Finland
Cost Benefits of Optimizing Hydrogen Storage and Methanation Capacities for Power-to-Gas Plants in Dynamic Operation
Oct 2019
Publication
Power-to-Gas technologies offer a promising approach for converting renewable electricity into a molecular form (fuel) to serve the energy demands of non-electric energy applications in all end-use sectors. The technologies have been broadly developed and are at the edge of a mass roll-out. The barriers that Power-to-Gas faces are no longer technical but are foremost regulatory and economic. This study focuses on a Power-to-Gas pathway where electricity is first converted in a water electrolyzer into hydrogen which is then synthetized with carbon dioxide to produce synthetic natural gas. A key aspect of this pathway is that an intermittent electricity supply could be used which could reduce the amount of electricity curtailment from renewable energy generation. Interim storages would then be necessary to decouple the synthesized part from hydrogen production to enable (I) longer continuous operation cycles for the methanation reactor and (II) increased annual full-load hours leading to an overall reduction in gas production costs. This work optimizes a Power-to-Gas plant configuration with respect to the cost benefits using a Monte Carlo-based simulation tool. The results indicate potential cost reductions of up to 17% in synthetic natural gas production by implementing well-balanced components and interim storages. This study also evaluates three different power sources which differ greatly in their optimal system configuration. Results from time-resolved simulations and sensitivity analyses for different plant designs and electricity sources are discussed with respect to technical and economic implications so as to facilitate a plant design process for decision makers.
Simulation Methodology for an Off-grid Solar–battery–water Electrolyzer Plant: Simultaneous Optimization of Component Capacities and System Control
Oct 2021
Publication
The capacity of each component in an off-grid water electrolyzer hydrogen production plant integrated with solar photovoltaics and a battery energy storage system represents a significant factor affecting the viability and reliability of the system. This paper describes a novel method that optimizes simultaneously the component capacities and finite-state machine based control of the system to minimize the cost of green hydrogen production. The components and control in the system are referenced to a proton exchange membrane water electrolyzer stack with a fixed nominal power of 4.5 kW. The end results are thus scalable by changing the nominal power of the electrolyzer. Simulations are carried out based on data collected from a residential solar photovoltaic installation with 300 s time resolution. Optimization of the system is performed with particle swarm optimization algorithm. A sensitivity analysis performed over the prices of the different components reveals that the price of the water electrolyzer has the greatest impact on the green hydrogen production cost. It is found that the price of the battery has to be below 0.3 e/Wh to become a feasible solution as overnight energy storage.
A General Vision for Reduction of Energy Consumption and CO2 Emissions from the Steel Industry
Aug 2020
Publication
The 2018 IPCC (The Intergovernmental Panel on Climate Change’s) report defined the goal to limit global warming to 1.5 ◦C by 2050. This will require “rapid and far-reaching transitions in land energy industry buildings transport and cities”. The challenge falls on all sectors especially energy production and industry. In this regard the recent progress and future challenges of greenhouse gas emissions and energy supply are first briefly introduced. Then the current situation of the steel industry is presented. Steel production is predicted to grow by 25–30% by 2050. The dominant iron-making route blast furnace (BF) especially is an energy-intensive process based on fossil fuel consumption; the steel sector is thus responsible for about 7% of all anthropogenic CO2 emissions. In order to take up the 2050 challenge emissions should see significant cuts. Correspondingly specific emissions (t CO2/t steel) should be radically decreased. Several large research programs in big steelmaking countries and the EU have been carried out over the last 10–15 years or are ongoing. All plausible measures to decrease CO2 emissions were explored here based on the published literature. The essential results are discussed and concluded. The specific emissions of “world steel” are currently at 1.8 t CO2/t steel. Improved energy efficiency by modernizing plants and adopting best available technologies in all process stages could decrease the emissions by 15–20%. Further reductions towards 1.0 t CO2/t steel level are achievable via novel technologies like top gas recycling in BF oxygen BF and maximal replacement of coke by biomass. These processes are however waiting for substantive industrialization. Generally substituting hydrogen for carbon in reductants and fuels like natural gas and coke gas can decrease CO2 emissions remarkably. The same holds for direct reduction processes (DR) which have spread recently exceeding 100 Mt annual capacity. More radical cut is possible via CO2 capture and storage (CCS). The technology is well-known in the oil industry; and potential applications in other sectors including the steel industry are being explored. While this might be a real solution in propitious circumstances it is hardly universally applicable in the long run. More auspicious is the concept that aims at utilizing captured carbon in the production of chemicals food or fuels e.g. methanol (CCU CCUS). The basic idea is smart but in the early phase of its application the high energy-consumption and costs are disincentives. The potential of hydrogen as a fuel and reductant is well-known but it has a supporting role in iron metallurgy. In the current fight against climate warming H2 has come into the “limelight” as a reductant fuel and energy storage. The hydrogen economy concept contains both production storage distribution and uses. In ironmaking several research programs have been launched for hydrogen production and reduction of iron oxides. Another global trend is the transfer from fossil fuel to electricity. “Green” electricity generation and hydrogen will be firmly linked together. The electrification of steel production is emphasized upon in this paper as the recycled scrap is estimated to grow from the 30% level to 50% by 2050. Finally in this review all means to reduce specific CO2 emissions have been summarized. By thorough modernization of production facilities and energy systems and by adopting new pioneering methods “world steel” could reach the level of 0.4–0.5 t CO2/t steel and thus reduce two-thirds of current annual emissions.
Impact of Climate and Geological Storage Potential on Feasibility of Hydrogen Fuels
Apr 2023
Publication
Electrofuels including hydrogen methane and ammonia have been suggested as one pathway in achieving net-zero greenhouse gas energy systems. They can play a role in providing an energy storage and fuel or feedstock to hard-to-abate sectors. In future energy systems their role is often studied in case studies adhering to specific region. In this study we study their role by defining multiple archetypal energy systems which represent approximations of real systems in different regions. Comparing the role of electrofuels across the cost-optimized systems relying only on renewable energy in power generation we found that hydrogen was a significant energy vector in all systems with its annual quantity approaching the classic electricity demand. The role of renewable methane was very limited. Electrofuel storages were needed in all systems and their capacity was the highest in the northern Hemiboreal system. Absence of cavern storage potential did not hamper the significance of electrofuels but increased the role of ammonia and led to average 5.5 % systemic cost increase. Systems where reservoir hydropower was scarce or level of electricity consumption was high needed more fuel storages. The findings of this study can help for better understanding of what kind of storage and generation technologies will be most useful in future carbon-neutral systems in different types of regions.
Towards Electrochemical Hydrogen Storage in Liquid Organic Hydrogen Carriers via Proton-coupled Electron Transfers
Jun 2022
Publication
Green hydrogen is identified as one of the prime clean energy carriers due to its high energy density and a zero emission of CO2. A possible solution for the transport of H2 in a safe and low-cost way is in the form of liquid organic hydrogen carriers (LOHCs). As an alternative to loading LOHC with H2 via a two-step procedure involving preliminary electrolytic production of H2 and subsequent chemical hydrogenation of the LOHC we explore here the possibility of electrochemical hydrogen storage (EHS) via conversion of proton of a proton donor into a hydrogen atom involved in covalent bonds with the LOHC (R) via a proton-coupled electron transfer (PCET) reaction: . 2 + +2 ― + ox↔ 0 2red We chose 9-fluorenone/fluorenol (Fnone/Fnol) conversion as such a model PCET reaction. The electrochemical activation of Fnone via two sequential electron transfers was monitored with in-situ and operando spectroscopies in absence and in presence of different alcohols as proton donors of different reactivity which enabled us to both quantify and get the mechanistic insight on PCET. The possibility of hydrogen extraction from the loaded carrier molecule was illustrated by chemical activation.
Impact of Hydrogen on Natural Gas Compositions to Meet Engine Gas Quality Requirements
Oct 2022
Publication
To meet the target of reducing greenhouse gas emissions hydrogen as a carbon-free fuel is expected to play a major role in future energy supplies. A challenge with hydrogen is its low density and volumetric energy value meaning that large tanks are needed to store and transport it. By injecting hydrogen into the natural gas network the transportation issue could be solved if the hydrogen–natural gas mixture satisfies the grid gas quality requirements set by legislation and standards. The end consumers usually have stricter limitations on the gas quality than the grid where Euromot the European association of internal combustion engine manufacturers has specific requirements on the parameters: the methane number and Wobbe index. This paper analyses how much hydrogen can be added into the natural gas grid to fulfil Euromot’s requirements. An average gas composition was calculated based on the most common ones in Europe in 2021 and the results show that 13.4% hydrogen can be mixed with a gas consisting of 95.1% methane 3.2% ethane 0.7% propane 0.3% butane 0.3% carbon dioxide and 0.5% nitrogen. The suggested gas composition indicates for engine manufacturers how much hydrogen can be added into the gas to be suitable for their engines.
Hydrogen Technology for Supply Chain Sustainability: The Mexican Transportation Impacts on Society
Mar 2022
Publication
This study sheds light on the Hydrogen technology in transportation for reaching the sustainability goals of societies illustrated by the case of Mexico. In terms of the affected supply chains the study explores how the packaging and distribution of a fuel-saving tool that allows the adoption of hydrogen as complementary energy for maritime transportation to improve economic and environmental performance in Mexico. This exploratory study performs interviews observations simulations and tests involving producers suppliers and users at 26 ports in Mexico. The study shows that environmental and economic performance are related to key processes in Supply Chain Management (SCM) in which packaging and distribution are critical for achieving logistics and transportation sustainability goals. Reusable packaging and the distribution of a fuel-saving tool can help decrease costs - of transport and downstream/upstream processes in SCM while at the same time increasing the environmental performance.
True Cost of Solar Hydrogen
Sep 2021
Publication
Green hydrogen will be an essential part of the future 100% sustainable energy and industry system. Up to one-third of the required solar and wind electricity would eventually be used for water electrolysis to produce hydrogen increasing the cumulative electrolyzer capacity to about 17 TWel by 2050. The key method applied in this research is a learning curve approach for the key technologies i.e. solar photovoltaics (PV) and water electrolyzers and levelized cost of hydrogen (LCOH). Sensitivities for the hydrogen demand and various input parameters are considered. Electrolyzer capital expenditure (CAPEX) for a large utility-scale system is expected to decrease from the current 400 €/kWel to 240 €/kWel by 2030 and to 80 €/kWel by 2050. With the continuing solar PV cost decrease this will lead to an LCOH decrease from the current 31–81 €/ MWhH2LHV (1.0–2.7 €/kgH2) to 20–54 €/MWhH2LHV (0.7–1.8 €/kgH2) by 2030 and 10–27 €/MWhH2LHV (0.3–0.9 €/kgH2) by 2050 depending on the location. The share of PV electricity cost in the LCOH will increase from the current 63% to 74% by 2050.
Flexible Power and Biomass-To-Methanol Plants With Different Gasification Technologies
Jan 2022
Publication
The competitiveness of biofuels may be increased by integrating biomass gasification plants with electrolysis units which generate hydrogen to be combined with carbon-rich syngas. This option allows increasing the yield of the final product by retaining a higher amount of biogenic carbon and improving the resilience of the energy sector by favoring electric grid services and sector coupling. This article illustrates a techno-economic comparative analysis of three flexible power and biomass to methanol plants based on different gasification technologies: direct gasification indirect gasification and sorptionenhanced gasification. The design and operational criteria of each plant are conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The methanol production plants include a gasification section syngas cleaning conditioning and compression section methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. Due to the high oxygen demand in the gasifier the direct gasification-based plant obtains a great advantage to be operated between a minimum load to satisfy the oxygen demand at high electricity prices and a maximum load to maximize methanol production at low electricity prices. This allows avoiding large oxygen storages with significant benefits for Capex and safety issues. The analysis reports specific fixed-capital investments between 1823 and 2048 €/kW of methanol output in the enhanced operation and LCOFs between 29.7 and 31.7 €/GJLHV. Economic advantages may be derived from a decrease in the electrolysis capital investment especially for the direct gasification-based plants which employ the greatest sized electrolyzer. Methanol breakeven selling prices range between 545 and 582 €/t with the 2019 reference Denmark electricity price curve and between 484 and 535 €/t with an assumed modified electricity price curve of a future energy mix with increased penetration of intermittent renewables.
Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review
Oct 2022
Publication
This study is a systematic analysis of selected research articles about power-to-X (P2X)- related processes. The relevance of this resides in the fact that most of the world’s energy is produced using fossil fuels which has led to a huge amount of greenhouse gas emissions that are the source of global warming. One of the most supported actions against such a phenomenon is to employ renewable energy resources some of which are intermittent such as solar and wind. This brings the need for large-scale longer-period energy storage solutions. In this sense the P2X process chain could play this role: renewable energy can be converted into storable hydrogen chemicals and fuels via electrolysis and subsequent synthesis with CO2. The main contribution of this study is to provide a systematic articulation of advanced data-driven methods and latest technologies such as the Internet of Things (IoT) big data analytics and machine learning for the efficient operation of P2X-related processes. We summarize our findings into different working architectures and illustrate them with a numerical result that employs a machine learning model using historic data to define operational parameters for a given P2X process.
Challenges and Outlines of Steelmaking toward the Year 2030 and Beyond—Indian Perspective
Oct 2021
Publication
In FY-20 India’s steel production was 109 MT and it is the second-largest steel producer on the planet after China. India’s per capita consumption of steel was around 75 kg which has risen from 59 kg in FY-14. Despite the increase in consumption it is much lower than the average global consumption of 230 kg. The per capita consumption of steel is one of the strongest indicators of economic development across the nation. Thus India has an ambitious plan of increasing steel production to around 250 MT and per capita consumption to around 160 kg by the year 2030. Steel manufacturers in India can be classified based on production routes as (a) oxygen route (BF/BOF route) and (b) electric route (electric arc furnace and induction furnace). One of the major issues for manufacturers of both routes is the availability of raw materials such as iron ore direct reduced iron (DRI) and scrap. To achieve the level of 250 MT steel manufacturers have to focus on improving the current process and product scenario as well as on research and development activities. The challenge to stop global warming has forced the global steel industry to strongly cut its CO2 emissions. In the case of India this target will be extremely difficult by ruling in the production duplication planned by the year 2030. This work focuses on the recent developments of various processes and challenges associated with them. Possibilities and opportunities for improving the current processes such as top gas recycling increasing pulverized coal injection and hydrogenation as well as the implementation of new processes such as HIsarna and other CO2 -lean iron production technologies are discussed. In addition the eventual transition to hydrogen ironmaking and “green” electricity in smelting are considered. By fast-acting improvements in current facilities and brave investments in new carbon-lean technologies the CO2 emissions of the Indian steel industry can peak and turn downward toward carbon-neutral production.
Global Potential of Green Ammonia Based on Hybrid PV-wind Power Plants
Apr 2021
Publication
Ammonia is one of the most commonly used feedstock chemicals globally. Therefore decarbonisation of ammonia production is of high relevance towards achieving a carbon neutral energy system. This study investigates the global potential of green ammonia production from semi-flexible ammonia plants utilising a cost-optimised configuration of hybrid PV-wind power plants as well as conversion and balancing technologies. The global weather data used is on an hourly time scale and 0.45◦ × 0.45◦ spatial resolution. The results show that by 2030 solar PV would be the dominating electricity generation technology in most parts of the world and the role of batteries would be limited while no significant role is found for hydrogen-fuelled gas turbines. Green ammonia could be generated at the best sites in the world for a cost range of 440–630 345–420 300–330 and 260–290 €/tNH3 in 2020 2030 2040 and 2050 respectively for a weighted average capital cost of 7%. Comparing this to the decade-average fossil-based ammonia cost of 300–350 €/t green ammonia could become cost-competitive in niche markets by 2030 and substitute fossil-based ammonia globally at current cost levels. A possible cost decline of natural gas and consequently fossil-based ammonia could be fully neutralised by greenhouse gas emissions cost of about 75 €/tCO2 by 2040. By 2040 green ammonia in China would be lower in cost than ammonia from new coal-based plants even at the lowest coal prices and no greenhouse gas emissions cost. The difference in green ammonia production at the least-cost sites in the world’s nine major regions is less than 50 €/tNH3 by 2040. Thus ammonia shipping cost could limit intercontinental trading and favour local or regional production beyond 2040.
Two-Dimensional Photocatalysts for Energy and Environmental Applications
Jun 2022
Publication
The depletion of fossil fuels and onset of global warming dictate the achievement of efficient technologies for clean and renewable energy sources. The conversion of solar energy into chemical energy plays a vital role both in energy production and environmental protection. A photocatalytic approach for H2 production and CO2 reduction has been identified as a promising alternative for clean energy production and CO2 conversion. In this process the most critical parameter that controls efficiency is the development of a photocatalyst. Two-dimensional nanomaterials have gained considerable attention due to the unique properties that arise from their morphology. In this paper examples on the development of different 2D structures as photocatalysts in H2 production and CO2 reduction are discussed and a perspective on the challenges and required improvements is given.
Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems
May 2018
Publication
From an environment perspective the increased penetration of wind and solar generation in power systems is remarkable. However as the intermittent renewable generation briskly grows electrical grids are experiencing significant discrepancies between supply and demand as a result of limited system flexibility. This paper investigates the optimal sizing and control of the hydrogen energy storage system for increased utilization of renewable generation. Using a Finnish case study a mathematical model is presented to investigate the optimal storage capacity in a renewable power system. In addition the impact of demand response for domestic storage space heating in terms of the optimal sizing of energy storage is discussed. Finally sensitivity analyses are conducted to observe the impact of a small share of controllable baseload production as well as the oversizing of renewable generation in terms of required hydrogen storage size.
Prospectivity Analysis for Underground Hydrogen Storage, Taranaki Basin, Aotearoa New Zealand: A Multi-criteria Decision-making Approach
May 2024
Publication
Seasonal underground hydrogen storage (UHS) in porous media provides an as yet untested method for storing surplus renewable energy and balancing our energy demands. This study investigates the technical suitability for UHS in depleted hydrocarbon fields and one deep aquifer site in Taranaki Basin Aotearoa New Zealand. Prospective sites are assessed using a decision tree approach providing a “fast-track” method for identifying potential sites and a decision matrix approach for ranking optimal sites. Based on expert elicitation the most important factors to consider are storage capacity reservoir depth and parameters that affect hydrogen injectivity/withdrawal and containment. Results from both approaches suggest that Paleogene reservoirs from gas (or gas cap) fields provide the best option for demonstrating UHS in Aotearoa New Zealand and that the country’s projected 2050 hydrogen storage demand could be exceeded by developing one or two high ranking sites. Lower priority is assigned to heterolithic and typically finer grained labile and clay-rich Miocene oil reservoirs and to deep aquifers that have no proven hydrocarbon containment.
The Role of Electricity-based Hydrogen in the Emerging Power-to-X Economy
Aug 2023
Publication
As energy system research into high shares of renewables has developed so have the perspectives of the fundamental nature of a highly renewable economy. Early energy system transition research suggested that current fossil fuel energy systems would transition to a ‘Hydrogen Economy’ whereas more recent insights suggest that a ‘Power-to-X Economy’ may be a more appropriate term as renewable electricity will become both the most important primary and final energy carrier through various Power-to-X conversion routes across the energy system. This paper provides a detailed overview on research insights of recent years on the core elements of the Power-to-X Economy and the role of hydrogen based on latest research results. These results suggest that by 2050 upwards of 61737 TWhLHV of hydrogen will be required to fully defossilise the global energy-industry system. Hydrogen therefore emerges as a central intermediate energy carrier and its relevance is driven by significant cost reductions in renewable electricity especially of solar photovoltaics and wind power. Efficiency and cost drivers position direct electrification as the primary solution for defossilisation of the global energy-industry system; however electron-to-molecule routes are essential for the large subset of remaining energy-related demands including chemical production marine and aviation fuels and steelmaking.
A Multicriteria Modeling Approach for Evaluating Power Generation Scenarios Under Uncertainty: The Case of Green Hydrogen in Greece
Oct 2023
Publication
Clean energy technological innovations are widely acknowledged as a prerequisite to achieving ambitious longterm energy and climate targets. However the optimal speed of their adoption has been parsimoniously studied in the literature. This study seeks to identify the optimal intensity of moving to a green hydrogen electricity sector in Greece using the OSeMOSYS energy modeling framework. Green hydrogen policies are evaluated first on the basis of their robustness against uncertainty and afterwards against conflicting performance criteria and for different decision-making profiles towards risk by applying the VIKOR and TOPSIS multi-criteria decision aid methods. Although our analysis focuses exclusively on the power sector and compares different rates of hydrogen penetration compared to a business-as-usual case without considering other game-changing innovations (such as other types of storage or carbon capture and storage) we find that a national transition to a green hydrogen economy can support Greece in potentially cutting at least 16 MtCO2 while stimulating investments of EUR 10–13 bn. over 2030–2050.
Use of Existing Gas Infrastructure in European Hydrogen Economy
Apr 2023
Publication
The rapidly increasing production volume of clean hydrogen creates challenges for transport infrastructure. This study improves understanding of hydrogen transport options in Europe and provides more detailed analysis on the prospects for hydrogen transport in Finland. Previous studies and ongoing pipeline projects were reviewed to identify potential and barriers to hydrogen transport. A fatigue life assessment tool was built because material challenges have been one of the main concerns of hydrogen transportation. Many European countries aim at utilizing existing gas infrastructure for hydrogen. Conducted studies and pilot facilities have provided promising results. Hydrogen reduces the fatigue life of the pipeline but existing pipelines can be used for hydrogen if pressure variation is maintained at a reasonable level and the maximum operation pressure is limited. Moreover the use of existing pipelines can reduce hydrogen transport costs but the suitability of every pipeline for hydrogen must be analyzed and several issues such as leakage leakage detection effects of hydrogen on pipeline assets and end users corrosion maintenance and metering of gas flow must be considered. The development of hydrogen transport will vary within countries depending on the structure of the existing gas infrastructure and on the future hydrogen use profile.
Towards Defossilised Steel: Supply Chain Options for a Green European Steel Industry
Mar 2023
Publication
As the European Union intensifies its response to the climate emergency increased focus has been placed on the hard-to-abate energy-intensive industries. Primary among these is the steel industry a cornerstone of the European economy and industry. With the emergence of new hydrogen-based steelmaking options particularly through hydrogen direct reduction the structure of global steel production and supply chains will transition from being based on low-cost coal resources to that based on low-cost electricity and therefore hydrogen production. This study examines the techno-economic options for three European countries of Germany Spain and Finland under five different steel supply chain configurations compared to local production. Results suggest that the high costs of hydrogen transportation make a European steelmaking supply chain cost competitive to steel produced with imported hydrogen with local production costs ranging from 465-545 €/t of crude steel (CS) and 380-494 €/tCS for 2030 and 2040 respectively. Conversely imports of hot briquetted iron and crude steel from Morocco become economically competitive with European supply chains. Given the capital and energy intensive nature of the steel industry critical investment decisions are required in this decade and this research serves to provide a deeper understanding of supply chain options for Europe.
Seasonal Hydrogen Storage for Residential On- and Off-grid Solar Photovoltaics Prosumer Applications: Revolutionary Solution or Niche Market for the Energy Transition until 2050?
Apr 2023
Publication
Appropriate climate change mitigation requires solutions for all actors of the energy system. The residential sector is a major part of the energy system and solutions for the implementation of a seasonal hydrogen storage system in residential houses has been increasingly discussed. A global analysis of prosumer systems including seasonal hydrogen storage with water electrolyser hydrogen compressor storage tank and a fuel cell studying the role of such a seasonal household storage in the upcoming decades is not available. This study aims to close this research gap via the improved LUT-PROSUME model which models a fully micro sector coupled residential photovoltaic prosumer system with linear optimisation for 145 regions globally. The modelling of the cost development of hydrogen storage components allows for the simulation of a residential system from 2020 until 2050 in 5-year steps in hourly resolution. The systems are cost-optimised for either on– or off-grid operation in eight scenarios including battery electric vehicles which can act as an additional vehicle-to-home electricity storage for the system. Results show that implementation of seasonal hydrogen systems only occurs in least cost solutions in high latitude countries when the system is forced to run in off-grid mode. In general a solar photovoltaic plus battery system including technologies that can cover the heat demand is the most economic choice and can even achieve lower cost than a full grid supply in off-grid operation for most regions until 2050. Additional parameters including the self-consumption ratio the demand cover ratio and the heat cover ratio can therefore not be improved by seasonal storage systems if economics is the main deciding factor for a respective system. Further research opportunities and possible limitations of the system are then identified.
No more items...