the ideal one. Moreover it is dependent on the tilt angle whose optimal value for European-like latitude is around 40. Notably we also show that the most performing device through the whole year might not necessarily be the one with highest sun-to-hydrogen efficiency for one-sun illumination.
CFD Analysis of Fast Filling Strategies for Hydrogen Tanks and their Effects on Key-parameters
Nov 2014
Publication
A major requirement for the filling of hydrogen tanks is the maximum gas temperature within the vessels during the process. Different filling strategies in terms of pressure and temperature of the gas injected into the cylinder and their effects on key parameters like maximum temperature state of charge and energy cooling demand are investigated. It is shown that pre-cooling of the gas is required but is not necessary for the whole duration of the filling. Relevant energy savings can be achieved with pre-cooling over a fraction of the time. The most convenient filling strategy from the cooling energy point of view is identified: with an almost linear pressure rise and pre-cooling in the second half of the process a 60% reduction of the cooling energy demand is achieved compared to the case of pre-cooling for the whole filling.
Onboard Compressed Hydrogen Storage: Fast Filling Experiments and Simulations
Nov 2021
Publication
Technology safety represents a key enabling factor for the commercial use of hydrogen within the automotive industry. In the last years considerable pre-normative and normative research effort has produced regulations at national European and global level as well as international standards. Their validation is at the moment on going internationally. Additional research is required to improve this regulatory and standardization frame which is also expected to have a beneficial effect on cost and product optimization. The present paper addresses results related to the experimental assessment and modeling of safety performance of high pressure onboard storage. To simulate the lifetime of onboard hydrogen tanks commercial tanks have been subjected to filling-emptying cycles encompassing a fast-filling phase as prescribed by the European regulation on type-approval of hydrogen vehicles. The local temperature history inside the tanks has been measured and compared with the temperature outside at the tank metallic bosses which is the measurement location identified by the regulation. Experimental activities are complemented by computational fluid-dynamics (CFD) modeling of the fast-filling process by means of a numerical model previously validated. The outcome of these activities is a set of scientifically based data which will serve as input to future regulations and standards improvement.
Potential of Power-to-Methane in the EU Energy Transition to a Low Carbon System Using Cost Optimization
Oct 2018
Publication
Power-to-Methane (PtM) can provide flexibility to the electricity grid while aiding decarbonization of other sectors. This study focuses specifically on the methanation component of PtM in 2050. Scenarios with 80–95% CO2 reduction by 2050 (vs. 1990) are analyzed and barriers and drivers for methanation are identified. PtM arises for scenarios with 95% CO2 reduction no CO2 underground storage and low CAPEX (75 €/kW only for methanation). Capacity deployed across EU is 40 GW (8% of gas demand) for these conditions which increases to 122 GW when liquefied methane gas (LMG) is used for marine transport. The simultaneous occurrence of all positive drivers for PtM which include limited biomass potential low Power-to-Liquid performance use of PtM waste heat among others can increase this capacity to 546 GW (75% of gas demand). Gas demand is reduced to between 3.8 and 14 EJ (compared to ∼20 EJ for 2015) with lower values corresponding to scenarios that are more restricted. Annual costs for PtM are between 2.5 and 10 bln€/year with EU28’s GDP being 15.3 trillion €/year (2017). Results indicate that direct subsidy of the technology is more effective and specific than taxing the fossil alternative (natural gas) if the objective is to promote the technology. Studies with higher spatial resolution should be done to identify specific local conditions that could make PtM more attractive compared to an EU scale.
Introducing Power-to-H3: Combining Renewable Electricity with Heat, Water and Hydrogen Production and Storage in a Neighbourhood
Oct 2019
Publication
In the transition from fossil to renewable energy the energy system should become clean while remaining reliable and affordable. Because of the intermittent nature of both renewable energy production and energy demand an integrated system approach is required that includes energy conversion and storage. We propose a concept for a neighbourhood where locally produced renewable energy is partly converted and stored in the form of heat and hydrogen accompanied by rainwater collection storage purification and use (Power-to-H3). A model is developed to create an energy balance and perform a techno-economic analysis including an analysis of the avoided costs within the concept. The results show that a solar park of 8.7 MWp combined with rainwater collection and solar panels on roofs can supply 900 houses over the year with heat (20 TJ) via an underground heat storage system as well as with almost half of their water demand (36000m3) and 540 hydrogen electric vehicles can be supplied with hydrogen (90 tonnes). The production costs for both hydrogen (8.7 €/kg) and heat (26 €/GJ) are below the current end user selling price in the Netherlands (10 €/kg and 34 €/GJ) making the system affordable. When taking avoided costs into account the prices could decrease with 20–26% while at the same time avoiding 3600 tonnes of CO2 a year. These results make clear that it is possible to provide a neighbourhood with all these different utilities completely based on solar power and rainwater in a reliable affordable and clean way.
Methanol Synthesis Using Captured CO2 as Raw Material: Techno-economic and Environmental Assessment
Aug 2015
Publication
The purpose of this paper is to assess via techno-economic and environmental metrics the production of methanol (MeOH) using H2 and captured CO2 as raw materials. It evaluates the potential of this type of carbon capture and utilisation (CCU) plant on (i) the net reduction of CO2 emissions and (ii) the cost of production in comparison with the conventional synthesis process of MeOH Europe. Process flow modelling is used to estimate the operational performance and the total purchased equipment cost; the flowsheet is implemented in CHEMCAD and the obtained mass and energy flows are utilised as input to calculate the selected key performance indicators (KPIs). CO2 -based metrics are used to assess the environmental impact. The evaluated MeOH plant produces 440 ktMeOH/yr and its configuration is the result of a heat integration process. Its specific capital cost is lower than for conventional plants. However raw materials prices i.e. H2 and captured CO2 do not allow such a project to be financially viable. In order to make the CCU plant financially attractive the price of MeOH should increase in a factor of almost 2 or H2 costs should decrease almost 2.5 times or CO2 should have a value of around 222 €/t under the assumptions of this work. The MeOH CCU-plant studied can utilise about 21.5% of the CO2 emissions of a pulverised coal (PC) power plant that produces 550MWnet of electricity. The net CO2 emissions savings represent 8% of the emissions of the PC plant (mainly due to the avoidance of consuming fossil fuels as in the conventional MeOH synthesis process). The results demonstrate that there is a net but small potential for CO2 emissions reduction; assuming that such CCU plants are constructed in Europe to meet the MeOH demand growth and the quantities that are currently imported the net CO2 emissions reduction could be of 2.71 MtCO2/yr.
Potential for Hydrogen and Power-to-Liquid in a Low-carbon EU Energy System Using Cost Optimization
Oct 2018
Publication
Hydrogen represents a versatile energy carrier with net zero end use emissions. Power-to-Liquid (PtL) includes the combination of hydrogen with CO2 to produce liquid fuels and satisfy mostly transport demand. This study assesses the role of these pathways across scenarios that achieve 80–95% CO2 reduction by 2050 (vs. 1990) using the JRC-EU-TIMES model. The gaps in the literature covered in this study include a broader spatial coverage (EU28+) and hydrogen use in all sectors (beyond transport). The large uncertainty in the possible evolution of the energy system has been tackled with an extensive sensitivity analysis. 15 parameters were varied to produce more than 50 scenarios. Results indicate that parameters with the largest influence are the CO2 target the availability of CO2 underground storage and the biomass potential.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Energy, Exergy, and Environmental Analyses of Renewable Hydrogen Production Through Plasma Gasification of Microalgal Biomass
Feb 2021
Publication
In this study an energy exergy and environmental (3E) analyses of a plasma-assisted hydrogen production process from microalgae is investigated. Four different microalgal biomass fuels namely raw microalgae (RM) and three torrefied microalgal fuels (TM200 TM250 and TM300) are used as the feedstock for steam plasma gasification to generate syngas and hydrogen. The effects of steam-tobiomass (S/B) ratio on the syngas and hydrogen yields and energy and exergy efficiencies of plasma gasification (hEn;PG hEx;PG) and hydrogen production(hEn;H2 hEx;H2 ) are taken into account. Results show that the optimal S/B ratios of RM TM200 TM250 and TM300 are 0.354 0.443 0.593 and 0.760 respectively occurring at the carbon boundary points (CBPs) where the maximum values of hEn;PG hEx;PG hEn;H2 and hEx;H2 are also achieved. At CBPs torrefied microalgae as feedstock lower thehEn;PG hEx;PG hEn;H2 and hEx;H2 because of their improved calorific value after undergoing torrefaction and the increased plasma energy demand compared to the RM. However beyond CBPs the torrefied feedstock displays better performance. A comparative life cycle analysis indicates that TM300 exhibits the highest greenhouse gases (GHG) emissions and the lowest net energy ratio (NER) due to the indirect emissions associated with electricity consumption.
Value of Power-to-gas as a Flexibility Option in Integrated Electricity and Hydrogen Markets
Oct 2021
Publication
This paper analyzes the economic potential of Power-to-Gas (PtG) as a source of flexibility in electricity markets with both high shares of renewables and high external demand for hydrogen. The contribution of this paper is that it develops and applies a short-term (hourly) partial equilibrium model of integrated electricity and hydrogen markets including markets for green certificates while using a welfare-economic framework to assess the market outcomes. We find that strongly increasing the share of renewable electricity makes electricity prices much more volatile while the presence of PtG reduces this price volatility. However a large demand for hydrogen from outside the electricity sector reduces the impact of PtG on the volatility of electricity prices. In a scenario with a high external hydrogen demand PtG can deliver positive benefits for some groups as it can provide hydrogen at lower costs than Steam Methane Reforming (SMR) during hours when electricity prices are low but these positive welfare effects are outweighed by the fixed costs of PtG assets plus the costs of replacing a less expensive energy carrier (natural gas) with a more expensive one (hydrogen). Investments in PtG are profitable from a social-welfare perspective when the induced reduction in carbon emissions is valued at 150–750 euro/ton. Hence at lower carbon prices PtG can only become a valuable provider of flexibility when installation costs are significantly reduced and conversion efficiencies of electrolysers increased.
Optimal Design of Multi-energy Systems with Seasonal Storage
Oct 2017
Publication
Optimal design and operation of multi-energy systems involving seasonal energy storage are often hindered by the complexity of the optimization problem. Indeed the description of seasonal cycles requires a year-long time horizon while the system operation calls for hourly resolution; this turns into a large number of decision variables including binary variables when large systems are analyzed. This work presents novel mixed integer linear program methodologies that allow considering a year time horizon with hour resolution while significantly reducing the complexity of the optimization problem. First the validity of the proposed techniques is tested by considering a simple system that can be solved in a reasonable computational time without resorting to design days. Findings show that the results of the proposed approaches are in good agreement with the full-scale optimization thus allowing to correctly size the energy storage and to operate the system with a long-term policy while significantly simplifying the optimization problem. Furthermore the developed methodology is adopted to design a multi-energy system based on a neighborhood in Zurich Switzerland which is optimized in terms of total annual costs and carbon dioxide emissions. Finally the system behavior is revealed by performing a sensitivity analysis on different features of the energy system and by looking at the topology of the energy hub along the Pareto sets.
Development of Risk Mitigation Guidance for Sensor Placement Inside Mechanically Ventilated Enclosures – Phase 1
Sep 2019
Publication
Guidance on Sensor Placement was identified as the top research priority for hydrogen sensors at the 2018 HySafe Research Priority Workshop on hydrogen safety in the category Mitigation Sensors Hazard Prevention and Risk Reduction. This paper discusses the initial steps (Phase 1) to develop such guidance for mechanically ventilated enclosures. This work was initiated as an international collaborative effort to respond to emerging market needs related to the design and deployment equipment for hydrogen infrastructure that is often installed in individual equipment cabinets or ventilated enclosures. The ultimate objective of this effort is to develop guidance for an optimal sensor placement such that when integrated into a facility design and operation will allow earlier detection at lower levels of incipient leaks leading to significant hazard reduction. Reliable and consistent early warning of hydrogen leaks will allow for the risk mitigation by reducing or even eliminating the probability of escalation of small leaks into large and uncontrolled events. To address this issue a study of a real-world mechanically ventilated enclosure containing GH2 equipment was conducted where CFD modelling of the hydrogen dispersion (performed by AVT and UQTR and independently by the JRC) was validated by the NREL Sensor laboratory using a Hydrogen Wide Area Monitor (HyWAM) consisting of a 10-point gas and temperature measurement analyzer. In the release test helium was used as a hydrogen surrogate. Expansion of indoor releases to other larger facilities (including parking structures vehicle maintenance facilities and potentially tunnels) and incorporation into QRA tools such as HyRAM is planned for Phase 2. It is anticipated that results of this work will be used to inform national and international standards such as NFPA 2 Hydrogen Technologies Code Canadian Hydrogen Installation Code (CHIC) and relevant ISO/TC 197 and CEN documents.
Hydrogen Permeation Studies of Composite Supported Alumina-carbon Molecular Sieves Membranes: Separation of Diluted Hydrogen from Mixtures with Methane
Jun 2020
Publication
One alternative for the storage and transport of hydrogen is blending a low amount of hydrogen (up to 15 or 20%) into existing natural gas grids. When demanded hydrogen can be then separated close to the end users using membranes. In this work composite alumina carbon molecular sieves membranes (Al-CMSM) supported on tubular porous alumina have been prepared and characterized. Single gas permeation studies showed that the H2/CH4 separation properties at 30 °C are well above the Robeson limit of polymeric membranes. H2 permeation studies of the H2–CH4 mixture gases containing 5–20% of H2 show that the H2 purity depends on the H2 content in the feed and the operating temperature. In the best scenario investigated in this work for samples containing 10% of H2 with an inlet pressure of 7.5 bar and permeated pressure of 0.01 bar at 30 °C the H2 purity obtained was 99.4%.
Acorn: Developing Full-chain Industrial Carbon Capture and Storage in a Resource- and Infrastructure-rich Hydrocarbon Province
Jun 2019
Publication
Juan Alcalde,
Niklas Heinemann,
Leslie Mabon,
Richard H. Worden,
Heleen de Coninck,
Hazel Robertson,
Marko Maver,
Saeed Ghanbari,
Floris Swennenhuis,
Indira Mann,
Tiana Walker,
Sam Gomersal,
Clare E. Bond,
Michael J. Allen,
Stuart Haszeldine,
Alan James,
Eric J. Mackay,
Peter A. Brownsort,
Daniel R. Faulkner and
Steve Murphy
Research to date has identified cost and lack of support from stakeholders as two key barriers to the development of a carbon dioxide capture and storage (CCS) industry that is capable of effectively mitigating climate change. This paper responds to these challenges through systematic evaluation of the research and development process for the Acorn CCS project a project designed to develop a scalable full-chain CCS project on the north-east coast of the UK. Through assessment of Acorn's publicly-available outputs we identify strategies which may help to enhance the viability of early-stage CCS projects. Initial capital costs can be minimised by infrastructure re-use particularly pipelines and by re-use of data describing the subsurface acquired during oil and gas exploration activity. Also development of the project in separate stages of activity (e.g. different phases of infrastructure re-use and investment into new infrastructure) enables cost reduction for future build-out phases. Additionally engagement of regional-level policy makers may help to build stakeholder support by situating CCS within regional decarbonisation narratives. We argue that these insights may be translated to general objectives for any CCS project sharing similar characteristics such as legacy infrastructure industrial clusters and an involved stakeholder-base that is engaged with the fossil fuel industry.
Hydrogen Refuelling Stations in the Netherlands: An Intercomparison of Quantitative Risk Assessments Used for Permitting
May 2018
Publication
As of 2003 15 hydrogen refuelling stations (HRSs) have been deployed in the Netherlands. To become established the HRS has to go through a permitting procedure. An important document of the permitting dossier is the quantitative risk assessment (QRA) as it assesses the risks of the HRS associated to people and buildings in the vicinity of the HRS. In the Netherlands a generic prescribed approach exists on how to perform a QRA however specific guidelines for HRSs do not exist. An intercomparison among the QRAs of permitted HRSs has revealed significant inconsistencies on various aspects of the QRA: namely the inclusion of HRS sub-systems and components the HRS sub-system and component considerations as predefined components the application of failure scenarios the determination of failure frequencies the application of input parameters the consideration of preventive and mitigation measures as well as information provided regarding the HRS surroundings and the societal risk. It is therefore recommended to develop specific QRA guidelines for HRSs.
Seasonal Energy Storage for Zero-emissions Multi-energy Systems Via Underground Hydrogen Storage
Jan 2020
Publication
The deployment of diverse energy storage technologies with the combination of daily weekly and seasonal storage dynamics allows for the reduction of carbon dioxide (CO2) emissions per unit energy provided. In particular the production storage and re-utilization of hydrogen starting from renewable energy has proven to be one of the most promising solutions for offsetting seasonal mismatch between energy generation and consumption. A realistic possibility for large-scale hydrogen storage suitable for long-term storage dynamics is presented by salt caverns. In this contribution we provide a framework for modelling underground hydrogen storage with a focus on salt caverns and we evaluate its potential for reducing the CO2 emissions within an integrated energy systems context. To this end we develop a first-principle model which accounts for the transport phenomena within the rock and describes the dynamics of the stored energy when injecting and withdrawing hydrogen. Then we derive a linear reduced order model that can be used for mixed-integer linear program optimization while retaining an accurate description of the storage dynamics under a variety of operating conditions. Using this new framework we determine the minimum-emissions design and operation of a multi-energy system with H2 storage. Ultimately we assess the potential of hydrogen storage for reducing CO2 emissions when different capacities for renewable energy production and energy storage are available mapping emissions regions on a plane defined by storage capacity and renewable generation. We extend the analysis for solar- and wind-based energy generation and for different energy demands representing typical profiles of electrical and thermal demands and different CO2 emissions associated with the electric grid.
Aqueous Phase Reforming in a Microchannel Reactor: The Effect of Mass Transfer on Hydrogen Selectivity
Aug 2013
Publication
Aqueous phase reforming of sorbitol was carried out in a 1.7 m long 320 mm ID microchannel reactor with a 5 mm Pt-based washcoated catalyst layer combined with nitrogen stripping. The performance of this microchannel reactor is correlated to the mass transfer properties reaction kinetics hydrogen selectivity and product distribution. Mass transfer does not affect the rate of sorbitol consumption which is limited by the kinetics of the reforming reaction. Mass transfer significantly affects the hydrogen selectivity and the product distribution. The rapid consumption of hydrogen in side reactions at the catalyst surface is prevented by a fast mass transfer of hydrogen from the catalyst site to the gas phase in the microchannel reactor. This results in a decrease of the concentration of hydrogen at the catalyst surface which was found to enhance the desired reforming reaction rate at the expense of the undesired hydrogen consuming reactions. Compared to a fixed bed reactor the selectivity to hydrogen in the microchannel reactor was increased by a factor of 2. The yield of side products (mainly C3 and heavier hydrodeoxygenated species) was suppressed while the yield of hydrogen was increased from 1.4 to 4 moles per mole of sorbitol fed.
Renewable Power and Heat for the Decarbonisation of Energy-Intensive Industries
Dec 2022
Publication
The present review provides a catalogue of relevant renewable energy (RE) technologies currently available (regarding the 2030 scope) and to be available in the transition towards 2050 for the decarbonisation of Energy Intensive Industries (EIIs). RE solutions have been classified into technologies based on the use of renewable electricity and those used to produce heat for multiple industrial processes. Electrification will be key thanks to the gradual decrease in renewable power prices and the conversion of natural-gas-dependent processes. Industrial processes that are not eligible for electrification will still need a form of renewable heat. Among them the following have been identified: concentrating solar power heat pumps and geothermal energy. These can supply a broad range of needed temperatures. Biomass will be a key element not only in the decarbonisation of conventional combustion systems but also as a biofuel feedstock. Biomethane and green hydrogen are considered essential. Biomethane can allow a straightforward transition from fossil-based natural gas to renewable gas. Green hydrogen production technologies will be required to increase their maturity and availability in Europe (EU). EIIs’ decarbonisation will occur through the progressive use of an energy mix that allows EU industrial sectors to remain competitive on a global scale. Each industrial sector will require specific renewable energy solutions especially the top greenhouse gas-emitting industries. This analysis has also been conceived as a starting point for discussions with potential decision makers to facilitate a more rapid transition of EIIs to full decarbonisation.
Assessing the Durability and Integrity of Natural Gas Infrastructures for Transporting and Distributing Mixtures of Hydrogen and Natural Gas
Sep 2005
Publication
Extensive infrastructure exists for the transport of natural gas and it is an obvious step to assess its use for the movement of hydrogen. The Naturalhy project’s objective is to prepare the European natural gas industry for the introduction of hydrogen by assessing the capability of the natural gas infrastructure to accept mixtures of hydrogen and natural gas. This paper presents the ongoing work within both Durability and Integrity Work Packages of the Naturalhy project. This work covers a gap in knowledge on risk assessment required for delivering H2+natural gas blends by means of the existing natural gas grids in safe operation.<br/>Experiments involving several parts of the existing infrastructure will be described that are being carried out to re-examine the major risks previously studied for natural gas including: effect of H2 on failure behaviour and corrosion of transmission pipes and their burst resistance (link to the Work Package Safety) on permeability and ageing of distribution pipes on reliability and ageing of domestic gas meters tightness to H2 of domestic appliances and their connexions. The information will be integrated into existing Durability assessment methodologies originally developed for natural gas.<br/>An Integrity Management Tool will be developed taking account of the effect of hydrogen on the materials properties. The tool should enable a cost effective selection of appropriate measures to control the structural integrity and maintaining equipment. The main measures considered are monitoring non destructive examination (pigging and non pigging) and repair strategies. The tool will cover a number of parameters e.g.: percentage of hydrogen in the gas mixture material of construction operating conditions and condition of cathodic protection. Thus the Integrity Management Tool will yield an inspection and maintenance plan based on the specific circumstances.
No more items...