Finland
Total Cost of Ownership Analysis for Hydrogen and Battery Powertrains: A Comparative Study in Finnish Heavy-duty Transport
Sep 2024
Publication
The road transport sector is one of the major contributors to greenhouse gas emissions as it still largely relies on traditional powertrain solutions. While some progress has been made in the passenger car sector with the diffusion of battery electric vehicles heavy-duty transport remains predominantly dependent on diesel internal combustion engines. This research aims to evaluate and compare three potential solutions for the decarbonisation of heavy-duty freight transport from an economic perspective: Battery Electric Trucks (BETs) Fuel Cell Electric Trucks (FCETs) and Hydrogen-fuelled Internal Combustion Engine Trucks (H2ICETs). The study focuses on the Finnish market and road network where affordable and low-carbon electricity creates an ideal environment for the development of alternative powertrain vehicles. The analysis employs the Total Cost of Ownership (TCO) method which allows for a comprehensive assessment of all cost components associated with the vehicles throughout their entire lifecycle encompassing both initial expenses and operational costs. Among the several factors affecting the results the impact of the three powertrain technologies on the admissible payloads has been taken into account. The study specifically focuses on the costs directly incurred by the truck owner. Additionally to evaluate the cost effectiveness of the proposed powertrain technologies under different scenarios a sensitivity analysis on electricity and hydrogen prices is conducted. The outcomes of this study reveal that no single powertrain solution emerges as universally optimal as the most cost-effective choice depends strongly on the truck type and its use (i.e. daily mileage). For relatively small trucks (18 t) covering short driving distances (approximately 100 to 200 km/day) BETs prove to be the best solution due to their higher efficiency and lower vehicle costs compared to FCETs. Conversely for larger trucks (42 and 76 t) engaged in longer hauls (>300 km/day) H2ICETs exhibit larger cost benefits due to their lower vehicle costs among the three options under investigation. Finally for small trucks (18 t) travelling long distances (200 km/day or more) FCETs represent a competitive choice due to their high efficiency and costeffective energy storage system. Considering future advancements in FCETs and BETs in terms of improved performance and reduced investment cost the fuel cell-based solution is expected to emerge as the best option across various combinations of truck sizes and daily mileages.
Mathematical Optimization Modeling for Scenario Analysis of Integrated Steelworks Transitioning Towards Hydrogen-based Reduction
Jul 2024
Publication
To reduce carbon dioxide emissions from the steel industry efforts are made to introduce a steelmaking route based on hydrogen reduction of iron ore instead of the commonly used cokebased reduction in a blast furnace. Changing fundamental pieces of steelworks affects the functions of most every system unit involved and thus warrants the question of how such a transition could optimally take place over time and no rigorous attempts have until now been made to tackle this problem mathematically. This article presents a steel plant optimization model written as a mixed-integer non-linear programming problem where aging blast furnaces and basic oxygen furnaces could potentially be replaced with shaft furnaces and electric arc furnaces minimizing costs or emissions over a long-term time horizon to identify possible transition pathways. Example cases show how various parameters affect optimal investment pathways stressing the necessity of appropriate planning tools for analyzing diverse cases.
No more items...