Finland
A Direct Synthesis of Platinum/Nickel Co-catalysts on Titanium Dioxide Nanotube Surface from Hydrometallurgical-type Process Streams
Aug 2018
Publication
Solutions that simulate hydrometallurgical base metal process streams with high nickel (Ni) and minor platinum (Pt) concentrations were used to create Pt/Ni nanoparticles on TiO2 nanotube surfaces. For this electrochemical deposition – redox replacement (EDRR) was used that also allowed to control the nanoparticle size density and Pt/Ni content of the deposited nanoparticles. The Pt/Ni nanoparticle decorated titanium dioxide nanotubes (TiO2 nanotubes) become strongly activated for photocatalytic hydrogen (H2) evolution. Moreover EDRR facilitates nanoparticle formation without the need for any additional chemicals and is more effective than electrodeposition alone. Actually a 10000-time enrichment level of Pt took place on the TiO2 surface when compared to Pt content in the solution with the EDRR method. The results show that hydrometallurgical streams offer great potential as an alternative raw material source for industrial catalyst production when coupled with redox replacement electrochemistry.
Baseload Electricity and Hydrogen Supply Based on Hybrid PV-wind Power Plants
Sep 2019
Publication
The reliable supplies of electricity and hydrogen required for 100% renewable energy systems have been found to be achievable by utilisation of a mix of different resources and storage technologies. In this paper more demanding parameter conditions than hitherto considered are used in measurement of the reliability of variable renewable energy resources. The defined conditions require that supply of baseload electricity (BLEL) and baseload hydrogen (BLH2) occurs solely using cost-optimised configurations of variable photovoltaic solar power onshore wind energy and balancing technologies. The global scenario modelling is based on hourly weather data in a 0.45° × 0.45° spatial resolution. Simulations are conducted for Onsite and Coastal Scenarios from 2020 to 2050 in 10-year time-steps. The results show that for 7% weighted average cost of capital Onsite BLEL can be generated at less than 119 54 41 and 33 €/MWhel in 2020 2030 2040 and 2050 respectively across the best sites with a maximum 20000 TWh annual cumulative generation potential. Up to 20000 TWhH2HHV Onsite BLH2 can be produced at less than 66 48 40 and 35 €/MWhH2HHV in 2020 2030 2040 and 2050 respectively. A partially flexible electricity demand at 8000 FLh could significantly reduce the costs of electricity supply in the studied scenario. Along with battery storage power-to-hydrogen-to-power is found to have a major role in supply of BLEL beyond 2030 as both a daily and seasonal balancing solution. Batteries are not expected to have a significant role in the provision of electricity to water electrolysers.
The Role of Lock-in Mechanisms in Transition Processes: The Case of Energy for Road Transport
Jul 2015
Publication
This paper revisits the theoretical concepts of lock-in mechanisms to analyse transition processes in energy production and road transportation in the Nordic countries focussing on three technology platforms: advanced biofuels e-mobility and hydrogen and fuel cell electrical vehicles. The paper is based on a comparative analysis of case studies.<br/>The main lock-in mechanisms analysed are learning effects economies of scale economies of scope network externalities informational increasing returns technological interrelatedness collective action institutional learning effects and the differentiation of power.<br/>We show that very different path dependencies have been reinforced by the lock-in mechanisms. Hence the characteristics of existing regimes set the preconditions for the development of new transition pathways. The incumbent socio-technical regime is not just fossil-based but may also include mature niches specialised in the exploitation of renewable sources. This implies a need to distinguish between lock-in mechanisms favouring the old fossil-based regime well-established (mature) renewable energy niches or new pathways.
Achieving Carbon-neutral Iron and Steelmaking in Europe Through the Deployment of Bioenergy with Carbon Capture and Storage
Jan 2019
Publication
The 30 integrated steel plants operating in the European Union (EU) are among the largest single-point CO2 emitters in the region. The deployment of bioenergy with carbon capture and storage (bio-CCS) could significantly reduce their emission intensities. In detail the results demonstrate that CO2 emission reduction targets of up to 20% can be met entirely by biomass deployment. A slow CCS technology introduction on top of biomass deployment is expected as the requirement for emission reduction increases further. Bio-CCS could then be a key technology particularly in terms of meeting targets above 50% with CO2 avoidance costs ranging between €60 and €100 tCO2−1 at full-scale deployment. The future of bio-CCS and its utilisation on a larger scale would therefore only be viable if such CO2 avoidance cost were to become economically appealing. Small and medium plants in particular would economically benefit from sharing CO2 pipeline networks. CO2 transport however makes a relatively small contribution to the total CO2 avoidance cost. In the future the role of bio-CCS in the European iron and steelmaking industry will also be influenced by non-economic conditions such as regulations public acceptance realistic CO2 storage capacity and the progress of other mitigation technologies.
A Numerical Performance Study of a Fixed-bed Reactor for Methanol Synthesis by CO2 Hydrogenation
Mar 2021
Publication
Synthetic fuels are needed to replace their fossil counterparts for clean transport. Presently their production is still inefficient and costly. To enhance the process of methanol production from CO2 and H2 and reduce its cost a particle-resolved numerical simulation tool is presented. A global surface reaction model based on the Langmuir-Hinshelwood-Hougen-Watson kinetics is utilized. The approach is first validated against standard benchmark problems for non-reacting and reacting cases. Next the method is applied to study the performance of methanol production in a 2D fixed-bed reactor under a range of parameters. It is found that methanol yield enhances with pressure catalyst loading reactant ratio and packing density. The yield diminishes with temperature at adiabatic conditions while it shows non-monotonic change for the studied isothermal cases. Overall the staggered and the random catalyst configurations are found to outperform the in-line system.
Large-scale Compressed Hydrogen Storage as Part of Renewable Electricity Storage Systems
Mar 2021
Publication
Storing energy in the form of hydrogen is a promising green alternative. Thus there is a high interest to analyze the status quo of the different storage options. This paper focuses on the large-scale compressed hydrogen storage options with respect to three categories: storage vessels geological storage and other underground storage alternatives. In this study we investigated a wide variety of compressed hydrogen storage technologies discussing in fair detail their theory of operation potential and challenges. The analysis confirms that a techno-economic chain analysis is required to evaluate the viability of one storage option over another for a case by case. Some of the discussed technologies are immature; however this does not rule out these technologies; rather it portrays the research opportunities in the field and the foreseen potential of these technologies. Furthermore we see that hydrogen would have a significant role in balancing intermittent renewable electricity production.
National Hydrogen Roadmap for Finland
Nov 2020
Publication
Hydrogen has been used as an industrial chemical for more than 100 years. Today hydrogen is used to manufacture ammonia and hence fertilizers as well as methanol and hydrogen peroxide both vital feedstocks for a wide variety of different chemical products. Furthermore in oil refineries hydrogen is used for the processing of intermediate products as well as to increase the hydrogen contents of the final products that are used propel the vehicles. However hydrogen has recently achieved new attention for its capabilities in reducing carbon emissions to the atmosphere. Producing hydrogen via low or totally carbon-free ways and using this “good” low-carbon hydrogen to replace hydrogen with a larger carbon footprint we can reduce carbon emissions. Furthermore using renewable electricity and captured carbon we can synthesise many such chemical products that are currently produced from fossil raw materials. This “Power-to-X” (P2X) is often seen as the eventual incarnation of the hydrogen economy. In addition the progress in technology both in hydrogen fuel cells and in polymer electrolyte electrolysers alike has increased their efficiencies.<br/>Furthermore production costs of renewable electricity by wind or solar power have lowered significantly. Thus cost of “good” hydrogen has also decreased markedly and production volumes are expected to increase rapidly. For these reasons many countries have raised interests in “good” hydrogen and have created roadmaps and strategies for their involvement in hydrogen. Hydrogen plays a key role also in combating climate change and reaching Finland's national goal of carbon neutrality by 2035. In recent years many clean hydrogen and P2X production methods have developed significantly and become commercially viable.<br/>This report was produced by a team of VTT experts on hydrogen and hydrogen-related technologies. The focus is in an outlook for low-carbon H2 production H2 utilization for green chemicals and fuels as well as storage transport and end-use especially during the next 10 years in Finland in connection to renewed EU regulations. This roadmap is expected to serve as the knowledge-base for further work such as shaping the hydrogen policy for Finland and determining the role of hydrogen in the national energy and climate policy.
Dynamic Energy and Mass Balance Model for an Industrial Alkaline Water Electrolyzer Plant Process
Nov 2021
Publication
This paper proposes a parameter adjustable dynamic mass and energy balance simulation model for an industrial alkaline water electrolyzer plant that enables cost and energy efficiency optimization by means of system dimensioning and control. Thus the simulation model is based on mathematical models and white box coding and it uses a practicable number of fixed parameters. Zero-dimensional energy and mass balances of each unit operation of a 3 MW and 16 bar plant process were solved in MATLAB functions connected via a Simulink environment. Verification of the model was accomplished using an analogous industrial plant of the same power and pressure range having the same operational systems design. The electrochemical mass flow and thermal behavior of the simulation and the industrial plant were compared to ascertain the accuracy of the model and to enable modification and detailed representation of real case scenarios so that the model is suitable for use in future plant optimization studies. The thermal model dynamically predicted the real case with 98.7 % accuracy. Shunt currents were the main contributor to relative low Faraday efficiency of 86 % at nominal load and steady-state operation and heat loss to ambient from stack was only 2.6 % of the total power loss.
Material Testing and Design Recommendations for Components Exposed to Hydrogen Enhanced Fatigue – the Mathryce Project
Sep 2013
Publication
The three years European MATHRYCE project dedicated to material testing and design recommendations for components exposed to hydrogen enhanced fatigue started in October 2012. Its main goal is to provide an “easy” to implement methodology based on lab-scale experimental tests under hydrogen gas to assess the service life of a real scale component taking into account fatigue loading under hydrogen gas. Dedicated experimental tests will be developed for this purpose. In the present paper the proposed approach is presented and compared to the methodologies currently developed elsewhere in the world.
Evaluation of Steels Susceptibility to Hydrogen Embrittlement: A Thermal Desorption Spectroscopy-Based Approach Coupled with Artificial Neural Network
Dec 2020
Publication
A novel approach has been developed for quantitative evaluation of the susceptibility of steels and alloys to hydrogen embrittlement. The approach uses a combination of hydrogen thermal desorption spectroscopy (TDS) analysis with recent advances in machine learning technology to develop a regression artificial neural network (ANN) model predicting hydrogen-induced degradation of mechanical properties of steels. We describe the thermal desorption data processing artificial neural network architecture development and the learning process beneficial for the accuracy of the developed artificial neural network model. A data augmentation procedure was proposed to increase the diversity of the input data and improve the generalization of the model. The study of the relationship between thermal desorption spectroscopy data and the mechanical properties of steel evidences a strong correlation of their corresponding parameters. A prototype software application based on the developed model is introduced and is openly available. The developed prototype based on TDS analysis coupled with ANN is shown to be a valuable engineering tool for steel characterization and quantitative prediction of the degradation of steel properties caused by hydrogen.
Modelling and Cost Estimation for Conversion of Green Methanol to Renewable Liquid Transport Fuels via Olefin Oligomerisation
Jun 2021
Publication
The ambitious CO2 emission reduction targets for the transport sector set in the Paris Climate Agreement require low-carbon energy solutions that can be commissioned rapidly. The production of gasoline kerosene and diesel from renewable methanol using methanol-to-olefins (MTO) and Mobil’s Olefins to Gasoline and Distillate (MOGD) syntheses was investigated in this study via process simulation and economic analysis. The current work presents a process simulation model comprising liquid fuel production and heat integration. According to the economic analysis the total cost of production was found to be 3409 €/tfuels (273 €/MWhLHV) corresponding to a renewable methanol price of 963 €/t (174 €/MWhLHV). The calculated fuel price is considerably higher than the current cost of fossil fuels and biofuel blending components. The price of renewable methanol which is largely dictated by the cost of electrolytic hydrogen and renewable electricity was found to be the most significant factor affecting the profitability of the MTO-MOGD plant. To reduce the price of renewable fuels and make them economically viable it is recommended that the EU’s sustainable transport policies are enacted to allow flexible and practical solutions to reduce transport-related emissions within the member states.
Cost Benefits of Optimizing Hydrogen Storage and Methanation Capacities for Power-to-Gas Plants in Dynamic Operation
Oct 2019
Publication
Power-to-Gas technologies offer a promising approach for converting renewable electricity into a molecular form (fuel) to serve the energy demands of non-electric energy applications in all end-use sectors. The technologies have been broadly developed and are at the edge of a mass roll-out. The barriers that Power-to-Gas faces are no longer technical but are foremost regulatory and economic. This study focuses on a Power-to-Gas pathway where electricity is first converted in a water electrolyzer into hydrogen which is then synthetized with carbon dioxide to produce synthetic natural gas. A key aspect of this pathway is that an intermittent electricity supply could be used which could reduce the amount of electricity curtailment from renewable energy generation. Interim storages would then be necessary to decouple the synthesized part from hydrogen production to enable (I) longer continuous operation cycles for the methanation reactor and (II) increased annual full-load hours leading to an overall reduction in gas production costs. This work optimizes a Power-to-Gas plant configuration with respect to the cost benefits using a Monte Carlo-based simulation tool. The results indicate potential cost reductions of up to 17% in synthetic natural gas production by implementing well-balanced components and interim storages. This study also evaluates three different power sources which differ greatly in their optimal system configuration. Results from time-resolved simulations and sensitivity analyses for different plant designs and electricity sources are discussed with respect to technical and economic implications so as to facilitate a plant design process for decision makers.
Challenges and Outlines of Steelmaking toward the Year 2030 and Beyond—Indian Perspective
Oct 2021
Publication
In FY-20 India’s steel production was 109 MT and it is the second-largest steel producer on the planet after China. India’s per capita consumption of steel was around 75 kg which has risen from 59 kg in FY-14. Despite the increase in consumption it is much lower than the average global consumption of 230 kg. The per capita consumption of steel is one of the strongest indicators of economic development across the nation. Thus India has an ambitious plan of increasing steel production to around 250 MT and per capita consumption to around 160 kg by the year 2030. Steel manufacturers in India can be classified based on production routes as (a) oxygen route (BF/BOF route) and (b) electric route (electric arc furnace and induction furnace). One of the major issues for manufacturers of both routes is the availability of raw materials such as iron ore direct reduced iron (DRI) and scrap. To achieve the level of 250 MT steel manufacturers have to focus on improving the current process and product scenario as well as on research and development activities. The challenge to stop global warming has forced the global steel industry to strongly cut its CO2 emissions. In the case of India this target will be extremely difficult by ruling in the production duplication planned by the year 2030. This work focuses on the recent developments of various processes and challenges associated with them. Possibilities and opportunities for improving the current processes such as top gas recycling increasing pulverized coal injection and hydrogenation as well as the implementation of new processes such as HIsarna and other CO2 -lean iron production technologies are discussed. In addition the eventual transition to hydrogen ironmaking and “green” electricity in smelting are considered. By fast-acting improvements in current facilities and brave investments in new carbon-lean technologies the CO2 emissions of the Indian steel industry can peak and turn downward toward carbon-neutral production.
Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems
May 2018
Publication
From an environment perspective the increased penetration of wind and solar generation in power systems is remarkable. However as the intermittent renewable generation briskly grows electrical grids are experiencing significant discrepancies between supply and demand as a result of limited system flexibility. This paper investigates the optimal sizing and control of the hydrogen energy storage system for increased utilization of renewable generation. Using a Finnish case study a mathematical model is presented to investigate the optimal storage capacity in a renewable power system. In addition the impact of demand response for domestic storage space heating in terms of the optimal sizing of energy storage is discussed. Finally sensitivity analyses are conducted to observe the impact of a small share of controllable baseload production as well as the oversizing of renewable generation in terms of required hydrogen storage size.
Replacing Fossil Fuels with Bioenergy in District Heating – Comparison of Technology Options
May 2021
Publication
We combine previously separate models of Northern European power markets local district heating and cooling (DHC2) systems and biomass supply in a single modelling framework to study local and system level impacts of bioenergy technologies in phasing out fossil fuels from a DHC system of the Finnish capital. We model multiple future scenarios and assess the impacts on energy security flexibility provision economic performance and emissions. In the case of Helsinki heat only boiler is a robust solution from economic and climate perspective but reduces local electricity self-sufficiency. Combined heat and power solution is more valuable investment for the system than for the city indicating a conflict of interest and biased results in system level models. Bringing a biorefinery near the city to utilize excess heat would reduce emissions and increase investment's profitability but biomass availability might be a bigger limiting factor. Our results show that the availability of domestic biomass resources constrains bio-based technologies in Southern Finland and further highlights the importance of considering both local and system level impacts. Novel option to boost biorefinery's production with hydrogen from excess electricity is beneficial with increasing shares of wind power.
Determination of Critical Hydrogen Concentration and Its Effect on Mechanical Performance of 2200 MPa and 600 HBW Martensitic Ultra-High-Strength Steel
Jun 2021
Publication
The influence of hydrogen on the mechanical performance of a hot-rolled martensitic steel was studied by means of constant extension rate test (CERT) and constant load test (CLT) followed with thermal desorption spectroscopy measurements. The steel shows a reduction in tensile strength up to 25% of ultimate tensile strength (UTS) at critical hydrogen concentrations determined to be about 1.1 wt.ppm and 50% of UTS at hydrogen concentrations of 2 wt.ppm. No further strength degradation was observed up to hydrogen concentrations of 4.8 wt.ppm. It was observed that the interplay between local hydrogen concentrations and local stress states accompanied with the presence of total average hydrogen reducing the general plasticity of the specimen are responsible for the observed strength degradation of the steel at the critical concentrations of hydrogen. Under CLT the steel does not show sensitivity to hydrogen at applied loads below 50% of UTS under continuous electrochemical hydrogen charging up to 85 h. Hydrogen enhanced creep rates during constant load increased linearly with increasing hydrogen concentration in the steel.
Large-eddy Simulation of Tri-fuel Combustion: Diesel Spray Assisted Ignition of Methanol-hydrogen Blends
May 2021
Publication
Development of marine engines could largely benefit from the broader usage of methanol and hydrogen which are both potential energy carriers. Here numerical results are presented on tri-fuel (TF) ignition using large-eddy simulation (LES) and finite-rate chemistry. Zero-dimensional (0D) and three-dimensional (3D) simulations for n-dodecane spray ignition of methanol/hydrogen blends are performed. 0D results reveal the beneficial role of hydrogen addition in facilitating methanol ignition. Based on LES the following findings are reported: 1) Hydrogen promotes TF ignition significantly for molar blending ratios βX = [H2]/([H2]+[CH3OH]) ≥0.8. 2) For βX = 0 unfavorable heat generation in ambient methanol is noted. We provide evidence that excessive hydrogen enrichment (βX ≥ 0.94) potentially avoids this behavior consistent with 0D results. 3) Ignition delay time is advanced by 23–26% with shorter spray vapor penetrations (10–15%) through hydrogen mass blending ratios 0.25/0.5/1.0. 4) Last adding hydrogen increases shares of lower and higher temperature chemistry modes to total heat release.
Experimental Study on Tri-fuel Combustion Using Premixed Methane-hydrogen Mixtures Ignited by a Diesel Pilot
Apr 2021
Publication
A comprehensive investigation on diesel pilot spray ignited methane-hydrogen (CH4–H2) combustion tri-fuel combustion (TF) is performed in a single-cylinder compression ignition (CI) engine. The experiments provide a detailed analysis of the effect of H2 concentration (based on mole fraction MH2) and charge-air temperature (Tair) on the ignition behavior combustion stability cycle-to-cycle (CCV) and engine performance. The results indicate that adding H2 from 0 to 60% shortens the ignition delay time (IDT) and combustion duration (based on CA90) up to 33% and 45% respectively. Thereby H2 helps to increase the indicated thermal efficiency (ITE) by as much as 10%. Furthermore to gain an insight into the combustion stability and CCV the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) methodologies are applied to estimate the combustion stability and CCV of the TF combustion process. The results reveal that the pressure oscillation can be reduced up to 4 dB/Hz and the CCV by 50% when MH2 < 60% and Tair < 55 °C. However when MH2 > 60% and Tair > 40 °C abnormal combustion and knocking are observed.
The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production
Oct 2016
Publication
This article presents a summary of the main findings from a collaborative research project between Aalto University in Finland and partner universities. A comparative process synthesis modelling and thermal assessment was conducted for the production of Bio-synthetic natural gas (SNG) and hydrogen from supercritical water refining of a lipid extracted algae feedstock integrated with onsite heat and power generation. The developed reactor models for product gas composition yield and thermal demand were validated and showed conformity with reported experimental results and the balance of plant units were designed based on established technologies or state-of-the-art pilot operations. The poly-generative cases illustrated the thermo-chemical constraints and design trade-offs presented by key process parameters such as plant organic throughput supercritical water refining temperature nature of desirable coproducts downstream indirect production and heat recovery scenarios. The evaluated cases favoring hydrogen production at 5 wt. % solid content and 600 ◦C conversion temperature allowed higher gross syngas and CHP production. However mainly due to the higher utility demands the net syngas production remained lower compared to the cases favoring BioSNG production. The latter case at 450 ◦C reactor temperature 18 wt. % solid content and presence of downstream indirect production recorded 66.5% 66.2% and 57.2% energetic fuel-equivalent and exergetic efficiencies respectively
A Review on the Kinetics of Iron Ore Reduction by Hydrogen
Dec 2021
Publication
A clean energy revolution is occurring across the world. As iron and steelmaking have a tremendous impact on the amount of CO2 emissions there is an increasing attraction towards improving the green footprint of iron and steel production. Among reducing agents hydrogen has shown a great potential to be replaced with fossil fuels and to decarbonize the steelmaking processes. Although hydrogen is in great supply on earth extracting pure H2 from its compound is costly. Therefore it is crucial to calculate the partial pressure of H2 with the aid of reduction reaction kinetics to limit the costs. This review summarizes the studies of critical parameters to determine the kinetics of reduction. The variables considered were temperature iron ore type (magnetite hematite goethite) H2/CO ratio porosity flow rate the concentration of diluent (He Ar N2 ) gas utility annealing before reduction and pressure. In fact increasing temperature H2/CO ratio hydrogen flow rate and hematite percentage in feed leads to a higher reduction rate. In addition the controlling kinetics models and the impact of the mentioned parameters on them investigated and compared concluding chemical reaction at the interfaces and diffusion of hydrogen through the iron oxide particle are the most common kinetics controlling models.
No more items...