Japan
Exchange Current Density of Reversible Solid Oxide Cell Electrodes
Mar 2022
Publication
Reversible solid oxide cells (r-SOCs) can be operated in either solid oxide fuel cell or solid oxide electrolysis cell mode. They are expected to become important in the support of renewable energy due to their high efficiency for both power generation and hydrogen generation. The exchange current density is one of the most important parameters in the quantification of electrode performance in solid oxide cells. In this study four different fuel electrodes and two different air electrodes are fabricated using different materials and the microstructures are compared. The temperature fuel humidification and oxygen concentration at the air electrode are varied to obtain the apparent exchange current density for the different electrode materials. In contrast to ruthenium-and-gadolinia-doped ceria (Rh-GDC) as well as nickel-and-gadolinia-doped ceria (Ni-GDC) electrodes significant differences in the apparent exchange current density were observed between electrolysis and fuel cell modes for the nickel-scandia-stabilized zirconia (Ni-ScSZ) cermet. Variation of gas concentration revealed that surface adsorption sites were almost completely vacant for all these electrodes. The apparent exchange current densities obtained in this study are useful as a parameter for simulation of the internal properties of r-SOCs.
Hydrogen Technologies and Developments in Japan
Jan 2019
Publication
The successful development of hydrogen-energy technologies has several advantages and benefits. Hydrogen energy development could prevent global warming as well as ensure energy security for countries without adequate energy resources. The successful development of hydrogen would provide energy for transportation and electric power. It is a unique energy carrier as it can be produced from various energy sources such as wind fossil fuels and biomass and when it is combusted it emits no CO2 emissions. The other advantage is the wide distribution of resources globally that can be used to produce hydrogen. In Japan the Ministry of Economy Trade and Industry (METI) published a ‘Strategic Roadmap for Hydrogen and Fuel Cells’ in 2014 with a revised update published in March 2016. The goal of the roadmap is to achieve a hydrogen society. The roadmap aims to resolve technical problems and secure economic efficiency. The roadmap has been organized into the following three phases: Phase 1—Installation of fuel cells; Phase 2—Hydrogen power plant/mass supply chain; Phase 3—CO2- free hydrogen. This paper reports on the current status of fuel cells and fuel-cell vehicles in Japan and gives a description and status of the R&D programmes along with the results of global energy model study towards 2050.
Dynamic Crush Test on Hydrogen Pressurized Cylinder
Sep 2005
Publication
It is necessary to investigate cylinder crush behavior for improvement of fuel cell vehicle crash safety. However there have been few crushing behaviour investigations of high pressurized cylinders subjected to external force. We conducted a compression test of pressurized cylinders impacted by external force. We also investigated the cylinder strength and crushing behaviour of the cylinder. The following results were obtained.
- The crush force of high pressurized cylinders is different from the direction of external force. The lateral crush force of high pressurized cylinders is larger than the external axial crush force.
- Tensile stress occurs in the boundary area between the cylinder dome and central portion when the pressurized cylinder is subjected to axial compression force and the cylinder is destroyed.
- However the high pressurized cylinders tested had a high crush force which exceeded the assumed range of vehicle crash test procedures
Heuristic Design of Advanced Martensitic Steels That Are Highly Resistant to Hydrogen Embrittlement by ε-Carbide
Feb 2021
Publication
Many advanced steels are based on tempered martensitic microstructures. Their mechanical strength is characterized by fine sub-grain structures with a high density of free dislocations and metallic carbides and/or nitrides. However the strength for practical use has been limited mostly to below 1400 MPa owing to delayed fractures that are caused by hydrogen. A literature survey suggests that ε-carbide in the tempered martensite is effective for strengthening. A preliminary experimental survey of the hydrogen absorption and hydrogen embrittlement of a tempered martensitic steel with ε-carbide precipitates suggested that the proper use of carbides in steels can promote a high resistance to hydrogen embrittlement. Based on the surveys martensitic steels that are highly resistant to hydrogen embrittlement and that have high strength and toughness are proposed. The heuristic design of the steels includes alloying elements necessary to stabilize the ε-carbide and procedures to introduce inoculants for the controlled nucleation of ε-carbide.
The New Facility for Hydrogen and Fuel Cell Vehicle Safety Evaluation
Sep 2005
Publication
For the evaluation of hydrogen and fuel cell vehicle safety a new comprehensive facility was constructed in our institute. The new facility includes an explosion resistant indoor vehicle fire test building and high pressure hydrogen tank safety evaluation equipment. The indoor vehicle fire test building has sufficient strength to withstand even an explosion of a high pressure hydrogen tank of 260 liter capacity and 70 MPa pressure. It also has enough space to observe vehicle fire flames of not only hydrogen but also other conventional fuels such as gasoline or compressed natural gas. The inside dimensions of the building are a 16 meter height and 18 meter diameter. The walls are made of 1.2 meter thick reinforced concrete covered at the insides with steel plate. This paper shows examples of hydrogen vehicle fires compared with other fuel fires and hydrogen high pressure tank fire tests utilizing several kinds of fire sources. Another facility for evaluation of high pressure hydrogen tank safety includes a 110 MPa hydrogen compressor with a capacity of 200 Nm3/h a 300 MPa hydraulic compressor for burst tests of 70 MPa and higher pressure tanks and so on. This facility will be used for not only the safety evaluation of hydrogen and fuel cell vehicles but also the establishment of domestic/international regulations codes and standards.
Quantitative Evaluations of Hydrogen Diffusivity in V-X (X = Cr, Al, Pd) Alloy Membranes Based on Hydrogen Chemical Potential
Jan 2021
Publication
Vanadium (V) has higher hydrogen permeability than Pd-based alloy membranes but exhibits poor resistance to hydrogen-induced embrittlement. The alloy elements are added to reduce hydrogen solubility and prevent hydrogen-induced embrittlement. To enhance hydrogen permeability the alloy elements which improve hydrogen diffusivity in V are more suitable. In the present study hydrogen diffusivity in V-Cr V-Al and V-Pd alloy membranes was investigated in view of the hydrogen chemical potential and compared with the previously reported results of V-Fe alloy membranes. The additions of Cr and Fe to V improved the mobility of hydrogen atoms. In contrast those of Al and Pd decreased hydrogen diffusivity. The first principle calculations revealed that the hydrogen atoms cannot occupy the first-nearest neighbour T sites (T1 sites) of Al and Pd in the V crystal lattice. These blocking effects will be a dominant contributor to decreasing hydrogen diffusivity by the additions of Al and Pd. For V-based alloy membranes Fe and Cr are more suitable alloy elements compared with Al and Pd in view of hydrogen diffusivity.
Mach 4 Simulating Experiment of Pre-Cooled Turbojet Engine Using Liquid Hydrogen
Jan 2022
Publication
This study investigated a pre-cooled turbojet engine for a Mach 5 class hypersonic transport aircraft. The engine was demonstrated under takeoff and Mach 2 flight conditions and a Mach 5 propulsion wind tunnel test is planned. The engine is composed of a pre-cooler a core engine and an afterburner. The engine was tested under simulated Mach 4 conditions using an air supply facility. High-temperature air under high pressure was supplied to the engine components through an airflow control valve and an orifice flow meter and liquid hydrogen was supplied to the pre-cooler and the core engine. The results confirmed that the starting sequence of the engine components was effective under simulated Mach 4 conditions using liquid hydrogen fuel. The pre-cooling effect caused no damage to the rotating parts of the core engine in the experiment.
Development of High-pressure Hydrogen Gas Barrier Materials
Oct 2015
Publication
We prepared several gas barrier resins based on amorphous PVA derivative that has the T1C (13C spin-lattice relaxation time) of a long time component in amorphous phase. We confirmed it was important to control state in amorphous phase of gas barrier resin in order to achieve both moldability and good gas barrier property. Polymer alloy was designed to improve flexibility. Polymer alloy made of amorphous PVA and elastomer resin showed good hydrogen resistance. Even after its polymer alloy were repeatedly exposed to 70MPa hydrogen gas the influence on higher-order structure in amorphous phase was in negligible level.
Dispersion Tests on Concentration and its Fluctuations for 40MPa Pressurized Hydrogen
Sep 2007
Publication
Hydrogen is one of the important alternative fuels for future transportation. At the present stage research into hydrogen safety and designing risk mitigation measures are significant task. For compact storage of hydrogen in fuel cell vehicles storage of hydrogen under high pressure up to 40 MPa at refuelling stations is planned and safety in handling such high-pressure hydrogen is essential. This paper describes our experimental investigation into dispersion of high-pressure hydrogen gas which leaks through pinholes in the piping to the atmosphere. First in order to comprehend the basic behaviour of the steady dispersion of high-pressure hydrogen gas from the pinholes the time-averaged concentrations were measured. In our experiments initial release pressures of hydrogen gas were set at 20 MPa or 40 MPa and release diameters were in the range from 0.25 mm to 2 mm. The experimental results show that the hydrogen concentration along the axis of the dispersion plume can be expressed as a simple formula which is a function of the downwind distance X and the equivalent release diameter. This formula enables us to easily estimate the axial concentration (maximum concentration) at each downstream distance. However in order for the safety of flammable gas dispersion to be analyzed comparisons between time-averaged concentrations evaluated as above and lower flammable limit are insufficient. This is because even if time-averaged concentration is lower than the flammability limit instantaneous concentrations fluctuate and a higher instantaneous concentration occasionally appears due to turbulence. Therefore the time-averaged concentration value which can be used as a threshold for assessing safety must be determined considering concentration fluctuations. Once the threshold value is determined the safe distance from the leakage point can be evaluated by the above-mentioned simple formula. To clarify the phenomenon of concentration fluctuations instantaneous concentrations were measured with the fast-response flame ionization detector. A small amount of methane gas was mixed into the hydrogen as a tracer gas for this measurement. The relationship between the time-mean concentration and the occurrence probability of flammable concentration was analyzed. Under the same conditions spark-ignition experiments were also conducted and the relationship between the occurrence probability of flammable concentration and actual ignition probabilities were also investigated. The experimental results show that there is a clear correlation between the time-mean concentration the occurrence probability of flammable concentration flame length and occurrence probability of hydrogen flame.
Fundamental Safety Testing and Analysis of Solid State Hydrogen Storage Materials and Systems
Sep 2007
Publication
Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH4 a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.
Leakage-type-based Analysis of Accidents Involving Hydrogen Fueling Stations in Japan and USA
Aug 2016
Publication
To identify the safety issues associated with hydrogen fuelling stations incidents at such stations in Japan and the USA were analyzed considering the regulations in these countries. Leakage due to the damage and fracture of main bodies of apparatuses and pipes in Japan and the USA is mainly caused by design error that is poorly planned fatigue. Considering the present incidents in these countries adequate consideration of the usage environment in the design is very important. Leakage from flanges valves and seals in Japan is mainly caused by screw joints. If welded joints are to be used in hydrogen fuelling stations in Japan strength data for welded parts should be obtained and pipe thicknesses should be reduced. Leakage due to other factors e.g. external impact in Japan and the USA is mainly caused by human error. To realize self-serviced hydrogen fuelling stations safety measures should be developed to prevent human error by fuel cell vehicle users.
Numerical Investigation of Vented Hydrogen-air Deflagration in a Chamber
Oct 2015
Publication
This paper shows numerical investigation related to hydrogen-air deflagration venting. The aim of this study is to clarify the influence of concentration gradient on the pressure histories and peak pressures in a chamber. The numerical analysis target is a 27 m3 cubic chamber which has 2.6 m2 vent area on the sidewall. The vent opening pressure is set to be gauge 10 kPa. Two different conditions of the hydrogen concentration are assumed which are uniform and gradient. In the uniform case 15 20 25 30 and 35 vol.% concentrations are assumed. In the gradient case the concentration linearly increases from 0 vol.% (at the ground) to 30 40 50 60 70 vol.% (at the ceiling). The initial total mass of hydrogen inside the chamber is the same as the uniform case. Moreover three different ignition points are assumed: on the rear center and the front of the chamber relative to the vent. The deflagrations are initiated by a single ignition source. In most gradient cases the highest peak is lower than in the uniform case though the initial total mass of hydrogen inside the chamber is the same as in the uniform case. This is because the generated burned gas per time is smaller in the gradient case than in the uniform case. In 15 vol.% gradient case however the peak pressure gets higher than in the uniform case. This is because in 15 vol.% gradient case the burning velocity around the ignition point gets faster and the flame surface gets larger which induces larger amount of burned gas per time.
Numerical Investigation on the Self-ignition Behavior of High Pressure Hydrogen Released from the Tube
Sep 2017
Publication
This paper shows the numerical investigation on the self-ignition behavior of high pressure hydrogen released from the tube. The present study aims to clarify the effect of parameters on the behavior and duration of self-ignition outside the tube using two-dimensional axisymmetric numerical simulation with detailed chemistry. The parameters in this study are release pressure tube diameter and tube length. The strength of the spherical shock wave to keep chemical reaction and expansion are important factors for self ignited hydrogen jet to be sustained outside the tube. The trend of strength of spherical shock wave is enhanced by higher release pressure and larger tube diameter. The chemical reaction weakens due to expansion and the degree of expansion becomes larger as the spherical shock wave propagates. The characteristic time for the chemical reaction becomes shorter in higher release pressure larger tube diameter and longer tube diameter cases from the induction time under constant volume assumption. The self ignited hydrogen jet released from the tube is sustained up to the distance where the characteristic time for chemical reaction is shorter than the characteristic time for the flow to expand and higher release pressure larger tube diameter and longer tube length expand the distance where the tip flame can propagate downstream. For the seed flame which is the key for jet fire the larger amount of the ignited volume when the shock wave reaches the tube exit contributes to the formation and stability of the seed flame. The amount of the ignited volume tends to be larger in the longer tube length higher release pressure and larger tube diameter cases.
Energy-efficient Conversion of Microalgae to Hydrogen and Power
Jun 2017
Publication
An integrated system for H2 production from microalgae and its storage is proposed employing enhanced process integration technology (EPI). EPI consists of two core technologies i.e. exergy recovery and process integration. The proposed system includes a supercritical water gasification H2 separation hydrogenation and combined cycle. Microalga Chlorella vulgaris is used as a material for evaluation. The produced syngas is separated to produce highly pure H2. Furthermore to store the produced H2 liquid organic H2 carrier of toluene-and-methylcyclohexane cycle is adopted. The remaining gas is used as fuel for combustion in combined cycle to generate electricity. The effects of fluidization velocity and gasification pressure to energy efficiency are evaluated. From process modelling and calculation it is shown that high total energy efficiency about 60% can be achieved. In addition about 40% of electricity generation efficiency can be realized.
Security Risk Analysis of a Hydrogen Fueling Station with an On-site Hydrogen Production System Involving Methylcyclohexane
Sep 2017
Publication
Although many studies have looked at safety issues relating to hydrogen fuelling stations few studies have analyzed the security risks such as deliberate attack of the station by threats such as terrorists and disgruntled employees. The purpose of this study is to analyze security risks for a hydrogen fuelling station with an on-site production of hydrogen from methylcyclohexane. We qualitatively conducted a security risk analysis using American Petroleum Institute Standard 780 as a reference for the analysis. The analysis identified 93 scenarios including pool fires. We quantitatively simulated a pool fire scenario unique to the station to analyze attack consequences. Based on the analysis and the simulation we recommend countermeasures to prevent and mitigate deliberate attacks.
Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
Oct 2017
Publication
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds which have fascinating structures compositions and properties. Complex metal hydrides are a rapidly expanding class of materials approaching multi-functionality in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state act as novel battery materials both as electrolytes and electrode materials or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron nitrogen and aluminum e.g. metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes
Jun 2020
Publication
The hydrogen permeation coefficient (ϕ) is generally used as a measure to show hydrogen permeation ability through dense metallic membranes which is the product of the Fick’s diffusion coefficient (D) and the Sieverts’ solubility constant (K). However the hydrogen permeability of metal membranes cannot be analyzed consistently with this conventional description. In this paper various methods for consistent analysis of hydrogen permeability are reviewed. The derivations of the descriptions are explained in detail and four applications of the consistent descriptions of hydrogen permeability are introduced: (1) prediction of hydrogen flux under given conditions (2) comparability of hydrogen permeability (3) understanding of the anomalous temperature dependence of hydrogen permeability of Pd-Ag alloy membrane and (4) design of alloy composition of non-Pd-based alloy membranes to satisfy both high hydrogen permeability together with strong resistance to hydrogen embrittlement.
3D Real Time Monitoring of H2 in FCV Applications
Sep 2019
Publication
In order to monitor a trace amount of Hydrogen in millisecond portable H2 sensor (Sx) was made by using mass spectrometer. The method of monitoring the hydrogen pulse of millisecond in exhaust gas is the increasing needed. Determining H2 concentration both inside and outside of the Fuel Cell Vehicle (FCV) for the optimized operations is becoming a critical issue. The exhaust gas of Fuel Cell Vehicle H2 consumption flushing and disposal around Fuel cell the real time monitoring of H2 in highly humid conditions is the problematic. To solve this issue the system volume of the sampling route was minimized with the heater and the dehumidifier to avoid condensation of water droplets. And also for an automatic calibration of H2 concentration the small cylinder of specific H2 concentration was mounted into the system.<br/>Our basic experiment started from a flow pattern analysis by monitoring H2 concentration in narrow tube. The flow patter analysis was carried out. When H2 gas was introduced in the N2 flow or air in the tube the highly concentrated H2 front phases were observed. This H2 sensor can provide the real time information of the hydrogen molecules and the clouds. The basic characterization of this sensor showed 0-100% H2 concentrations within milliseconds. Our observations showed the size of the high concentration phase of H2 and the low concentration phase after mixing process. The mixed and unmixed H2 unintended concentration of H2 cloud the high speed small cluster of H2 molecules in purged gas were explored by this system.
Techno-economic Analysis on Renewable Energy Via Hydrogen, Views from Macro and Micro Scopes
Mar 2019
Publication
This paper addresses from both macro- and micro- areal coverage in introducing hydrogen system in terms of cost and performance where the produced hydrogen from surplus photovoltaic (PV) power is stored. Feed-in tariff in Japan had successful achievement for great expansion of renewable energy systems (RES) causing problematic operation due to excess power by overcapacity of RES. One of the candidate approaches to overcome this surplus energy by RES is Power to gas (P2G) system using electrolysis cells (ECs) fuel cells (FCs) or co-firing in gas turbines both for energy conversion as well as power balancing. Numerous studies had been investigated on P2G however within our knowledge no study had been addressed the system from both coverages with different capacity and scales. We investigate micro level (zero emission building in our university) and macro level (Kyushu one of big regions in Japan). We describe for macro side preliminary result on economic analysis of using surplus power of RES via production and storage of hydrogen while for micro side research design.
Hydrogen-enhanced Fatigue Crack Growth in Steels and its Frequency Dependence
Jun 2017
Publication
In the context of the fatigue life design of components particularly those destined for use in hydrogen refuelling stations and fuel cell vehicles it is important to understand the hydrogen-induced fatigue crack growth (FCG) acceleration in steels. As such the mechanisms for acceleration and its influencing factors are reviewed and discussed in this paper with a special focus on the peculiar frequency dependence of the hydrogen-induced FCG acceleration. Further this frequency dependence is debated by introducing some potentially responsible elements along with new experimental data obtained by the authors.
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
The Effect of Graphite Size on Hydrogen Absorption and Tensile Properties of Ferritic Ductile Cast Iron
Jun 2019
Publication
Ductile cast iron (DCI) is one of prospective materials used for the hydrogen equipment because of low-cost good workability and formability. The wide range of mechanical properties of DCI is obtained by controlling microstructural factors such as graphite size volume fraction of graphite matrix structure and so on. Therefore it is important to find out an optimal microstructural condition that is less susceptible to hydrogen embrittlement. In this study the effects of graphite size on the hydrogen absorption capability and the hydrogen-induced ductility loss of ferritic DCI were investigated.<br/>Several kinds of ferritic DCIs with a different graphite diameter of about 10 µm - 30 µm were used for the tensile test and the hydrogen content measurement. Hydrogen charging was performed prior to the tensile test by exposing a specimen to high-pressure hydrogen gas. Then the tensile test was performed in air at room temperature. The hydrogen content of a specimen was measured by a thermal desorption analyzer.<br/>It was found that the amount of hydrogen stored in DCI was dependent on the graphite size. As the graphite diameter increased the hydrogen content sharply increased at a certain graphite diameter and then it became nearly constant irrespective of increase in graphite diameter. In other words there was the critical graphite diameter that significantly changed the hydrogen absorption capability. The ductility was decreased by hydrogen and the hydrogen-induced ductility loss was dependent on the hydrogen content. Therefore the hydrogen embrittlement of DCI became remarkable when the graphite size was larger than the critical value.
Hydrogen Storage Mechanism in Sodium-Based Graphene Nanoflakes: A Density Functional Theory Study
Jan 2022
Publication
Carbon materials such as graphene nanoflakes carbon nanotubes and fullerene can be widely used to store hydrogen and doping these materials with lithium (Li) generally increases their H2 -storage densities. Unfortunately Li is expensive; therefore alternative metals are required to realize a hydrogen-based society. Sodium (Na) is an inexpensive element with chemical properties that are similar to those of lithium. In this study we used density functional theory to systematically investigate how hydrogen molecules interact with Na-doped graphene nanoflakes. A graphene nanoflake (GR) was modeled by a large polycyclic aromatic hydrocarbon composed of 37 benzene rings with GR-Na-(H2 )n and GR-Na+ -(H2 )n (n = 0–12) clusters used as hydrogen storage systems. Data obtained for the Na system were compared with those of the Li system. The single-H2 GR-Li and GR-Na systems (n = 1) exhibited binding energies (per H2 molecule) of 3.83 and 2.72 kcal/mol respectively revealing that the Li system has a high hydrogen-storage ability. This relationship is reversed from n = 4 onwards; the Na systems exhibited larger or similar binding energies for n = 4–12 than the Li-systems. The present study strongly suggests that Na can be used as an alternative metal to Li in H2 -storage applications. The H2 -storage mechanism in the Na system is also discussed based on the calculated results.
Comparison of Regulations Codes and Standards for Hydrogen Refueling Stations in Japan and France
Sep 2019
Publication
The states of Regulations Codes and Standards (RCS) of hydrogen refueling stations (HRSs) in Japan and France are compared and specified items to understand correspondence and differences among each RCSs for realizing harmonization in RCS. Japan has been trying to reform its RCSs to reduce HRS installation and operation costs as a governmental target. Specific crucial regulatory items such as safety distances mitigation means materials for hydrogen storage and certification of anti-explosion proof equipments are compared in order to identify the origins of the current obstacles for disseminating HRS.
Observation of the Hydrogen Dispersion by Using Raman Scattering Measurement and Increase of Measurable Distance
Sep 2017
Publication
Preparing for the arrival of the hydrogen society it is necessary to develop suitable sensors to use hydrogen safely. There are many methods to know the hydrogen concentration by using conventional sensors but it is difficult to know the behavior of hydrogen gas from long distance. This study measured hydrogen dispersion by using Raman scattering light. Generally some delays occur when using conventional sensors but there are almost no delays by using the new Raman sensor. In the experiments 6mm & 1mm diameter holes are used as a spout nozzle to change initial velocities. To ensure the result a special sheets are used which turns transparent when it detected hydrogen and visualized the hydrogen behaviour. As a result the behaviour of the hydrogen gas in the small container was observed. In addition measurable distance is increased by the improvement of the device.
Numerical Investigation of Detonation in Stratified Combustible Mixture and Oxidizer with Concentration Gradients
Sep 2019
Publication
Hydrogen leakage in a closed space is one of the causes of serious accidents because of its high detonability. Assuming the situation that hydrogen is accumulated in a closed space two-dimensional numerical simulation for hydrogen oxygen detonation which propagates in stratified fuel and oxidizer with concentration gradient is conducted by using detailed chemical reaction model. The concentration gradient between fuel and oxidizer is expressed by changing the number of hydrogen moles by using sigmoid function. Strength of discontinuity at the boundary is controlled by changing the gain of the function. The maximum pressure history shows that the behaviour of triple points is different depending on the strength of discontinuity between the two kind of gas. In without concentration gradient case the transverse waves are reflected at the boundary because of the sudden change of acoustic impedance ratio between two kind of gas. In contrast in with concentration gradient case the transverse wavs are not reflected in the buffer zone and they are flowed into the oxidizer as its structures are kept. As a result the confined effect declines as the strength of discontinuity between the two kind of gas is weakened and the propagating distance of detonation changes
The Study on Permissible Value of Hydrogen Gas Concentration in Purge Gas of Fuel Cell Vehicles
Sep 2019
Publication
Ignition conditions and risks of ignition on a permissible value of hydrogen concentration in purge gas prescribed by HFCV-GTR were reevaluated. Experiments were conducted to investigate burning behavior and thermal influence of continuous evacuation of hydrogen under continuous purge of air / hydrogen premixed gas which is close to an actual purge condition of FCV and thermal evacuation of hydrogen. As a result of the re-evaluation it was shown from the viewpoint of safety that the permissible value of hydrogen concentration in purge gas prescribed by the current HFCV GTR is appropriate.
Hydrogen: A Reviewable Energy Perspective
Sep 2019
Publication
Hydrogen has emerged as an important part of the clean energy mix needed to ensure a sustainable future. Falling costs for hydrogen produced with renewable energy combined with the urgency of cutting greenhouse-gas emissions has given clean hydrogen unprecedented political and business momentum.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
- Electrolysers can add demand-side flexibility. In advanced European energy markets electrolysers are growing from megawatt to gigawatt scale.
- Blue hydrogen is not inherently carbon free. This type of production requires carbon-dioxide (CO2) monitoring verification and certification.
- Synergies may exist between green and blue hydrogen deployment given the chance for economies of scale in hydrogen use or logistics.
- A hydrogen-based energy transition will not happen overnight. Hydrogen use is likely to catch on for specific target applications. The need for new supply infrastructure could limit hydrogen use to countries adopting this strategy.
- Dedicated hydrogen pipelines have existed for decades and could be refurbished along with existing gas pipelines. The implications of replacing gas abruptly or changing mixtures gradually should be further explored.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
Near-term Location of Hydrogen Refueling Stations in Yokohama City from the Perspective of Safety
Sep 2019
Publication
The roll-out of hydrogen refuelling stations is a key step in the transition to a hydrogen economy. Since Japan has been shifting from the demonstration stage to the implementation stage of a hydrogen economy a near-term city-level roll-out plan is required. The aim of this study is to plan near-term locations for building hydrogen refuelling stations in Yokohama City from a safety perspective. Our planning provides location information for hydrogen refuelling stations in Yokohama City for the period 2020–2030. Mobile type and parallel siting type refuelling stations have been considered in our planning and locations were determined by matching supply and demand to safety concerns. Supply and demand were estimated from hybrid vehicle ownership data and from space availability in existing gas stations. The results reaffirmed the importance of hydrogen station location planning and showed that use of mobile type stations is a suitable solution in response to the uncertain fuel cell vehicle fuel demand level during the implementation stage of a hydrogen economy.
Effect of Gasoline Pool Fire on Liquid Hydrogen Storage Tank in Hybrid Hydrogen-gasoline Fueling Station
Nov 2015
Publication
Multiple-energy-fuelling stations which can supply several types of energy such as gasoline CNG and hydrogen could guarantee the efficient use of space. To guide the safety management of hybrid hydrogen–gasoline fuelling stations which utilize liquid hydrogen as an energy carrier the scale of gasoline pool fires was estimated using the hazard assessment tool Toxic Release Analysis of Chemical Emissions (TRACE). Subsequently the temperature and the stress due to temperature distribution were estimated using ANSYS. Based on the results the safety of liquid hydrogen storage tanks was discussed. It was inferred that the emissivity of the outer material of the tank and the safety distance between liquid hydrogen storage tanks and gasoline dispensers should be less than 0.2 and more than 8.5 m respectively to protect the liquid hydrogen storage tank from the gasoline pool fire. To reduce the safety distance several measures are required e.g. additional thermal shields such as protective intumescent paint and water sprinkler systems and an increased slope to lead gasoline off to a safe domain away from the liquid hydrogen storage tank
Unusual Hydrogen Implanted Gold with Lattice Contraction at Increased Hydrogen Content
Mar 2021
Publication
The experimental evidence for the contraction of volume of gold implanted with hydrogen at low doses is presented. The contraction of lattice upon the addition of other elements is very rare and extraordinary in the solid-state not only for gold but also for many other solids. To explain the underlying physics the pure kinetic theory of absorption is not adequate and the detailed interaction of hydrogen in the lattice needs to be clarified. Our analysis points to the importance of the formation of hydride bonds in a dynamic manner and explains why these bonds become weak at higher doses leading to the inverse process of volume expansion frequently seen in metallic hydrogen containers.
Influence of Hydrogen for Crack Formation during Mechanical Clinching
Jan 2018
Publication
Hydrogen intrudes into the steel during pickling process which is a pre-processing before a joining process promoting crack formation. In a mechanical clinching which is one of joining method in the automotive industry cracks due to large strain sometimes forms. In order to guarantee reliability it is important to clarify the influence of hydrogen on crack formation of the joint. In this study we clarified the influence of hydrogen for the crack formation on the mechanical clinching. Hydrogen charge was carried out using an electrolytic cathode charge. After the charging mechanical clinching was performed. Mechanical clinching was carried out with steel plate and aluminium alloy plate. To clarify the influence of hydrogen mechanical clinching was conducted without hydrogen charring. To investigate the crack formation the test piece was cut and the cut surface was observed. When the joint was broken during the clinching the fracture surface was observed using an optical microscope and an electron microscope. The load-displacement diagram showed that without hydrogen charging the compressive load increased as the displacement increased. On the other hand the compressive load temporarily decreased with high hydrogen charging suggesting that cracks formed at the time. The cut surface observation showed that interlock was formed in both cases with low hydrogen charging and without hydrogen charging. With low hydrogen charging no cracks were formed in the joint. When high hydrogen charging was performed cracks were formed at the joining point. Fracture analysis showed brittle-like fracture surface. These results indicate that hydrogen induces crack formation in the mechanical clinching.
Strain Rate Sensitivity of Microstructural Damage Evolution in a Dual-Phase Steel Pre-Charged with Hydrogen
Dec 2018
Publication
We evaluated the strain rate sensitivity of the micro-damage evolution behavior in a ferrite/martensite dual-phase steel. The micro-damage evolution behavior can be divided into three regimes: damage incubation damage arrest and damage growth. All regimes are associated with local deformability. Thus the total elongation of DP steels is determined by a combination of plastic damage initiation resistance and damage growth arrestability. This fact implies that hydrogen must have a critical effect on the damage evolution because hydrogen enhances strain localization and lowers crack resistance. In this context the strain rate must be an important factor because it affects the time for microstructural hydrogen diffusion/segregation at a specific microstructural location or at the damage tip. In this study tensile tests were carried out on a DP steel with different strain rates of 10− 2 and 10− 4 s−1. We performed the damage quantification microstructure characterization and fractography. Specifically the quantitative data of the damage evolution was analyzed using the classification of the damage evolution regimes in order to separately elucidate the effects of the hydrogen on damage initiation resistance and damage arrestability. In this study we obtained the following conclusions with respect to the strain rate. Lowering the strain rate increased the damage nucleation rate at martensite and reduced the critical strain for fracture through shortening the damage arrest regime. However the failure occurred via ductile modes regardless of strain rate.
Tensile and Fatigue Properties of 17-4PH Martensitic Stainless Steels in Presence of Hydrogen
Dec 2019
Publication
Effects of hydrogen on slow-strain-rate tensile (SSRT) and fatigue-life properties of 17-4PH H1150 martensitic stainless steel having an ultimate tensile strength of ~1GPa were investigated. Smooth and circumferentially-notched axisymmetric specimens were used for the SSRT and fatigue-life tests respectively. The fatigue-life tests were done to investigate the hydrogen effect on fatigue crack growth (FCG) properties. The specimens tested in air at ambient temperature were precharged by exposure to hydrogen gas at pressures of 35 and 100 MPa at 270°C for 200 h. The SSRT properties of the H-charged specimens were degraded by hydrogen showing a relative reduction in area (RRA) of 0.31 accompanied by mixed fracture surfaces composed of quasi-cleavage (QC) and intergranular cracking (IG). The fatigue-life tests conducted under wide test frequencies ranging from 10-3 Hz to 10 Hz revealed three distinct characteristics in low- and high-cycle regimes and at the fatigue limit. The fatigue limit was not degraded by hydrogen. In the high-cycle regime the hydrogen caused FCG acceleration with an upper bound ratio of 30 accompanied by QC surfaces. In the low-cycle regime the hydrogen caused FCG acceleration with a ratio of ~100 accompanied by QC and IG. The ordinary models such as process competition and superposition models hardly predicted the H-assisted FCG acceleration; therefore an interaction model successfully reproducing the experimental FCG acceleration was newly introduced.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
A Multiobjective Optimization of a Catalyst Distribution in a Methane/Steam Reforming Reactor Using a Genetic Algorithm
May 2020
Publication
The presented research focuses on an optimization design of a catalyst distribution inside a small-scale methane/steam reforming reactor. A genetic algorithm was used for the multiobjective optimization which included the search for an optimum of methane conversion rate and a minimum of the difference between highest and lowest temperatures in the reactor. For the sake of computational time the maximal number of the segment with different catalyst densities was set to be thirty in this study. During the entire optimization process every part of the reactor could be filled either with a catalyst material or non-catalytic metallic foam. In both cases the porosity and pore size was also specified. The impact of the porosity and pore size on the active reaction surface and permeability was incorporated using graph theory and three-dimensional digital material representation. Calculations start with the generation of a random set of possible reactors each with a different catalyst distribution. The algorithm calls reforming simulation over each of the reactors and after obtaining concentration and temperature fields the algorithms calculated fitness function. The properties of the best reactors are combined to generate a new population of solutions. The procedure is repeated and after meeting the coverage criteria the optimal catalyst distribution was proposed. The paper is summarized with the optimal catalyst distribution for the given size and working conditions of the system.
Interfacial Fracture Strength Property of Micro-scale SiN/Cu Components
Jul 2016
Publication
The strength against fracture nucleation from an interface free-edge of silicon-nitride (SiN)/copper (Cu) micro-components is evaluated. A special technique that combines a nano-indenter specimen holder and an environmental transmission electron microscope (E-TEM) is employed. The critical load at the onset of fracture nucleation from a wedge-shaped free-edge (opening angle: 90°) is measured both in a vacuum and in a hydrogen (H2) environment and the critical stress distribution is evaluated by the finite element method (FEM). It is found that the fracture nucleation is dominated by the near-edge elastic singular stress field that extends about a few tens of nanometers from the edge. The fracture nucleation strength expressed in terms of the stress intensity factor (K) is found to be eminently reduced in a H2 environment.
Simulation of a Multi-Functional Energy System for Cogeneration of Steam, Power and Hydrogen in a Coke Making Plant
Mar 2013
Publication
In this paper a multifunctional energy system (MES) is proposed for recovering energy from the extra of coke oven gas (COG) which is usually flared or vented out as a waste stream in coke making plants. The proposed system consists of a pressure swing adsorption (PSA) unit for extracting some of the hydrogen from COG a gas turbine for producing heat and power from PSA offgas and a heat recovery steam generator (HRSG) for generating the steam required by the plant's processes. o assess the performance of the system practically simulations are carried out on the basis of the design and operational conditions of Zarand Coke Making Plant in Iran. The results indicate that by utilizing about 4.39 tons of COG per hour 6.5 MW of net electric power can be approximately produced by the gas turbine which can supply the coke making plant's total electrical power demand. Furthermore through recovering heat from gas turbine's exhaust close to 57% of the plant's steam demand can be supplied by the HRSG unit. It is also found that around 350 kilograms per hour of nearly pure hydrogen (99.9% purity) at 200 bar can be produced by the PSA unit. According to the sensitivity analysis results if the hydrogen content of the coke oven gas decreases by about 10% the gross power output of the gas turbine also declines by around 5.2% due to the reduction of LHV of the PSA offgas. Moreover economic evaluation of the system shows that the payback period of the investment which is estimated at 36.1 M$ is about 5.5 years. The net present value (NPV) and internal rate of return on investment (ROI) are calculated to be 17.6% and 43.3 M$ respectively.
Energy Modeling Approach to the Global Energy-mineral Nexus: Exploring Metal Requirements and the Well-below 2 °C Target with 100 Percent Renewable Energy
Jun 2018
Publication
Detailed analysis of pathways to future sustainable energy systems is important in order to identify and overcome potential constraints and negative impacts and to increase the utility and speed of this transition. A key aspect of a shift to renewable energy technologies is their relatively higher metal intensities. In this study a bottom-up cost-minimizing energy model is used to calculate aggregate metal requirements in different energy technology including hydrogen and climate policy scenarios and under a range of assumptions reflecting uncertainty in future metal intensities recycling rate and life time of energy technologies. Metal requirements are then compared to current production rates and resource estimates to identify potentially “critical” metals. Three technology pathways are investigated: 100 percent renewables coal & nuclear and gas & renewables each under the two different climate policies: net zero emissions satisfying the well-below 2 °C target and business as usual without carbon constraints resulting together in six scenarios. The results suggest that the three different technology pathways lead to an almost identical degree of warming without any climate policy while emissions peaks within a few decades with a 2 °C policy. The amount of metals required varies significantly in the different scenarios and under the various uncertainty assumptions. However some can be deemed “critical” in all outcomes including Vanadium. The originality of this study lies in the specific findings and in the employment of an energy model for the energy-mineral nexus study to provide better understanding for decision making and policy development.
Assessing Uncertainties of Well-To-Tank Greenhouse Gas Emissions from Hydrogen Supply Chains
Jun 2017
Publication
Hydrogen is a promising energy carrier in the clean energy systems currently being developed. However its effectiveness in mitigating greenhouse gas (GHG) emissions requires conducting a lifecycle analysis of the process by which hydrogen is produced and supplied. This study focuses on the hydrogen for the transport sector in particular renewable hydrogen that is produced from wind- or solar PV-powered electrolysis. A life cycle inventory analysis is conducted to evaluate the Well-to-Tank (WtT) GHG emissions from various renewable hydrogen supply chains. The stages of the supply chains include hydrogen being produced overseas converted into a transportable hydrogen carrier (liquid hydrogen or methylcyclohexane) imported to Japan by sea distributed to hydrogen filling stations restored from the hydrogen carrier to hydrogen and filled into fuel cell vehicles. For comparison an analysis is also carried out with hydrogen produced by steam reforming of natural gas. Foreground data related to the hydrogen supply chains are collected by literature surveys and the Japanese life cycle inventory database is used as the background data. The analysis results indicate that some of renewable hydrogen supply chains using liquid hydrogen exhibited significantly lower WtT GHG emissions than those of a supply chain of hydrogen produced by reforming of natural gas. A significant piece of the work is to consider the impacts of variations in the energy and material inputs by performing a probabilistic uncertainty analysis. This suggests that the production of renewable hydrogen its liquefaction the dehydrogenation of methylcyclohexane and the compression of hydrogen at the filling station are the GHG-intensive stages in the target supply chains.
The Impact of Operating Conditions on the Performance of a CH4 Dry Reforming Membrane Reactor for H2 Production
May 2020
Publication
Biogas is a promising resource for the production of H2 since it liberates energy by recycling waste along with the reduction of CO2. In this paper the biogas dry reforming membrane reactor is proposed to produce H2 for use in fuel cells. Pd/Cu alloy membrane is used to enhance the performance of the biogas dry reforming reactor. This study aims at understanding the effect of operating parameters such as feed ratio of sweep gas pressure in the reactor and reaction temperature on the performance of the biogas dry reforming membrane reactor. The effect of the molar ratio of the supplied CH4:CO2 feed ratio of the sweep gas and the valve located at the outlet of the reaction chamber on the performance of biogas dry reforming are investigated. Besides the thermal efficiency of the proposed reactor is also evaluated. The results show that the concentration of H2 in the closed valve condition is higher than that of the open valve and the optimum feed ratio of the sweep gas to produce H2 is 1 irrespective of the molar ratio of supplied CH4:CO2. Also H2 selectivity and CO selectivity increases and decreases respectively when the reaction temperature increases irrespective of the molar ratio of supplied CH4:CO2. Therefore the thermal efficiency of the closed valve is higher than that of the opened valve. Also the thermal efficiency is the maximum when the feed ratio of the sweep gas is 1 due to high H2 production performance.
Novel Biofuel Cell Using Hydrogen Generation of Photosynthesis
Nov 2020
Publication
Energies based on biomaterials attract a lot of interest as next-generation energy because biomaterials are environmentally friendly materials and abundant in nature. Fuel cells are also known as the clean and important next-generation source of energy. In the present study to develop the fuel cell based on biomaterials a novel biofuel cell which consists of collagen electrolyte and the hydrogen fuel generated from photochemical system II (PSII) in photosynthesis has been fabricated and its property has been investigated. It was found that the PSII solution in which PSII was extracted from the thylakoid membrane using a surfactant generates hydrogen by the irradiation of light. The typical hydrogen-generating rate is approximately 7.41 × 1014 molecules/s for the light intensity of 0.5 mW/cm2 for the PSII solution of 5 mL. The biofuel cell using the PSII solution as the fuel exhibited approximately 0.12 mW/cm2 . This result indicates that the fuel cell using the collagen electrolyte and the hydrogen fuel generated from PSII solution becomes the new type of biofuel cell and will lead to the development of the next-generation energy
Model of Local Hydrogen Permeability in Stainless Steel with Two Coexisting Structures
Apr 2021
Publication
The dynamics of hydrogen in metals with mixed grain structure is not well understood at a microscopic scale. One of the biggest issues facing the hydrogen economy is “hydrogen embrittlement” of metal induced by hydrogen entering and diffusing into the material. Hydrogen diffusion in metallic materials is difficult to grasp owing to the non-uniform compositions and structures of metal. Here a time-resolved “operando hydrogen microscope” was used to interpret local diffusion behaviour of hydrogen in the microstructure of a stainless steel with austenite and martensite structures. The martensite/austenite ratios differed in each local region of the sample. The path of hydrogen permeation was inferred from the time evolution of hydrogen permeation in several regions. We proposed a model of hydrogen diffusion in a dual-structure material and verified the validity of the model by simulations that took into account the transfer of hydrogen at the interfaces.
Public Acceptance for the Implementation of Hydrogen Self-refueling Stations
Sep 2021
Publication
The utilization of hydrogen energy is important for achieving a low-carbon society. Japan has set ambitious goals for hydrogen stations and fuel cell vehicles focusing on the introduction and dissemination of self-refuelling systems. This paper evaluates public trust in the fuel equipment and self-handling technology related to self-refuelling hydrogen stations and compares it with that for widespread gasoline stations. To this end the results of an online survey of 300 people with Japanese driver licenses are reported and analyzed. The results show that trust in the equipment and self-handling is more important for the user than trust in the fuel. In addition to introduce and disseminate new technology such as hydrogen stations users must be made aware of the risk of using the technology until it becomes as familiar as existing gasoline station technology.
Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety
Sep 2021
Publication
Decarbonization plays an important role in future energy systems for reducing greenhouse gas emissions and establishing a zero-carbon society. Hydrogen is believed to be a promising secondary energy source (energy carrier) that can be converted stored and utilized efficiently leading to a broad range of possibilities for future applications. Moreover hydrogen and electricity are mutually converted creating high energy security and broad economic opportunities toward high energy resilience. Hydrogen can be stored in various forms including compressed gas liquid hydrogen hydrides adsorbed hydrogen and reformed fuels. Among these liquid hydrogen has advantages including high gravimetric and volumetric hydrogen densities and hydrogen purity. However liquid hydrogen is garnering increasing attention owing to the demand for long storage periods long transportation distances and economic performance. This paper reviews the characteristics of liquid hydrogen liquefaction technology storage and transportation methods and safety standards to handle liquid hydrogen. The main challenges in utilizing liquid hydrogen are its extremely low temperature and ortho- to para-hydrogen conversion. These two characteristics have led to the urgent development of hydrogen liquefaction storage and transportation. In addition safety standards for handling liquid hydrogen must be updated regularly especially to facilitate massive and large-scale hydrogen liquefaction storage and transportation.
New Insights into Hydrogen Uptake on Porous Carbon Materials via Explainable Machine Learning
Apr 2021
Publication
To understand hydrogen uptake in porous carbon materials we developed machine learning models to predict excess uptake at 77 K based on the textural and chemical properties of carbon using a dataset containing 68 different samples and 1745 data points. Random forest is selected due to its high performance (R2 > 0.9) and analysis is performed using Shapley Additive Explanations (SHAP). It is found that pressure and Brunauer-Emmett-Teller (BET) surface area are the two strongest predictors of excess hydrogen uptake. Surprisingly this is followed by a positive correlation with oxygen content contributing up to ∼0.6 wt% additional hydrogen uptake contradicting the conclusions of previous studies. Finally pore volume has the smallest effect. The pore size distribution is also found to be important since ultramicropores (dp < 0.7 nm) are found to be more positively correlated with excess uptake than micropores (dp < 2 nm). However this effect is quite small compared to the role of BET surface area and total pore volume. The novel approach taken here can provide important insights in the rational design of carbon materials for hydrogen storage applications.
Effect of Supercharging on Improving Thermal Efficiency and Modifying Combustion Characteristics in Lean-burn Direct-injection Near-zero-emission Hydrogen Engines
Oct 2021
Publication
The authors have proposed a new combustion process called the Plume Ignition Combustion Concept (PCC) in which with an optimal combination of hydrogen injection timing and controlled jet geometry the plume of the hydrogen jet is spark-ignited to accomplish combustion of a rich mixture. This combustion process markedly improves thermal efficiency by reducing cooling loss which is essential for increasing thermal efficiency in a hydrogen engine while maintaining high power. In order to improve thermal efficiency and reduce NOx formation further PCC was applied to a lean-burn regime to burn a leaner mixture globally. In this study the effect of supercharging which was applied to recover the reduced output power due to the leaner mixture on improving thermal efficiency was confirmed along with clarifying the cause.
Development of Technical Regulations for Fuel Cell Motorcycles in Japan—Hydrogen Safety
Jul 2019
Publication
Hydrogen fuel cell vehicles are expected to play an important role in the future and thus have improved significantly over the past years. Hydrogen fuel cell motorcycles with a small container for compressed hydrogen gas have been developed in Japan along with related regulations. As a result national regulations have been established in Japan after discussions with Japanese motorcycle companies stakeholders and experts. The concept of Japanese regulations was proposed internationally and a new international regulation on hydrogen-fueled motorcycles incorporating compressed hydrogen storage systems based on this concept are also established as United Nations Regulation No. 146. In this paper several technical regulations on hydrogen safety specific to fuel cell motorcycles incorporating compressed hydrogen storage systems are summarized. The unique characteristics of these motorcycles e.g. small body light weight and tendency to overturn easily are considered in these regulations.
Hydrogen Generation from Wood Chip and Biochar by Combined Continuous Pyrolysis and Hydrothermal Gasification
Jun 2021
Publication
Hydrothermal gasification (HTG) experiments were carried out to extract hydrogen from biomass. Although extensive research has been conducted on hydrogen production with HTG limited research exists on the use of biochar as a raw material. In this study woodland residues (wood chip) and biochar from wood-chip pyrolysis were used in HTG treatment to generate hydrogen. This research investigated the effect of temperature (300–425 °C) and biomass/water (0.5–10) ratio on gas composition. A higher temperature promoted hydrogen production because the water–gas shift reaction and steam-reforming reaction were promoted with an increase in temperature. The methane concentration was related positively to temperature because of the methanation and hydrogenation reactions. A lower biomass/water ratio promoted hydrogen production but suppressed carbon-monoxide production. Most reactions that produce hydrogen consume water but water also affects the water–gas shift reaction balance which decreases the carbon-monoxide concentration. By focusing on the practical application of HTG we attempted biochar treatment by pyrolysis (temperature of heating part: 700 °C) and syngas was obtained from hydrothermal treatment above 425 °C.
Experimental Study on Hydrogen Explosions in a Full-scale Hydrogen Filling Station Model
Sep 2005
Publication
In order for fuel cell vehicles to develop a widespread role in society it is essential that hydrogen refuelling stations become established. For this to happen there is a need to demonstrate the safety of the refuelling stations. The work described in this paper was carried out to provide experimental information on hydrogen outflow dispersion and explosion behaviour. In the first phase homogeneous hydrogen-air-mixtures of a known concentration were introduced into an explosion chamber and the resulting flame speed and overpressures were measured. Hydrogen concentration was the dominant factor influencing the flame speed and overpressure. Secondly high-pressure hydrogen releases were initiated in a storage room to study the accumulation of hydrogen. For a steady release with a constant driving pressure the hydrogen concentration varied as the inlet airflow changed depending on the ventilation area of the room the external wind conditions and also the buoyancy induced flows generated by the accumulating hydrogen. Having obtained this basic data the realistic dispersion and explosion experiments were executed at full-scale in the hydrogen station model. High-pressure hydrogen was released from 0.8-8.0mm nozzle at the dispenser position and inside the storage room in the full-scale model of the refuelling station. Also the hydrogen releases were ignited to study the overpressures that can be generated by such releases. The results showed that overpressures that were generated following releases at the dispenser location had a clear correlation with the time of ignition distance from ignition point.
Safety Concept of Nuclear Cogeneration of Hydrogen and Electricity
Oct 2015
Publication
There is a significant potential for nuclear combined heat and power (CHP) in quite a number of industries. The reactor concepts of the next generation would be capable to open up in particular the high temperature heat market where nuclear energy is applicable to the production processes of hydrogen (or liquid fuels) by steam reforming or water splitting. Due to the need to locate a nuclear facility near the hydrogen plant an overall safety concept has to deal with the question of safety of the combined nuclear/industrial system by taking into account a qualitatively new class of events characterized by interacting influences. Specific requirements will be determined by such factors as the reactor type the nature of the industrial process the separation distances of the industrial facility and population centers from the nuclear plant and prevailing public attitudes. Based on the Japanese concept of the GTHTR300C nuclear reactor for electricity and hydrogen cogeneration theoretical studies were conducted on the release dispersive transport and explosion of a hydrogen cloud in the atmosphere for the sake of assessing the required minimum separation distance to avoid any risk to the nuclear plant's safety systems. In the case of sulfur-iodine water splitting the accidental release of process intermediates including large amounts of sulfur dioxide sulfur trioxide and sulfuric acid need to be investigated as well to estimate the potential risk to nuclear installations like the operators' room and estimate appropriate separation distances against toxic gas propagation. Results of respective simulation studies will be presented.
No more items...