France
Massive H2 Production With Nuclear Heating, Safety Approach For Coupling A VHTR With An Iodine Sulfur Process Cycle
Sep 2005
Publication
In the frame of a sustainable development investigations dealing with massive Hydrogen production by means of nuclear heating are carried out at CEA. For nuclear safety thermodynamic efficiency and waste minimization purposes the technological solution privileged is the coupling of a gas cooled Very High Temperature Reactor (VHTR) with a plant producing Hydrogen from an Iodine/Sulfur (I/S) thermochemical cycle. Each of the aforementioned facilities presents different risks resulting from the operation of a nuclear reactor (VHTR) and from a chemical plant including Hydrogen other flammable and/or explosible substances as well as toxic ones. Due to these various risks the safety approach is an important concern. Therefore this paper deals with the preliminary CEA investigations on the safety issues devoted to the whole plant focusing on the safety questions related to the coupling between the nuclear reactor and the Hydrogen production facility. Actually the H2 production process and the energy distribution network between the plants are currently at a preliminary design stage. A general safety approach is proposed based on a Defence In Depth (DID) principle permitting to analyze all the system configurations successively in normal incidental and accidental expected operating conditions. More precisely the dynamic answer of an installation to a perturbation affecting the other one during the previous conditions as well as the potential aggressions of the chemical plant towards the nuclear reactor have to be considered. The methodology presented in this paper is intended to help the designer to take into account the coupling safety constraints and to provide some recommendations on the global architecture of both plants especially on their coupling system. As a result the design of a VHTR combined to a H2 production process will require an iterative process between design and safety requirements.
Validation and Recommendations for CFD and Engineering Modeling of Hydrogen Vented Explosions: Effects of Concentration, Stratification, Obstruction and Vent Area
Oct 2015
Publication
Explosion venting is commonly used in the process industry as a prevention solution to protect equipment or buildings against excessive internal pressure caused by an explosion. This article is dedicated to the validation of FLACS CFD code for the modelling of vented explosions. Analytical engineering models fail when complex cases are considered for instance in the presence of obstacles or H2 stratified mixtures. CFD is an alternative solution but has to be carefully validated. In this study FLACS simulations are compared to published experimental results and recommendations are suggested for their application.
On the Use of Hydrogen in Confined Spaces: Results from the Internal Project InsHyde
Sep 2009
Publication
Alexandros G. Venetsanos,
Paul Adams,
Inaki Azkarate,
A. Bengaouer,
Marco Carcassi,
Angunn Engebø,
E. Gallego,
Olav Roald Hansen,
Stuart J. Hawksworth,
Thomas Jordan,
Armin Keßler,
Sanjay Kumar,
Vladimir V. Molkov,
Sandra Nilsen,
Ernst Arndt Reinecke,
M. Stöcklin,
Ulrich Schmidtchen,
Andrzej Teodorczyk,
D. Tigreat,
N. H. A. Versloot and
L. Boon-Brett
The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally InsHyde served to integrate proposals from HySafe work packages and existing external research projects towards a common effort. Following a state of the art review InsHyde activities expanded into experimental and simulation work. Dispersion experiments were performed using hydrogen and helium at the INERIS gallery facility to evaluate short and long term dispersion patterns in garage like settings. A new facility (GARAGE) was built at CEA and dispersion experiments were performed there using helium to evaluate hydrogen dispersion under highly controlled conditions. In parallel combustion experiments were performed by FZK to evaluate the maximum amount of hydrogen that could be safely ignited indoors. The combustion experiments were extended later on by KI at their test site by considering the ignition of larger amounts of hydrogen in obstructed environments outdoors. An evaluation of the performance of commercial hydrogen detectors as well as inter-lab calibration work was jointly performed by JRC INERIS and BAM. Simulation work was as intensive as the experimental work with participation from most of the partners. It included pre-test simulations validation of the available CFD codes against previously performed experiments with significant CFD code inter-comparisons as well as CFD application to investigate specific realistic scenarios. Additionally an evaluation of permeation issues was performed by VOLVO CEA NCSRD and UU by combining theoretical computational and experimental approaches with the results being presented to key automotive regulations and standards groups. Finally the InsHyde project concluded with a public document providing initial guidance on the use of hydrogen in confined spaces.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Distribution and Mixing of H2 in a Closed Vessel.
Sep 2005
Publication
This paper presents a compilation and discussion of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V1 which is based on an experiment on hydrogen release mixing and distribution inside a vessel. Each partner has his own point of view of the problem and uses a different approach to the solution. The main characteristics of the models employed for the calculations are compared. The comparison between results together with the experimental data when available is made. Relative deviations of each model from the experimental values are also included. Explanations and interpretations of the results are presented together with some useful conclusions for future work.
An Inter-Comparison Exercise on the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage
Sep 2007
Publication
Alexandros G. Venetsanos,
E. Papanikolaou,
J. García,
Olav Roald Hansen,
Matthias Heitsch,
Asmund Huser,
Wilfried Jahn,
Jean-Marc Lacome,
Thomas Jordan,
H. S. Ledin,
Dmitry Makarov,
Prankul Middha,
Etienne Studer,
Andrei V. Tchouvelev,
Franck Verbecke,
M. M. Voort,
Andrzej Teodorczyk and
M. A. Delichatsios
The paper presents the results of the CFD inter-comparison exercise SBEP-V3 performed within the activity InsHyde internal project of the HYSAFE network of excellence in the framework of evaluating the capability of various CFD tools and modelling approaches in predicting the physical phenomena associated to the short and long term mixing and distribution of hydrogen releases in confined spaces. The experiment simulated was INERIS-TEST-6C performed within the InsHyde project by INERIS consisting of a 1 g/s vertical hydrogen release for 240 s from an orifice of 20 mm diameter into a rectangular room (garage) of dimensions 3.78x7.2x2.88 m in width length and height respectively. Two small openings at the front and bottom side of the room assured constant pressure conditions. During the test hydrogen concentration time histories were measured at 12 positions in the room for a period up to 5160 s after the end of release covering both the release and the subsequent diffusion phases. The benchmark was organized in two phases. The first phase consisted of blind simulations performed prior to the execution of the tests. The second phase consisted of post calculations performed after the tests were concluded and the experimental results made available. The participation in the benchmark was high: 12 different organizations (2 non-HYSAFE partners) 10 different CFD codes and 8 different turbulence models. Large variation in predicted results was found in the first phase of the benchmark between the various modelling approaches. This was attributed mainly to differences in turbulence models and numerical accuracy options (time/space resolution and discretization schemes). During the second phase of the benchmark the variation between predicted results was reduced.
On Numerical Simulation of Liquefied and Gaseous Hydrogen Releases at Large Scales
Sep 2005
Publication
The large eddy simulation (LES) model developed at the University of Ulster has been applied to simulate releases of 5.11 m3 liquefied hydrogen (LH2) in open atmosphere and gaseous hydrogen (GH2) in 20-m3 closed vessel. The simulations of a spill of liquefied hydrogen confirmed the advantage of LES application to reproduce experimentally observed eddy structure of hydrogen-air cloud. The inclination angle of simulated cloud is close to experimentally reported 300. The processes of two phase hydrogen release and heat transfer were simplified by inflow of gaseous hydrogen with temperature 20 K equal to boiling point. It is shown that difference in inflow conditions geometry and grid resolution affects simulation results. It is suggested that phenomenon of air condensationevaporation in the cloud in temperature range 20-90 K should be accounted for in future. The simulations reproduced well experimental data on GH2 release and transport in 20-m3 vessel during 250 min including a phenomenon of hydrogen concentration growth at the bottom of the vessel. Higher experimental hydrogen concentration at the bottom is assumed to be due to non-uniformity of temperature of vessel walls generating additional convection. The comparison of convective and diffusion terms in Navie-Stokes equations has revealed that a value of convective term is more than order of magnitude prevail over a value of turbulent diffusion term. It is assumed that the hydrogen transport to the bottom of the vessel is driven by the remaining chaotic flow velocities superimposed on stratified hydrogen concentration field. Further experiments and simulations with higher accuracy have to be performed to confirm this phenomenon. It has been demonstrated that hydrogen-air mixture became stratified in about 1 min after release was completed. However one-dimensional models are seen not capable to reproduce slow transport of hydrogen during long period of time characteristic for scenarios such as leakage in a garage.
Numerical Study of the Near-field of Highly Under-expanded Turbulent Gas Jets
Sep 2011
Publication
For safety issues related to the storage of hydrogen under high pressure it is necessary to determine how the gas is released in the case of failure. In particular there exist limited quantitative information on the near-field properties of the gas jets which are important for establishing proper decay laws in the far-field. This paper reports recent CFD results for air and helium obtained in the near-field of the highly under-expanded jets. The gas jets are released from a 30-bar tank with the same opening (orifice). The Reynolds number based on the diameter of the orifice and corresponding gas conditions at the exit was well beyond 106 . The 3D Compressible Multi-Component Navier-Stokes equations were solved directly without relying on the compressibility-corrected turbulence models. The numerical model was initially tested on a one-component (air-air) case where a few aerospace-driven data sets are available for validation. The shock geometry is characterized through the Mach disk position and diameter. These are compared to the results known from the literature and to the scaling laws developed based on the dimensional analysis. In the second two-component (helium-air) jet scenario the density field was validated and examined together with other fields in the attempt to suggest potential initial conditions for the forthcoming far-field simulations.
Batteries and Hydrogen Technology: Keys for a Clean Energy Future
May 2020
Publication
As governments focus on dealing with the Covid-19 health emergency they are increasingly turning their attention to the impact of shutting down their economies and how to revive them quickly through stimulus measures. Economic recovery packages offer a unique opportunity to create jobs while supporting clean energy transitions around the world.
Energy efficiency and renewable energy like wind and solar PV – the cornerstones of any clean energy transition – are good places to start. Those industries employ millions of people across their value chains and offer environmentally sustainable ways to create jobs and help revitalise the global economy.
But more than just renewables and efficiency will be required to put the world on track to meet climate goals and other sustainability objectives. IEA analysis has repeatedly shown that a broad portfolio of clean energy technologies will be needed to decarbonise all parts of the economy. Batteries and hydrogen-producing electrolysers stand out as two important technologies thanks to their ability to convert electricity into chemical energy and vice versa. This is why they also deserve a place in any economic stimulus packages being discussed today.
Link to Document on IEA Website
Energy efficiency and renewable energy like wind and solar PV – the cornerstones of any clean energy transition – are good places to start. Those industries employ millions of people across their value chains and offer environmentally sustainable ways to create jobs and help revitalise the global economy.
But more than just renewables and efficiency will be required to put the world on track to meet climate goals and other sustainability objectives. IEA analysis has repeatedly shown that a broad portfolio of clean energy technologies will be needed to decarbonise all parts of the economy. Batteries and hydrogen-producing electrolysers stand out as two important technologies thanks to their ability to convert electricity into chemical energy and vice versa. This is why they also deserve a place in any economic stimulus packages being discussed today.
Link to Document on IEA Website
Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies
Jan 2021
Publication
With the development of technologies in recent decades and the imposition of international standards to reduce greenhouse gas emissions car manufacturers have turned their attention to new technologies related to electric/hybrid vehicles and electric fuel cell vehicles. This paper focuses on electric fuel cell vehicles which optimally combine the fuel cell system with hybrid energy storage systems represented by batteries and ultracapacitors to meet the dynamic power demand required by the electric motor and auxiliary systems. This paper compares the latest proposed topologies for fuel cell electric vehicles and reveals the new technologies and DC/DC converters involved to generate up-to-date information for researchers and developers interested in this specialized field. From a software point of view the latest energy management strategies are analyzed and compared with the reference strategies taking into account performance indicators such as energy efficiency hydrogen consumption and degradation of the subsystems involved which is the main challenge for car developers. The advantages and disadvantages of three types of strategies (rule-based strategies optimization-based strategies and learning-based strategies) are discussed. Thus future software developers can focus on new control algorithms in the area of artificial intelligence developed to meet the challenges posed by new technologies for autonomous vehicles.
Worst Case Scenario for Delayed Explosion of Hydrogen Jets at a High Pressure: Ignition Position
Sep 2021
Publication
Delayed explosion of free field hydrogen releases at a high pressure is subject of multiple investigation performed by various authors in the past years. These studied considered various parameters such as pressures flow rates etc. and their influence on the resulting overpressure. However the influence of the ignition position on the maximum overpressure was not fully explored. Current investigation addressed by computational fluid dynamics (CFD) simulations and experimental measurement fills this gap. This work demonstrates that the ignition positions corresponding to 55%-65% of H2/air mixture give the maximum overpressure. This observation initially observed numerically and afterword confirmed experimentally. A simple model is also suggested.
Using Additives to Control the Decomposition Temperature of Sodium Borohydride
May 2020
Publication
Hydrogen (H2) shows great promise as zero-carbon emission fuel but there are several challenges to overcome in regards to storage and transportation to make it a more universal energy solution. Gaseous hydrogen requires high pressures and large volume tanks while storage of liquid hydrogen requires cryogenic temperatures; neither option is ideal due to cost and the hazards involved. Storage in the solid state presents an attractive alternative and can meet the U.S. Department of Energy (DOE) constraints to find materials containing > 7 % H2 (gravimetric weight) with a maximum H2 release under 125 °C.
While there are many candidate hydrogen storage materials the vast majority are metal hydrides. Of the hydrides this review focuses solely on sodium borohydride (NaBH4) which is often not covered in other hydride reviews. However as it contains 10.6% (by weight) H2 that can release at 133 ± 3 JK−1mol−1 this inexpensive material has received renewed attention. NaBH4 should decompose to H2g) Na(s) and B(s) and could be recycled into its original form. Unfortunately metal to ligand charge transfer in NaBH4 induces high thermodynamic stability creating a high decomposition temperature of 530 °C. In an effort make H2 more accessible at lower temperatures researchers have incorporated additives to destabilize the structure.
This review highlights metal additives that have successfully reduced the decomposition temperature of NaBH4 with temperatures ranging from 522 °C (titanium (IV) fluoride) to 379 °C (niobium (V) fluoride). We describe synthetic methods employed chemical pathways taken and the challenges of boron derivative formation on H2 cycling. Though no trends can be found across all additives it is our hope that compiling the data here will enable researchers to gain a better understanding of the additives’ influence and to determine how a new system might be designed to make NaBH4 a more viable H2 fuel source.
While there are many candidate hydrogen storage materials the vast majority are metal hydrides. Of the hydrides this review focuses solely on sodium borohydride (NaBH4) which is often not covered in other hydride reviews. However as it contains 10.6% (by weight) H2 that can release at 133 ± 3 JK−1mol−1 this inexpensive material has received renewed attention. NaBH4 should decompose to H2g) Na(s) and B(s) and could be recycled into its original form. Unfortunately metal to ligand charge transfer in NaBH4 induces high thermodynamic stability creating a high decomposition temperature of 530 °C. In an effort make H2 more accessible at lower temperatures researchers have incorporated additives to destabilize the structure.
This review highlights metal additives that have successfully reduced the decomposition temperature of NaBH4 with temperatures ranging from 522 °C (titanium (IV) fluoride) to 379 °C (niobium (V) fluoride). We describe synthetic methods employed chemical pathways taken and the challenges of boron derivative formation on H2 cycling. Though no trends can be found across all additives it is our hope that compiling the data here will enable researchers to gain a better understanding of the additives’ influence and to determine how a new system might be designed to make NaBH4 a more viable H2 fuel source.
Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option Towards an Environmentally Friendly Energy Transition
Nov 2020
Publication
The latest pre-production vehicles on the market show that the major technical challenges posed by integrating a fuel cell system (FCS) within a vehicle—compactness safety autonomy reliability cold starting—have been met. Regarding the ongoing maturity of fuel cell systems dedicated to road transport the present article examines the advances still needed to move from a functional but niche product to a mainstream consumer product. It seeks to address difficulties not covered by more traditional innovation approaches. At least in long-distance heavy-duty vehicles fuel cell vehicles (FCVs) are going to play a key role in the path to zero-emissions in one or two decades. Hence the present study also addresses the structuring elements of the complete chain: the latter includes the production storage and distribution of hydrogen. Green hydrogen appears to be one of the potential uses of renewable energies. The greener the electricity is the greater the advantage for hydrogen since it permits to economically store large energy quantities on seasonal rhythms. Moreover natural hydrogen might also become an economic reality pushing the fuel cell vehicle to be a competitive and environmentally friendly alternative to the battery electric vehicle. Based on its own functional benefits for on board systems hydrogen in combination with the fuel cell will achieve a large-scale use of hydrogen in road transport as soon as renewable energies become more widespread. Its market will expand from large driving range and heavy load vehicles
Building an Optimal Hydrogen Transportation System for Mobility, Focus on Minimizing the Cost of Transportation via Truck
Jan 2018
Publication
The approach developed aims to identify the methodology that will be used to deliver the minimum cost for hydrogen infrastructure deployment using a mono-objective linear optimisation. It focuses on minimizing both capital and operation costs of the hydrogen transportation based on transportation via truck which represents the main focus of this paper and a cost-minimal pipeline system in the case of France and Germany. The paper explains the mathematical model describing the link between the hydrogen production via electrolysers and the distribution for mobility needs. The main parameters and the assumed scenario framework are explained. Subsequently the transportation of hydrogen via truck using different states of aggregation is analysed as well as the transformation and storage of hydrogen. This is used finally to build a linear programming aiming to minimize the sum of costs of hydrogen transportation between the different nodes and transformation/storage within the nodes.
Some Fundamental Combustion Properties of "Cryogenic" Premixed Hydrogen Air Flames
Sep 2021
Publication
Because of the emergence of the U.E. “green deal” and because of the significant implication of national and regional authorities throughout Europe the “hydrogen” economy is emerging. And with it numerous questions and experimentations. One of them perhaps a key point is the storage and transport of hydrogen. Liquid hydrogen in cryogenic conditions is a possibility already used in the space industry but under a lot of constrains. What may be acceptable in a well-controlled and restrained domain may not be realistic in a wider application closer to the public. Safety should be ensured and there is a need for a better knowledge of the flammable and ignition properties of the “cold” hydrogen mixtures following a cryogenic spillage for instance to select adequate ATEX equipment. The purpose of PRESLHY project [4] is to investigate the ignition fire and explosion characteristics of cryogenic hydrogen spillages and to propose safety engineering methods. The present work is part of it and addresses the measurement of the laminar burning velocity (Sl) flammability limits (FL) minimum ignition energy (MIE)… of hydrogen air mixtures at atmospheric pressure but down to -150°C. To do this a special burner was designed with details given inside this paper together with the experimental results. It is found that the FL domain is reduced when the temperature drops that MIE increases slightly and Sl decreases.
Prospecting Stress Formed by Hydrogen or Isotope Diffused in Palladium Alloy Cathode
Oct 2018
Publication
The objective of this project is to take into account the mechanical constraints formed by diffusion of hydrogen or tritium in watertight palladium alloy cathode. To know the origin of these it was necessary to discriminating the damaging effects encountered. Effectively hydrogen and isotope induce deformation embrittlement stress corrosion cracking and cathodic corrosion in different regions of cathode. Palladium can be alloyed with silver or yttrium to favourably increase diffusion and reduce these constraints. Effects of electrochemical factors temperature cathode structure adsorbed transient complex of palladium and porous material support are given to estimate and to limit possible damage.
Challenges and Important Considerations When Benchmarking Single-cell Alkaline Electrolyzers
Nov 2021
Publication
This study outlines an approach to identifying the difficulties associated with the bench-marking of alkaline single cells under real electrolyzer conditions. A challenging task in the testing and comparison of different catalysts is obtaining reliable and meaningful benchmarks for these conditions. Negative effects on reproducibility were observed due to the reduction in conditioning time. On the anode side a stable passivation layer of NiO can be formed by annealing of the Ni foams which is even stable during long-term operation. Electrical contact resistance and impedance measurements showed that most of the contact resistance derived from the annealed Ni foam. Additionally analysis of various overvoltages indicated that most of the total overvoltage comes from the anode and cathode activation overpotential. Different morphologies of the substrate material exhibited an influence on the performance of the alkaline single cell based on an increase in the ohmic resistance.
Simulations of Hydrogen Releases from a Storage Tanks- Dispersion and Consequences of Ignition
Sep 2005
Publication
We present results from hydrogen dispersion simulations from a pressurized reservoir at constant flow rate in the presence and absence of a wall. The dispersion simulations are performed using a commercial finite volume solver. Validation of the approach is discussed. Constant concentration envelopes corresponding to the 2% 4% and 15% hydrogen concentration in air are calculated for a subcritical vertical jet and for an equivalent subcritical horizontal jet from a high pressure reservoir. The consequences of ignition and the resulting overpressure are calculated for subcritical horizontal and vertical hydrogen jets and in the latter case compared to available experimental data.
Global Energy Review 2020- The Impacts of the Covid-19 Crisis on Global Energy Demand and CO2 Emissions
Apr 2020
Publication
In response to the exceptional circumstances stemming from the coronavirus pandemic the annual IEA Global Energy Review has expanded its coverage to include real-time analysis of developments to date in 2020 and possible directions for the rest of the year. In addition to reviewing 2019 energy and CO2 emissions data by fuel and country for this section of the Global Energy Review we have tracked energy use by country and fuel over the past three months and in some cases – such as electricity – in real time. Some tracking will continue on a weekly basis. The uncertainty surrounding public health the economy and hence energy over the rest of 2020 is unprecedented. This analysis therefore not only charts a possible path for energy use and CO2 emissions in 2020 but also highlights the many factors that could lead to differing outcomes. We draw key lessons on how to navigate this once-in-a-century crisis.
Link to Document on IEA websitte
Link to Document on IEA websitte
Statistics, Lessons Learned and Recommendations from Analysis of HIAD 2.0 Database
Mar 2022
Publication
The manuscript firstly describes the data collection and validation process for the European Hydrogen Incidents and Accidents Database (HIAD 2.0) a public repository tool collecting systematic data on hydrogen-related incidents and near-misses. This is followed by an overview of HIAD 2.0 which currently contains 706 events. Subsequently the approaches and procedures followed by the authors to derive lessons learned and formulate recommendations from the events are described. The lessons learned have been divided into four categories including system design; system manufacturing installation and modification; human factors and emergency response. An overarching lesson learned is that minor events which occurred simultaneously could still result in serious consequences echoing James Reason's Swiss Cheese theory. Recommendations were formulated in relation to the established safety principles adapted for hydrogen by the European Hydrogen Safety Panel considering operational modes industrial sectors and human factors. This work provide an important contribution to the safety of systems involving hydrogen benefitting technical safety engineers emergency responders and emergency services. The lesson learned and the discussion derived from the statistics can also be used in training and risk assessment studies being of equal importance to promote and assist the development of sound safety culture in organisations.
Influence of Doping Element in Distributed Hydrogen Optical Fiber Densors with Brillouin Scattering
Sep 2013
Publication
Distributed hydrogen optical fiber sensor with Brillouin scattering is an innovative solution to measure hydrogen in harsh environment as nuclear industry. Glass composition is the key point to enhance the sensing parameter of the fiber in the target application. Several optical fiber with different doping element were used for measuring hydrogen saturation. Permeability of optical plays a major role to the kinetic of hydrogen diffusion. Fluorine doped fiber increase the sorption and the desorption of hydrogen.
No more items...