France
Natural Hydrogen in Uruguay: Catalog of H2-Generating Rocks, Prospective Exploration Areas, and Potential Systems
Feb 2025
Publication
The increasing demand for carbon-free energy in recent years has positioned hydrogen as a viable option. However its current production remains largely dependent on carbon-emitting sources. In this context natural hydrogen generated through geological processes in the Earth’s subsurface has emerged as a promising alternative. The present study provides the first national-scale assessment of natural dihydrogen (H2) potential in Uruguay by developin Read More
Modeling and Technical-Economic Analysis of a Hydrogen Transport Network for France
Feb 2025
Publication
This work aims to study the technical and economical feasibility of a new hydrogen transport network by 2035 in France. The goal is to furnish charging stations for fuel cell electrical vehicles with hydrogen produced by electrolysis of water using low-carbon energy. Contrary to previous research works on hydrogen transport for road transport we assume a more realistic assumption of the demand side: we assume that only drivers driving more than Read More
Risk Management in a Containerized Metal Hydride Storage System
Sep 2024
Publication
HyCARE project supported by the Clean Hydrogen Partnership of the European Union deals with a prototype hydrogen storage tank using a solid-state hydrogen carrier. Up to 40 kilograms of hydrogen are stored in 12 tanks at less than 50 barg and less than 100°C. The innovative design is based on a standard 20-foot container including 12 TiFe-based metal hydride (MH) hydrogen storage tanks coupled with a thermal energy storage in phase ch Read More
Open-Circuit Switch Fault Diagnosis and Accommodation of a Three-Level Interleaved Buck Converter for Electrolyzer Applications
Mar 2023
Publication
This article proposes a novel open-circuit switch fault diagnosis method (FDM) for a three-level interleaved buck converter (TLIBC) in a hydrogen production system based on the water electrolysis process. The control algorithm is suitably modified to ensure the same hydrogen production despite the fault. The TLIBC enables the interfacing of the power source (i.e. low-carbon energy sources) and electrolyzer while driving the hydrogen production of the s Read More
A Review on Machine Learning Applications in Hydrogen Energy Systems
Feb 2025
Publication
Adopting machine learning (ML) in hydrogen systems is a promising approach that enhances the efficiency reliability and sustainability of hydrogen power systems and revolutionizes the hydrogen energy sector to optimize energy usage/management and promote sustainability. This study explores hydrogen energy systems including production storage and applications while establishing a connection between machine learning solutions and the challen Read More
Impacts of Intermittency on Low-temperature Electrolysis Technologies: A Comprehensive Review
May 2024
Publication
By offering promising solutions to two critical issues – the integration of renewable energies into energy systems and the decarbonization of existing hydrogen applications – green hydrogen production through water electrolysis is set to play a crucial role in addressing the major challenges of the energy transition. However the successful integration of renewable energy sources relies on gaining accurate insights into the impacts that intermittent el Read More
What is Next in Anion-Exchange Membrane Water Electrolyzers? Bottlenecks, Benefits, and Future
Mar 2022
Publication
As highlighted by the recent roadmaps from the European Union and the United States water electrolysis is the most valuable high-intensity technology for producing green hydrogen. Currently two commercial low-temperature water electrolyzer technologies exist: alkaline water electrolyzer (A-WE) and proton-exchange membrane water electrolyzer (PEM-WE). However both have major drawbacks. A-WE shows low productivity and efficiency while PEM-W Read More
A Multi-model Assessment of the Global Warming Potential of Hydrogen
Jun 2023
Publication
With increasing global interest in molecular hydrogen to replace fossil fuels more attention is being paid to potential leakages of hydrogen into the atmosphere and its environmental consequences. Hydrogen is not directly a greenhouse gas but its chemical reactions change the abundances of the greenhouse gases methane ozone and stratospheric water vapor as well as aerosols. Here we use a model ensemble of five global atmospheric c Read More
Safety Margin on the Ductile to Brittle Transition Temperature after Hydrogen Embrittlement on X65 Steel
Jan 2022
Publication
Hydrogen embrittlement is a phenomenon that affects the mechanical properties of steels intended for hydrogen transportation. One affected by this embrittlement is the Ductile to Brittle Transition Temperature (DBTT) which characterizes the change in the failure mode of the steel from ductile to brittle. This temperature is conventionally defined and compared to the operating temperature as an acceptability criterion for codes. Transition tempera Read More
No more items...