France
The Impact of Hydrogen Admixture into Natural Gas on Residential and Commercial Gas Appliances
Jan 2022
Publication
Hydrogen as a carbon-free fuel is commonly expected to play a major role in future energy supply e.g. as an admixture gas in natural gas grids. Which impacts on residential and commercial gas appliances can be expected due to the significantly different physical and chemical properties of hydrogen-enriched natural gas? This paper analyses and discusses blends of hydrogen and natural gas from the perspective of combustion science. The admixture of hydrogen into natural gas changes the properties of the fuel gas. Depending on the combustion system burner design and other boundary conditions these changes may cause higher combustion temperatures and laminar combustion velocities while changing flame positions and shapes are also to be expected. For appliances that are designed for natural gas these effects may cause risk of flashback reduced operational safety material deterioration higher nitrogen oxides emissions (NOx) and efficiency losses. Theoretical considerations and first measurements indicate that the effects of hydrogen admixture on combustion temperatures and the laminar combustion velocities are often largely mitigated by a shift towards higher air excess ratios in the absence of combustion control systems but also that common combustion control technologies may be unable to react properly to the presence of hydrogen in the fuel.
Fire Risk on High-pressure Full Composite Cylinders for Automotive Applications
Sep 2011
Publication
In the event of a fire the TPRD (Thermally activated Pressure Relief Device) prevents the high-pressure full composite cylinder from bursting by detecting high temperatures and releasing the pressurized gas. The current safety performance of both the vessel and the TPRD is demonstrated by an engulfing bonfire test. However there is no requirement concerning the effect of the TPRD release which may produce a hazardous hydrogen flame due to the high flow-rate of the TPRD. It is necessary to understand better the behavior of an unprotected composite cylinder exposed to fire in order to design appropriate protection for it and to be able to reduce the length of any potential hydrogen flame. For that purpose a test campaign was performed on a 36 L cylinder with a design pressure of 70 MPa. The time from fire exposure to the bursting of this cylinder (the burst delay) was measured. The influence of the fire type (partial or global) and the influence of the pressure in the cylinder during the exposure were studied. It was found that the TPRD orifice diameter should be significantly reduced compared to current practice.
An Extended Flamelet-based Presumed Probability Density Function for Predicting Mean Concentrations of Various Species in Premixed Turbulent Flames
Sep 2020
Publication
Direct Numerical Simulation (DNS) data obtained by Dave and Chaudhuri (2020) from a lean complex-chemistry hydrogen-air flame associated with the thin-reaction-zone regime of premixed turbulent burning are analyzed to perform a priori assessment of predictive capabilities of the flamelet approach for evaluating mean species concentrations. For this purpose dependencies of mole fractions and rates of production of various species on a combustion progress variable c obtained from the laminar flame are averaged adopting either the actual Probability Density Function (PDF) P (c) extracted from the DNS data or a common presumed β-function PDF. On the one hand the results quantitatively validate the flamelet approach for the mean mole fractions of all species including radicals but only if the actual PDF P (c) is adopted. The use of the β-function PDF yields substantially worse results for the radicals’ concentrations. These findings put modeling the PDF P (c) on the forefront of the research agenda. On the other hand the mean rate of product creation and turbulent burning velocity are poorly predicted even adopting the actual PDF. These results imply that in order to evaluate the mean species concentrations the flamelet approach could be coupled with another model that predicts the mean rate and turbulent burning velocity better. Accordingly the flamelet approach could be implemented as post-processing of numerical data yielded by that model. Based on the aforementioned findings and implications a new approach to building a presumed PDF is developed. The key features of the approach consist in (i) adopting a re-normalized flamelet PDF for intermediate values of c and (ii) directly using the mean rate of product creation to calibrate the presumed PDF. Capabilities of the newly developed PDF for predicting mean species concentrations are quantitively validated for all species including radicals.
International Association for Hydrogen Safety ‘Research Priorities Workshop’, September 2018, Buxton, UK
Sep 2018
Publication
Hydrogen has the potential to be used by many countries as part of decarbonising the future energy system. Hydrogen can be used as a fuel ‘vector’ to store and transport energy produced in low-carbon ways. This could be particularly important in applications such as heating and transport where other solutions for low and zero carbon emission are difficult. To enable the safe uptake of hydrogen technologies it is important to develop the international scientific evidence base on the potential risks to safety and how to control them effectively. The International Association for Hydrogen Safety (known as IA HySAFE) is leading global efforts to ensure this. HSE hosted the 2018 IA HySAFE Biennial Research Priorities Workshop. A panel of international experts presented during nine key topic sessions: (1) Industrial and National Programmes; (2) Applications; (3) Storage; (4) Accident Physics – Gas Phase; (5) Accident Physics – Liquid/ Cryogenic Behaviour; (6) Materials; (7) Mitigation Sensors Hazard Prevention and Risk Reduction; (8) Integrated Tools for Hazard and Risk Assessment; (9) General Aspects of Safety.<br/>This report gives an overview of each topic made by the session chairperson. It also gives further analysis of the totality of the evidence presented. The workshop outputs are shaping international activities on hydrogen safety. They are helping key stakeholders to identify gaps in knowledge and expertise and to understand and plan for potential safety challenges associated with the global expansion of hydrogen in the energy system.
Delayed Explosion of Hydrogen High Pressure Jets: An Inter Comparison Benchmark Study
Sep 2017
Publication
Delayed explosions of accidental high pressure hydrogen releases are an important risk scenario for safety studies of production plants transportation pipelines and fuel cell vehicles charging stations. As a consequence the assessment of the associated consequences requires accurate and validated prediction based on modelling and experimental approaches. In the frame of the French working group dedicated to the evaluation of computational fluid dynamics (CFD) codes for the modelling of explosion phenomena this study is dedicated to delayed explosions of high pressure releases. Two participants using two different codes have evaluated the capacity of CFD codes to reproduce explosions of high pressure hydrogen releases. In the first step the jet dispersion is modelled and simulation results are compared with experimental data in terms of axial and radial concentration dilution velocity decay and turbulent characteristics of jets. In the second step a delayed explosion is modelled and compared to experimental data in terms of overpressure at different monitor points. Based on this investigation several recommendations for CFD modelling of high pressure jets explosions are suggested.
LES Simulation of Buoyancy Jet From Unintended Hydrogen Release with GASFLOW-MPI
Sep 2017
Publication
Hydrogen leakage is a key safety issue for hydrogen energy application. For hydrogen leakage hydrogen releases with low momentum hence the development of the leakage jet is dominated by both initial momentum and buoyancy. It is important for a computational code to capture the flow characteristics transiting from momentum-dominated jet to buoyancy dominated plume during leakage. GASFLOW-MPI is a parallel computational fluid dynamics (CFD) code which is well validated and widely used for hydrogen safety analysis. In this paper its capability for small scale hydrogen leakage is validated with unintended hydrogen release experiment. In the experiment pure hydrogen is released into surrounding stagnant air through a jet tube on a honeycomb plate with various Froude numbers (Fr). The flow can be fully momentum-dominated at the beginning while the influence of buoyancy increases with the Fr decreases along the streamline. Several quantities of interest including velocity along the centerline radial profiles of the time-averaged H2 mass fraction are obtained to compare with experimental data. The good agreement between the numerical results and the experimental data indicates that GASFLOW-MPI can successfully simulate hydrogen turbulent dispersion driven by both momentum and buoyant force. Different turbulent models i.e. k-ε LES and DES model are analyzed for code performance the result shows that all these three models are adequate for hydrogen leakage simulation k-ε simulation is sufficient for industrial applications while LES model can be adopted for detail analysis for a jet/plume study like entrainment. The DES model possesses both characters of the former two model only the performance of its result depends on the grid refinement.
Vented Explosion of Hydrogen/Air Mixture: An Inter Comparison Benchmark Exercise
Sep 2017
Publication
Explosion venting is a widely used mitigation solution in the process industry to protect indoor equipment or buildings from excessive internal pressure caused by accidental explosions. However vented explosions are very complicated to model using computational fluid dynamics (CFD). In the framework of a French working group the main target of this investigation is to assess the predictive capabilities of five CFD codes used by five different organizations by means of comparison with recent experimental data. On this basis several recommendations for the CFD modelling of vented explosions are suggested.
Residual Performance of Composite Pressure Vessels Submitted to Mechanical Impacts
Sep 2017
Publication
Type IV pressure vessels are commonly used for hydrogen on-board stationary or bulk storages. During their lifetime they can be submitted to mechanical impacts creating damage within the composite structure not necessarily correlated to what is visible from the outside. When an impact is suspected or when a cylinder is periodically inspected it is necessary to determine whether it can safely stay in service or not. The FCH JU project Hypactor aims at creating a large database of impacts characterized by various non destructive testing (NDT) methods in order to provide reliable pass-fail criteria for damaged cylinders. This paper presents some of the tests results investigating short term burst) and long term (cycling) performance of impacted cylinders and the recommendations that can be made for impact testing and NDT criteria calibration.
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
Some Issues Concerning the CFD Modelling of Confined Hydrogen Releases
Sep 2017
Publication
In SUSANA E.U. project a rather broad CFD benchmarking exercise was performed encompassing a number of CFD codes a diversity of turbulence models... It is concluded that the global agreement is good. But in this particular situation the experimental data to compare with were known to the modelers. In performing this exercise the present authors explored the influence of some modelling choices which may have a significant impact on the results (apart from the traditional convergence testing and mass conservation) especially in the situation where little relevant data are available. The configuration investigated is geometrically simple: a vertical round hydrogen jet in a square box. Nevertheless modelling aspects like the representation of the source and of the boundary conditions have a rather strong influence on the final results as illustrated in this communication. In other words the difficulties may not be so much in the intrinsic capabilities of the code (which SUSANA tends to show) but more in the physical representation the modelers have. Even in the specific situation addressed in this communication although looking simple it may not be so obvious to grasp correctly the leading physical processes.
Experimental Measurements, CFD Simulations and Model for a Helium Release in a Two Vents Enclosure
Sep 2017
Publication
The present work proposes improvements on a model developed by Linden to predict the concentration distribution in a 2 vented cavities. Recent developments on non constant entrainment coefficient from Carazzo et al as well as a non constant pressure distribution at the vents-the vents being vertical-are included in the Linden approach. This model is compared with experimental results from a parametric study on the influence of the height of the release source on the helium dispersion regimes inside a naturally ventilated 2 vents enclosure. The varying parameters of the study were mainly the height of the release the releasing flow rate and the geometry of the vents. At last Large Eddy Simulations of the flow and Particle Image Velocimetry measurements performed on a small 2 vented cavity are presented. The objective is to have a better understanding of the flow structure which is at the origin of the 2 layers concentration distribution described by Linden.
Defect Assessment on Pipe Used For Transport of Mixture of Hydrogen and Natural Gas
Sep 2009
Publication
The present article indicates the change of mechanical properties of X52 gas pipe steel in presence of hydrogen and its consequence on defect assessment particularly on notch like defects. The purpose of this work is to determine if the transport of a mixture of natural gas and hydrogen in the actual existing European natural gas pipe network can be done with a reasonable low failure risk (i.e. a probability of failure less than 10-6). To evaluate this risk a deterministic defect assessment method has been established. This method is based on Failure Assessment Diagram and more precisely on a Modified Notch Failure Assessment Diagram (MNFAD) which has been proposed for this work. This MNFAD is coupled with the SINTAP failure curve and allows determining the safety factor associated with defect geometry loading conditions and material resistance. The work described in this paper was performed within the NATURALHY work package 3 on ’Durability of pipeline material’.
Detailed Examination of Deformations Induced by Internal Hydrogen Explosions: Part 1 Experiments
Sep 2019
Publication
In industry handling hydrogen explosion presents a potential danger due to its effects on people and property. In the nuclear industry this explosion which is possible during severe accidents can challenge the reactor containment and it may lead to a release of radioactive materials into the environment. The Three Mile Island accident in the United States in 1979 and more recently the Fukushima accident in Japan have highlighted the importance of this phenomenon for a safe operation of nuclear installations as well as for the accident management.<br/>In 2013 the French Research Agency (ANR) launched the MITHYGENE project with the main aim of improving knowledge on hydrogen risk for the benefit of reactor safety. One of the topics in this project is devoted to the effect of hydrogen explosions on solid structures. In this context CEA conducted a test program with its SSEXHY facility to build a database on deformations of simple structures following an internal hydrogen explosion. Different regimes of explosion propagation have been studied ranging from detonation to slow deflagration. Different targets were tested such as cylinders and plates of variable thickness and diameter. Detailed instrumentation was used to obtain data for the validation of coupled CFD models of combustion and structural dynamics.<br/>This article details the experimental set-up and the results obtained. A companion article focuses on the comparison between these experimental results and the prediction of CFD numerical models
Optimized EMS and a Comparative Study of Hybrid Hydrogen Fuel Cell/Battery Vehicles
Jan 2022
Publication
This paper presents a new Fuel Cell Fuel Consumption Minimization Strategy (FCFCMS) for Hybrid Electric Vehicles (HEVs) powered by a fuel cell and an energy storage system in order to minimize as much as possible the consumption of hydrogen while maintaining the State Of Charge (SOC) of the battery. Compared to existing Energy Management Strategies (EMSs) (such as the well-known State Machine Strategy (SMC) Fuzzy Logic Control (FLC) Frequency Decoupling and FLC (FDFLC) and the Equivalent Consumption Minimization Strategy (ECMS)) the proposed strategy increases the overall vehicle energy efficiency and therefore minimizes the total hydrogen consumption while respecting the constraints of each energy and power element. A model of a hybrid vehicle has been built using the TruckMaker/MATLAB software. Using the Urban Dynamometer Driving Schedule (UDDS) which includes several stops and accelerations the performance of the proposed strategy has been compared with these different approaches (SMC FLC FDFLC and ECMS) through several simulations.
High Pressure Hydrogen Fires
Sep 2009
Publication
Within the scope of the French national project DRIVE and European project HyPER high pressure jet flames of hydrogen were produced and instrumented.<br/>The experimental technique and measurement strategy are presented. Many aspects are original developments like the direct measurement of the mass flow rate by weighing continuously the hydrogen container the image processing to extract the flame geometry the heat flux measurement device the thermocouples arrangement…<br/>Flames were observed from 900 bar down to 1 bar with orifices ranging from 1 to 3 mm. An original set of data is now available about the main flame characteristics and about some thermodynamic aspects of hydrogen releases under high pressure.<br/>A brief comparison of some available models is presented.
Review of Methods For Estimating the Overpressure and Impulse Resulting From a Hydrogen Explosion in a Confined/Obstructed Volume
Sep 2009
Publication
This study deals with the TNO Multi-Energy and Baker-Strehlow-Tang (BST) methods for estimating the positive overpressures and positive impulses resulting from hydrogen-air explosions. With these two methods positive overpressure and positive impulse results depend greatly on the choice of the class number for the TNO Multi-Energy method or the Mach number for the BST methods. These two factors permit the user to read the reduced parameters of the blast wave from the appropriate monographs for each of these methods i.e. positive overpressure and positive duration phase for the TNO Multi-Energy method and positive overpressure and positive impulse for the BST methods. However for the TNO Multi-Energy method the determination of the class number is not objective because it is the user who makes the final decision in choosing the class number whereas with the BST methods the user is strongly guided in their choice of an appropriate Mach number. These differences in the choice of these factors can lead to very different results in terms of positive overpressure and positive impulse. Therefore the objective of this work was to compare the positive overpressures and positive impulses predicted with the TNO Multi-Energy and BST methods with data available from large-scale experiments.
Hydrogen Effect on Fatigue and Fracture of Pipe Steels
Sep 2009
Publication
Transport by pipe is one the most usual way to carry liquid or gaseous energies from their extraction point until their final field sites. To limit explosion risk or escape to avoid pollution problems and human risks it is necessary to assess nocivity of defect promoting fracture. This need to know the mechanical properties of the pipes steels. Hydrogen is considered to day as a new energy vector and its transport in one of the key problems to extension of its use. Within the European project NATURALHY it has been proposed to transport a mixture of natural gas and hydrogen. 39 European partners have combined their efforts to assess the effects of hydrogen presence on the existing gas network. Key issues are durability of pipeline material integrity management safety aspects life cycle and socio-economic assessment and end-use. The work described in this paper was performed within the NATURALHY work package on ’Durability of pipeline material’. This study makes it possible to emphasize the hydrogen effect on mechanical properties of several pipe steels as X52 X70 or X100 in fatigue and fracture and in two different environments: air and hydrogen electrolytic.
High-pressure PEM Water Electrolysis and Corresponding Safety Issues
Sep 2009
Publication
In this paper safety considerations related to the operation of proton-exchange membrane (PEM) water electrolysers (hydrogen production capacity up to 1 Nm3/h and operating pressure up to 130 bars) are presented. These results were obtained in the course of the GenHyPEM project a research program on high-pressure PEM water electrolysis supported by the European Commission. Experiments were made using a high-pressure electrolysis stack designed for operation in the 0–130 bars pressure range at temperatures up to 90 °C. Besides hazards related to the pressure itself hydrogen concentration in the oxygen gas production and vice-versa (resulting from membrane crossover permeation effects) have been identified as the most significant risks. Results show that the oxygen concentration in hydrogen at 130 bars can be as high as 2.66 vol %. This is a value still outside the flammability limit for hydrogen–oxygen mixtures (3.9–95.8 vol %) but safety measures are required to prevent explosion hazards. A simple model based on the diffusion of dissolved gases is proposed to account for gas cross-permeation effects. To reduce contamination levels different solutions are proposed. First thicker membranes can be used. Second modified or composite membranes with lower gas permeabilities can be used. Third as reported earlier external catalytic gas recombiners can be used to promote H2/O2 recombination and reduce contamination levels in the gas production. Finally other considerations related to cell and stack design are also discussed to further reduce operation risks.
Dynamics of Vented Hydrogen-air Deflagrations
Sep 2011
Publication
The use of hydrogen as an energy carrier is a real perspective for Europe since a number of breakthroughs now enable to envision a deployment at the industrial scale. However some safety issues need to be further addressed but experimental data are still lacking especially about the explosion dynamics in realistic dimensions. A set of hydrogen-air vented explosions were thus performed in two medium scale chambers (1 m3 and 10 m3). Homogeneous mixtures were used (10% to 30% vol.). The explosion overpressure was measured inside the chamber and outside on the axis of the discharge from the vent. The incidence of the external explosion is clearly seen. All the results in this paper and the predictions from the standards differ greatly meaning that a significant effort is still required. It is the purpose of the French project DIMITRHY to help progressing.
Compatibility of Metallic Materials with Hydrogen Review of the Present Knowledge
Sep 2007
Publication
In this document after a review of the accidents/incidents are described the different interactions between hydrogen gas and the most commonly used materials including the influence of "internal" and "external" hydrogen the phenomena occurring in all ranges of temperatures and pressures and Hydrogen Embrittlement (HE) created by gaseous hydrogen. The principle of all the test methods used to investigate this phenomenon are presented and discussed. The advantages and disadvantages of each method will be explained. The document also covers the influence of all the parameters related to HE including the ones related to the material itself the ones related to the design and manufacture of the equipment and the ones related to the hydrogen itself (pressure temperature purity etc). Finally recommendations to avoid repetition of accidents/incidents mentioned before are proposed.
No more items...