Korea, Republic of
Hydrogen Production by Electrochemical Reaction Using Ethylene Glycol with Terephthalic Acid
Jan 2021
Publication
In this study ethylene glycol (EG) and terephthalic acid (TPA) were used to generate hydrogen using copper electrodes in an alkaline aqueous solution and the corresponding reaction mechanism was experimentally investigated. Both EG and TPA produced hydrogen; however TPA consumed OH− inhibiting the production of intermediary compounds of EG and causing EG to actively react with H2O ultimately leading to enhanced hydrogen production. In addition the initiation potential of water decomposition of the EG and TPA alkaline aqueous solution was 1.0 V; when 1.8 V (vs. RHE) was applied the hydrogen production reached 440 mmol L−1 which was substantially greater than the hydrogen production rate of 150 mmol L−1 during water decomposition.
Exploring Future Promising Technologies in Hydrogen Fuel Cell Transportation
Jan 2022
Publication
The purpose of this research was to derive promising technologies for the transport of hydrogen fuel cells thereby supporting the development of research and development policy and presenting directions for investment. We also provide researchers with information about technology that will lead the technology field in the future. Hydrogen energy as the core of carbon neutral and green energy is a major issue in changing the future industrial structure and national competitive advantage. In this study we derived promising technology at the core of future hydrogen fuel cell transportation using the published US patent and paper databases (DB). We first performed text mining and data preprocessing and then discovered promising technologies through generative topographic mapping analysis. We analyzed both the patent DB and treatise DB in parallel and compared the results. As a result two promising technologies were derived from the patent DB analysis and five were derived from the paper DB analysis.
Experimental Study on a Hydrogen Stratification Induced by PARs Installed in a Containment
Oct 2020
Publication
Hydrogen can be produced in undesired ways such as a high temperature metal oxidation during an accident. In this case the hydrogen must be carefully managed. A hydrogen mitigation system (HMS) should be installed to protect a containment of a nuclear power plant (NPP) from hazards of hydrogen produced by an oxidation of the fuel cladding during a severe accident in an NPP. Among hydrogen removal devices passive auto-catalytic recombiners (PARs) are currently applied to many NPPs because of passive characteristics such as not requiring a power supply nor an operators’ manipulations. However they offer several disadvantages resulting in issues related to hydrogen control by PARs. One of the issues is a hydrogen stratification in which hydrogen is not well-mixed in a compartment due to the high temperature exhaust gas of PARs and accumulation in the lower part. Therefore experimental simulation on hydrogen stratification phenomenon by PARs is required. When the hydrogen stratification by PARs is observed in the experiment the verification and improvement of a PAR analysis model using the experimental results can be performed and the hydrogen removal characteristics by PARs installed in an NPP can be evaluated using the improved PAR model. View Full-Text
Compatibility and Suitability of Existing Steel Pipelines for Transport of Hydrogen and Hydrogen-natural Gas Blends
Sep 2017
Publication
Hydrogen is being considered as a pathway to decarbonize large energy systems and for utility-scale energy storage. As these applications grow transportation infrastructure that can accommodate large quantities of hydrogen will be needed. Many millions of tons of hydrogen are already consumed annually some of which is transported in dedicated hydrogen pipelines. The materials and operation of these hydrogen pipeline systems however are managed with more constraints than a conventional natural gas pipeline. Transitional strategies for deep decarbonization of energy systems include blending hydrogen into existing natural gas systems where the materials and operations may not have the same controls. This study explores the hydrogen compatibility of existing pipeline steels and the suitability of these steels in hydrogen pipeline systems. Representative fracture and fatigue properties of pipeline grade steels in gaseous hydrogen are summarized from the literature. These properties are then considered in idealized design life calculations to inform materials performance for a typical gas pipeline.
A Study on the Characteristics of Academic Topics Related to Renewable Energy Using the Structural Topic Modelling and the Weak Signal Concept
Mar 2021
Publication
It is important to examine in detail how the distribution of academic research topics related to renewable energy is structured and which topics are likely to receive new attention in the future in order for scientists to contribute to the development of renewable energy. This study uses an advanced probabilistic topic modeling to statistically examine the temporal changes of renewable energy topics by using academic abstracts from 2010–2019 and explores the properties of the topics from the perspective of future signs such as weak signals. As a result in strong signals methods for optimally integrating renewable energy into the power grid are paid great attention. In weak signals interest in large-capacity energy storage systems such as hydrogen supercapacitors and compressed air energy storage showed a high rate of increase. In not-strong-but-well-known signals comprehensive topics have been included such as renewable energy potential barriers and policies. The approach of this study is applicable not only to renewable energy but also to other subjects.
Graded Grain Structure to Improve Hydrogen-Embrittlement Resistance of TWIP Steel
Nov 2020
Publication
The high strength of twinning-induced plasticity (TWIP) steels makes them vulnerable to the hydrogen embrittlement (HE) phenomenon thereby limiting their potential applications. This study suggests inducing a graded grain structure (GGS) in a Fe-17Mn-0.8C TWIP steel through shot peening and subsequent heat treatment to solve the problem. The microstructures and fracture surfaces of GGS TWIP steel were compared with those of conventionally manufactured TWIP steel possessing a uniform grain structure (UGS). Compared with the conventional UGS TWIP steel GGS steel showed similar tensile properties with a yield strength of 310 MPa tensile strength of 1060 MPa and elongation-to-failure of 135%. It also exhibited moderately enhanced low-cycle fatigue (LCF) resistance in terms of fatigue life (8196 cycles to failure) compared with the UGS steel (7201 cycles). Furthermore GGS TWIP steel exhibited a marked improvement in HE resistance both in the monotonic (by a slow-strain-rate test) and cyclic deformation modes (by the LCF test) in a hydrogen environment. A relatively fine-grained (d = 15.6 μm) surficial area enhanced the HE resistance by inhibiting hydrogen penetration and decreasing twin density while the coarse-grained (d = 74.6 μm) interior promoted the LCF resistance by suppressing crack growth
Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting
Jul 2019
Publication
A study was performed to investigate the hydrogen embrittlement behavior of 18-Ni 300 maraging steel produced by selective laser melting and subjected to different heat treatment strategies. Hydrogen was pre-charged into the tensile samples by an electro-chemical method at the constant current density of 1 A m−2 and 50 A m−2 for 48 h at room temperature. Charged and uncharged specimens were subjected to tensile tests and the hydrogen concentration was eventually analysed using quadrupole mass spectroscopy. After tensile tests uncharged maraging samples showed fracture surfaces with dimples. Conversely in H-charged alloys quasi-cleavage mode fractures occurred. A lower concentration of trapped hydrogen atoms and higher elongation at fracture were measured in the H-charged samples that were subjected to solution treatment prior to hydrogen charging compared to the as-built counterparts. Isothermal aging treatment performed at 460 °C for 8 h before hydrogen charging increased the concentration of trapped hydrogen giving rise to higher hydrogen embrittlement susceptibility.
Effect of Hydrogen and Strain-Induced Martensite on Mechanical Properties of AISI 304 Stainless Steel
Jul 2016
Publication
Plastic deformation and strain-induced martensite (SIM α′) transformation in metastable austenitic AISI 304 stainless steel were investigated through room temperature tensile tests at strain rates ranging from 2 × 10−6 to 2 × 10−2/s. The amount of SIM was measured on the fractured tensile specimens using a feritscope and magnetic force microscope. Elongation to fracture tensile strength hardness and the amount of SIM increased with decreasing the strain rate. The strain-rate dependence of RT tensile properties was observed to be related to the amount of SIM. Specifically SIM formed during tensile tests was beneficial in increasing the elongation to fracture hardness and tensile strength. Hydrogen suppressed the SIM formation leading to hydrogen softening and localized brittle fracture.
MELCOR Analysis of a SPARC Experiment for Spray-PAR Interaction During a Hydrogen Release
Oct 2020
Publication
A series of experiments were performed in the SPARC (spray-aerosol-recombiner-combustion) test facility to simulate a hydrogen mitigation system with the actuation of a PAR (passive auto-catalytic re-combiner) and spray system. In this study the SPARC-SPRAY-PAR (SSP1) experiment is chosen to benchmark the MELCOR (a lumped-parameter code for severe accident analysis) predictions against test data. For this purpose firstly we prepared the base input model of the SPARC test vessel and tested it by a simple verification problem with well-defined boundary conditions. The implementation of a currently used PAR correlation in MELCOR is shown to be appropriate for the simulation of a PAR actuation experiment. In an SSP1 experiment the PAR is reacting with hydrogen and the spray actuation starts as soon as hydrogen injection is complete. The MELCOR simulation well predicts the pressure behavior and the gas flow affected by operating both a PAR and spray system. However the local hydrogen concentration measurement near the inlet nozzle is much higher than the volume average-value by MELCOR since high jet flow from the nozzle is dispersed in the corresponding cell volume. The experimental reproduction of the phenomena we expect or conversely the identification of phenomena we do not understand will continue to support the verification of analytical models using experimental data and to analyze the impact of spray on PAR operations in severe accident conditions.
Continuous Hydrogen Regeneration Through the Oxygen Vacancy Control of Metal Oxides Using Microwave Irradiation
Nov 2018
Publication
The amount of hydrogen gas generated from metal oxide materials based on a thermochemical water-splitting method gradually reduces as the surface of the metal oxide oxidizes during the hydrogen generation process. To regenerate hydrogen the oxygen reduction process of a metal oxide at high temperatures (1000–2500 °C) is generally required. In this study to overcome the problem of an energy efficiency imbalance in which the required energy of the oxygen reduction process for hydrogen regeneration is higher than the generated hydrogen energy we investigated the possibility of the oxygen reduction of a metal oxide with a low energy using microwave irradiation. For this purpose a macroporous nickel-oxide structure was used as a metal oxide catalyst to generate hydrogen gas and the oxidized surface of the macroporous nickel-oxide structure could be reduced by microwave irradiation. Through this oxidation reduction process ∼750 μmol g−1 of hydrogen gas could be continuously regenerated. In this way it is expected that oxygen-enriched metal oxide materials can be efficiently reduced by microwave irradiation with a low power consumption of <∼4% compared to conventional high-temperature heat treatment and thus can be used for efficient hydrogen generation and regeneration processes in the future.
Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident Initiated by SBLOCA in the APR1400 Containment
Jan 2022
Publication
We performed a hydrogen combustion analysis in the Advanced Power Reactor 1400 MWe (APR1400) containment during a severe accident initiated by a small break loss of coolant accident (SBLOCA) which occurred at a lower part of the cold leg using a multi-dimensional hydrogen analysis system (MHAS) to confirm the integrity of the APR1400 containment. The MHAS was developed by combining MAAP GASFLOW and COM3D to simulate hydrogen release distribution and combustion in the containment of a nuclear power plant during the severe accidents in the containment of a nuclear power reactor. The calculated peak pressure due to the flame acceleration by the COM3D using the GASFLOW results as an initial condition of the hydrogen distribution was approximately 555 kPa which is lower than the fracture pressure 1223 kPa of the APR1400 containment. To induce a higher peak pressure resulted from a strong flame acceleration in the containment we intentionally assumed several things in developing an accident scenario of the SBLOCA. Therefore we may judge that the integrity of the APR1400 containment can be maintained even though the hydrogen combustion occurs during the severe accident initiated by the SBLOCA.
Assessment of Safety for Hydrogen Fuel Cell Vehicle
Sep 2011
Publication
A prospective global market share of Electric vehicle (EV) Hybrid electric vehicle (HEV) and Hydrogen Fuel Cell Vehicle (HFCV) is expected to grow due to stringent emission regulation and oil depletion. However it is essential to secure protection against high-pressure hydrogen gas and high-voltage in fuel cell vehicles and thus needs to develop a technique for safety assessment of HFCV. In this experiment 8 research institutes including the Korea Automobile Testing and Research Institute Hyundai Motor Company took part in. This project was supported by the Ministry of Land Transportation and Maritime Affairs of the Republic of Korea.
High-Order Perturbation Solutions to a Lh2 Spreading Model With Continuous Spill
Sep 2011
Publication
High-order perturbation solutions have been obtained for the simple physical model describing the LH2 spreading with a continuous spill and are shown to improve over the first-order perturbation solutions. The non-dimensional governing equations for the model are derived to obtain more general solutions. Non-dimensional parameters are sought as the governing parameters for the non-dimensional equations and the non-dimensional evaporation rate is used as the perturbation parameter. The results show that the second-order solutions exhibit an improvement over the first-order solutions with respect to the pool volume; however there is still a difference between numerical solutions and second-order solutions in the late stage of spread. Finally it is revealed that the third-order solutions almost agree with numerical solutions.
UV Assisted on Titanium Doped Electrode for Hydrogen Evolution from Artificial Wastewater
Jul 2018
Publication
Formaldehyde (H2CO) is the harmful chemical that used in variety of industries. However there are many difficulties to treat discharged H2CO in the wastewater. Hydrogen energy is arising as a one of the renewable energy that can replace fossil fuel. Many researches have been conducted on hydrogen production from electrolysis using expensive metal electrodes and catalysts such as platinum (Pt) and palladium (Pd). However they are expensive and have obstacles to directly use from the production. We used copper (Cu) as an electrode substrate because it has a good current density. To avoid corrosion issue of Cu substrate we used commercially available carbon (C) coated Cu substrate and synthesized titanium (Ti) on C/Cu substrate. We found that Ti was well synthesized and stayed on substrate after hydrogen evolution reaction (HER) in artificial wastewater. Moreover we quantified hydrogen production from the wastewater and compared it to pure water. Hydrogen production was enhanced in wastewater and H2CO was decomposed after reaction. We expected to use Ti-C/Cu electrode for hydrogen production of wastewater by electrolysis.
Simulator Development of Virtual Experience and Accident Scenarios of Hydrogen Stations for Safety
Sep 2007
Publication
Nowadays 4 type hydrogen stations have been demonstrated in Korea for preparing hydrogen economy. This simulator is consists of virtual experience modules and virtual accident scenarios of 4 type hydrogen stations. Virtual experience modules show the performance properties through a movie or a virtual reality technology. Also they provide an explanation of hydrogen station equipment and a guide for operators immediately after the accident. Virtual accident scenario modules show accident simulations based on modelling equations as 3D virtual reality. These modules could choose the sham accident for every kind of a station after categorizing all possible accidents in a station A Commercialized CFD program based on hydrogen dispersion model theory shows a movie of accident simulations. The result of a simulator has been developed as web applications. And will be applied to training materials and public relations for a user concerned about hydrogen stations.
A Comparative Feasibility Study of the Use of Hydrogen Produced from Surplus Wind Power for a Gas Turbine Combined Cycle Power Plant
Dec 2021
Publication
Because of the increasing challenges raised by climate change power generation from renewable energy sources is steadily increasing to reduce greenhouse gas emissions especially CO2 . However this has escalated concerns about the instability of the power grid and surplus power generated because of the intermittent power output of renewable energy. To resolve these issues this study investigates two technical options that integrate a power-to-gas (PtG) process using surplus wind power and the gas turbine combined cycle (GTCC). In the first option hydrogen produced using a power-to-hydrogen (PtH) process is directly used as fuel for the GTCC. In the second hydrogen from the PtH process is converted into synthetic natural gas by capturing carbon dioxide from the GTCC exhaust which is used as fuel for the GTCC. An annual operational analysis of a 420-MWclass GTCC was conducted which shows that the CO2 emissions of the GTCC-PtH and GTCC-PtM plants could be reduced by 95.5% and 89.7% respectively in comparison to a conventional GTCC plant. An economic analysis was performed to evaluate the economic feasibility of the two plants using the projected cost data for the year 2030 which showed that the GTCC-PtH would be a more viable option.
Study on Behavior of Ambient Hydraulic Cycling Test for 70 MPA Type-3 Hydrogen Composite Cylinder
Sep 2013
Publication
Hydrogen used in hydrogen fuel cell vehicles is the flammable gas which has wide flammable range and flame propagation speed is very fast. This fuel cell vehicle equipped with high-pressure vessel in the form of fuel to supply the high pressure hydrogen storage system needs to be checked carefully about a special safety design and exact weak point for high pressure repeated fatigue. 70 L liner and 70 MPa Type-3 vessel were tested using the equipments which can perform ambient hydraulic cycling test and burst test in the Korea Gas Safety Corporation. And it was performed to identify the internal external behaviour through the Finite Element Analysis (FEA) and real leakage mode for high pressure repeated fatigue when subjected to be pressurized in vessel. 70 L liner and 70 MPa Type-3 vessel were tested using the equipments which can perform ambient hydraulic cycling test and burst test in the Korea Gas Safety Corporation. And it was performed to identify the internal external behaviour through the Finite Element Analysis (FEA) and real leakage mode for high pressure repeated fatigue when subjected to be pressurized in vessel. Through this study liner of type-3 hydrogen vessel is ruptured first on cylindrical (body) part than Dome part in 8.5 MPa. Also the same Phenomena are confirmed through the Finite Element Analysis (FEA). External composite leakage mode in ambient hydraulic cycling test was occurred in different area such as the Dome Dome knuckle and cylindrical (body) parts. But cracks of inner liner for gas tight were occurred in only cylindrical (body) parts. Also in FEA results when vessel is pressurized Dome knuckle and cylindrical (body) parts is weakest among all parts because of expansion of cylindrical (body) parts.
The Study on the Internal Temperature Change of Type 3 and Type 4 Composite Cylinder During Filling
Sep 2013
Publication
The number of eco friendly vehicle which is using green energy such as natural gas(NG) and hydrogen(H2) is rapidly increasing in the world. Almost all of the car manufacturers are adopting the pressurizing fuel method to storage gas. The fuel storage system which can pressurize the fuel as high as possible is necessary to maximize the mileage of the vehicle. In Korea the most important issue is that makes sure of safety of the fuel storage system and several tests are performed to verify safety of the composite cylinder especially for Type 3 and Type 4. In this research an empirical study on the internal temperature change of Type 3 and Type 4 composite cylinder during filling is performed by gas cycling test equipment. In order to measure the temperature totally twelve sensors(every four sensors on the top middle and bottom) are installed in each cylinder. As a consequence large amount of compression heat is generated during rapid filling and the result temperature change in Type 4 is greater than Type 3 is confirmed depending on property of the liner material such as thermal conduction and thickness of carbon composite.
A Study on the Continuous Spill with Limited Period of Release
Sep 2013
Publication
In this study the spread of cryogenic liquid due to a limited period of release is investigated for the first time to clarify the unclear conventional concept regarding two release types continuous and instantaneous release. In describing instantaneous release a discharge time has been assumed to be infinitesimally small; however such an assumption is unreal because there exists a finite period of release no matter how rapid it is. If the discharge time is less than the entire time domain the instantaneous release model should be added to the continuous model from the end of the time. This combined release that consists of the initial continuous model and subsequent instantaneous model is more realistic than the instantaneous release. The physical phenomenon is governed by three parameters: the evaporation rate per unit area release time and spill quantity. Third-order perturbation solutions are obtained and compared with a numerical solution to verify the perturbation solution. For the same spill quantity the combined model that consists of continuous and subsequent instantaneous model is necessary for small release times whereas the continuous model is only required for large release times. Additionally the combined release model is necessary for a small spill quantity at a fixed release time. These two release models are clearly distinguished using the perturbation solution.
Comparison of Solutions for a Liquid Pool Spreading Model with Continuous and Instantaneous Spills
Sep 2013
Publication
In this study a solution for a liquid pool spreading model with a continuous spill is compared with that for a liquid pool spreading model with an instantaneous spill under the same total release volume. As reducing spill time in completely releasing liquid from a tank it is evaluated whether the solution for a continuous spill approaches to that for an instantaneous spill or not. Also effects of the viscous term in the liquid pool spreading model with continuous and instantaneous spills on the liquid pool spreading behaviour are investigated.
No more items...