Germany
Methodology of CFD Safety Analysis for Large-Scale Industrial Structures
Sep 2005
Publication
The current work is devoted to problems connected with application of CFD tools for safety analysis of large-scale industrial structures. With the aim to preserve conservatism of overall process of multistage procedure of such analysis special efforts are required. A strategy which has to lead to obtaining of reliable results in CFD analysis is discussed. Different aspects of proposed strategy including: adequate choice of physical and numerical models procedure of validation simulations and problem of ‘under-resolved’ simulations are considered. For physical phenomena which could cause significant uncertainties in the course of scenario simulation an approach which complements CFD simulations by application of auxiliary criteria is presented. Physical basis and applicability of strong flame acceleration and detonation-to-deflagration transition criteria are discussed. In concluding part two examples of application of presented approach for nuclear power plant and workshop cell for hydrogen driven vehicles are presented.
Pool Spreading and Vaporization of Liquid Hydrogen
Sep 2005
Publication
An essential part of a safety analysis to evaluate the risks of a liquid hydrogen (LH2) containing system is the understanding of cryogenic pool spreading and its vaporization. It represents the initial step in an accident sequence with the inadvertent spillage of LH2 e.g. after failure of a transport container tank or the rupture of a pipeline. This stage of an accident scenario provides pertinent information as a source term for the subsequent analysis steps of atmospheric dispersion and at presence of an ignition source the combustion of the hydrogen-air vapor cloud. A computer model LAUV has been developed at the Research Center Juelich which is able to simulate the spreading and vaporization of a cryogenic liquid under various conditions such as different grounds (solid water). It is based on the so-called shallow-layer differential equations taking into account physical phenomena such as ice formation if the cryogen is spilled on a water surface. The presentation will give a description of the computer model and its validation against existing experimental data. Furthermore calculational results will be analyzed describing the prediction and quantification of the consequences of an LH2 spill for different cases. They also include the comparison of an LH2 spillage versus the corresponding release of other cryogens such as liquid natural gas liquid oxygen and liquid nitrogen.
Large Scale Experiments- Deflagration and Deflagration to Detonation within a Partial Confinement Similar to a Lane
Sep 2005
Publication
About 20 years ago Fraunhofer ICT has performed large scale experiments with premixed hydrogen air mixtures [1]. A special feature has been the investigation of the combustion of the mixture within a partial confinement simulating some sort of a “lane” which may exist in reality within a hydrogen production or storage plant for example. Essentially three different types of tests have been performed: combustion of quiescent mixtures combustion of mixtures with artificially generated turbulence by means of a fan and combustion of mixtures with high speed flame jet ignition. The observed phenomena will be discussed on the basis of measured turbulence levels flame speeds and overpressures. Conditions for DDT concerning critical turbulence levels and flame speeds as well as a scaling rule for DDT related to the detonation cell size of the mixture can be derived from the experiments for this special test setup. The relevance of the results with respect to safety aspects of future hydrogen technology is assessed. Combustion phenomena will be highlighted by the presentation of impressive high speed film videos.
Hydrogen-air Deflagrations in Open Atmosphere- Large Eddy Simulation Analysis of Experimental Data
Sep 2005
Publication
The largest known experiment on hydrogen-air deflagration in the open atmosphere has been analysed by means of the large eddy simulation (LES). The combustion model is based on the progress variable equation to simulate a premixed flame front propagation and the gradient method to decouple the physical combustion rate from numerical peculiarities. The hydrodynamic instability has been partially resolved by LES and unresolved effects have been modelled by Yakhot's turbulent premixed combustion model. The main contributor to high flame propagation velocity is the additional turbulence generated by the flame front itself. It has been modelled based on the maximum flame wrinkling factor predicted by Karlovitz et al. theory and the transitional distance reported by Gostintsev with colleagues. Simulations are in a good agreement with experimental data on flame propagation dynamics flame shape and outgoing pressure wave peaks and structure. The model is built from the first principles and no adjustable parameters were applied to get agreement with the experiment.
Experimental Study of Jet-formed Hydrogen-air Mixtures and Pressure Loads from their Deflagrations in Low Confined Surroundings
Sep 2007
Publication
To provide more practical data for safety assessments a systematic study of explosion and combustion processes which can take place in mixtures produced by jet releases in realistic environmental conditions is required. The presented work is aimed to make step forward in this direction binding three inter-connected tasks: (i) study of horizontal and vertical jets (ii) study of the burnable clouds formed by jets in different geometry configurations and (iii) examination of combustion and explosion processes initiated in such mixtures. Test matrix for the jet experiments included variation of the release pressure and nozzle diameter with the aim to study details of the resulting hydrogen concentration and velocity profiles depending on the release conditions. In this study the following parameters were varied: mass flow rate jet nozzle diameter (to alter gas speed) and geometry of the hood located on top of the jet. The carried out experiments provided data on detailed structure for under-expanded horizontal and buoyant vertical jets and data on pressure loads resulted from deflagration of various mixtures formed by jet releases. The data on pressures waves generated in the conditions under consideration provides conservative estimation of pressure loads for realistic leaks.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
On The Kinetics of Alh3 Decomposition and the Subsequent Al Oxidation
Sep 2011
Publication
Metal hydrides are used for hydrogen storage. AlH3 shows a capacity to store about 10 wt% hydrogen. Its hydrogen is split-off in the temperature interval of 400–500 K. On dehydrogenation a nano-structured Al material emerges with specific surfaces up to 15–20 m2/g. The surface areas depend on the heating rate because of a temperature dependent crystallite growth. The resulting Al oxidizes up to 20–25% weight on air access forming an alumina passivation layer of 3–4 nm thickness on all exposed surfaces. The heat released from this Al oxidation induces a high risk to this type of hydrogen storage if the containment might be destroyed accidentally. The kinetics of the dehydrogenation and the subsequent oxidation is investigated by methods of thermal analysis. A reaction scheme is confirmed which consists of a starting Avrami-Erofeev mechanism followed by formal 1st order oxidation on unlimited air access. The kinetic parameters activation energies and pre-exponentials are evaluated and can be used to calculate the reaction progress. Together with the heat of the Al oxidation the overall heat release and the related rate can be estimated.
Chemical Utilization of Hydrogen from Fluctuating Energy Sources- Catalytic Transfer Hydrogenation from Charged Liquid Organic Hydrogen Carrier Systems
Nov 2015
Publication
Liquid Organic Hydrogen Carrier (LOHC) systems offer a very attractive way for storing and distributing hydrogen from electrolysis using excess energies from solar or wind power plants. In this contribution an alternative high-value utilization of such hydrogen is proposed namely its use in steady-state chemical hydrogenation processes. We here demonstrate that the hydrogen-rich form of the LOHC system dibenzyltoluene/perhydro-dibenzyltoluene can be directly applied as sole source of hydrogen in the hydrogenation of toluene a model reaction for large-scale technical hydrogenations. Equilibrium experiments using perhydro-dibenzyltoluene and toluene in a ratio of 1:3 (thus in a stoichiometric ratio with respect to H2) yield conversions above 60% corresponding to an equilibrium constant significantly higher than 1 under the applied conditions (270 °C).
Hydrogen Embrittlement: The Game Changing Factor in the Applicability of Nickel Alloys in Oilfield Technology
Jun 2017
Publication
Precipitation hardenable (PH) nickel (Ni) alloys are often the most reliable engineering materials for demanding oilfield upstream and subsea applications especially in deep sour wells. Despite their superior corrosion resistance and mechanical properties over a broad range of temperatures the applicability of PH Ni alloys has been questioned due to their susceptibility to hydrogen embrittlement (HE) as confirmed in documented failures of components in upstream applications. While extensive work has been done in recent years to develop testing methodologies for benchmarking PH Ni alloys in terms of their HE susceptibility limited scientific research has been conducted to achieve improved foundational knowledge about the role of microstructural particularities in these alloys on their mechanical behaviour in environments promoting hydrogen uptake. Precipitates such as the γ′ γ′′ and δ-phase are well known for defining the mechanical and chemical properties of these alloys. To elucidate the effect of precipitates in the microstructure of the oil-patch PH Ni alloy 718 on its HE susceptibility slow strain rate tests under continuous hydrogen charging were conducted on material after several different age-hardening treatments. By correlating the obtained results with those from the microstructural and fractographic characterization it was concluded that HE susceptibility of oil-patch alloy 718 is strongly influenced by the amount and size of precipitates such as the γ′ and γ′′ as well as the δ-phase rather than by the strength level only. In addition several HE mechanisms including hydrogen-enhanced decohesion and hydrogen-enhanced local plasticity were observed taking place on oil-patch alloy 718 depending upon the characteristics of these phases when present in the microstructure.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Effect of Temperature on Laminar Flame Velocity for Hydrogen-air Mixtures at Reduced Pressures
Sep 2013
Publication
The work was done with respect to hydrogen safety of ITER vacuum vessel in cases of loss of cooling and loss of vacuum accidents. Experiments were conducted at sub-atmospheric pressures from 1 bar to 200 mbar and elevated temperatures up to 300 oC. Hydrogen concentration was changed from lower to upper flammability limits in all the range of pressures and temperatures. The experiments were performed in a spherical explosion bomb equipped with two quartz windows. The flame propagation velocity was measured using pressure method and high speed shadow cinematography. The theoretical flame velocities were calculated by Cantera code using Lutz and Mueller mechanisms. The influence of the initial temperature and pressure conditions on the laminar flame speed SL overall reaction order n and Markstein length LM are presented in this work and compared with the results of a theoretical model.
Hydrogen and Fuel Cell Stationary Applications: Key Findings of Modelling and Experimental Work in the Hyper Project
Sep 2009
Publication
Síle Brennan,
A. Bengaouer,
Marco Carcassi,
Gennaro M. Cerchiara,
Andreas Friedrich,
O. Gentilhomme,
William G. Houf,
N. Kotchourko,
Alexei Kotchourko,
Sergey Kudriakov,
Dmitry Makarov,
Vladimir V. Molkov,
Efthymia A. Papanikolaou,
C. Pitre,
Mark Royle,
R. W. Schefer,
G. Stern,
Alexandros G. Venetsanos,
Anke Veser,
Deborah Willoughby,
Jorge Yanez and
Greg H. Evans
"This paper summarises the modelling and experimental programme in the EC FP6 project HYPER. A number of key results are presented and the relevance of these findings to installation permitting guidelines (IPG) for small stationary hydrogen and fuel cell systems is discussed. A key aim of the activities was to generate new scientific data and knowledge in the field of hydrogen safety and where possible use this data as a basis to support the recommendations in the IPG. The structure of the paper mirrors that of the work programme within HYPER in that the work is described in terms of a number of relevant scenarios as follows: 1. high pressure releases 2. small foreseeable releases 3. catastrophic releases and 4. the effects of walls and barriers. Within each scenario the key objectives activities and results are discussed.<br/>The work on high pressure releases sought to provide information for informing safety distances for high-pressure components and associated fuel storage activities on both ignited and unignited jets are reported. A study on small foreseeable releases which could potentially be controlled through forced or natural ventilation is described. The aim of the study was to determine the ventilation requirements in enclosures containing fuel cells such that in the event of a foreseeable leak the concentration of hydrogen in air for zone 2 ATEX is not exceeded. The hazard potential of a possibly catastrophic hydrogen leakage inside a fuel cell cabinet was investigated using a generic fuel cell enclosure model. The rupture of the hydrogen feed line inside the enclosure was considered and both dispersion and combustion of the resulting hydrogen air mixture were examined for a range of leak rates and blockage ratios. Key findings of this study are presented. Finally the scenario on walls and barriers is discussed; a mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. Conclusions of experimental and modelling work which aim to provide guidance on configuration and placement of these walls to minimise overall hazards is presented. "
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
HIAD – Hydrogen Incident and Accident Database
Sep 2011
Publication
The Hydrogen Incident and Accident Database (HIAD) is being developed as a repository of systematic data describing in detail hydrogen-related undesired events (incidents or accidents). It is an open web-based information system serving various purposes such as a data source for lessons learnt risk communication and partly risk assessment. The paper describes the features of the three HIAD modules – the Data Entry Module (DEM) the Data Retrieval Module (DRM) and the Data Analysis Module (DAM) – and the potential impact the database may have on hydrogen safety. The importance of data quality assurance process is also addressed.
Validation Strategy for CFD Models Describing Safety-relevant Scenarios Including LH2/GH2 Release and the Use of Passive Autocatalytic Recombiners
Sep 2013
Publication
An increase in use of hydrogen for energy storage and clean energy supply in a future energy and mobility market will strengthen the focus on safety and the safe handling of hydrogen facilities. The ability to simulate the whole chain of physical phenomena that may occur during an accident is mandatory for future safety studies on an industrial or urban scale. Together with the RWTH Aachen University Forschungszentrum Jülich (JÜLICH) develops numerical methods to predict safety incidents connected with the release of either LH2 or GH2 using the commercial CFD code ANSYS CFX. The full sequence from the release distribution or accumulation of accidentally released hydrogen till the mitigation of accident consequences by safety devices is considered. For specific phenomena like spreading and vaporization of LH2 pools or the operational behavior of passive auto-catalytic recombiners (PAR) in-house sub-models are developed and implemented. The paper describes the current development status gives examples of the validation and concludes with future work to provide the full range of hydrogen release and recombination simulation.
Experimental Investigation of Nonideality and Nonadiabatic Effects Under High Pressure Releases
Sep 2013
Publication
Due to the nonideality of a high pressure hydrogen release the possibility of a two-phase flow and its effect on the dynamics of the discharge process was experimentally investigated. A small-scale facility was designed and constructed to simulate the transient blow-down of a cryogenic fluid through a small break. Gaseous and liquid nitrogen were planned to were used as a surrogate for GH2 and LH2. The results will complement the quasi-stationary safety regulation tests and will provide time-dependent data for verification of the theoretical models. Different orifice sizes (0.5 1 2 4 mm) and initial N2 pressures (30 – 200 bar) were used in the tests. The measured time-dependent data for vessel discharge pressure thrust discharge mass flow rate and gas temperatures were compared against a theoretical model for high pressure nitrogen release. This verification for nitrogen also assures the equation of state for hydrogen which is based on the same methodology.
Trends in Gas Sensor Development for Hydrogen Safety
Sep 2013
Publication
Gas sensors are applied for facilitating the safe use of hydrogen in for example fuel cell and hydrogen fuelled vehicles. New sensor developments aimed at meeting the increasingly stringent performance requirements in emerging applications are presented based on in-house technical developments and a literature study. The strategy of combining different detection principles i.e. sensors based on electrochemical cells semiconductors or field effects in combination with thermal conductivity sensor or catalytic combustion elements in one new measuring system is reported. This extends the dynamic measuring range of the sensor while improving sensor reliability to achieve higher safety integrity through diverse redundancy. The application of new nanoscaled materials nano wires carbon tubes and graphene as well as the improvements in electronic components of field-effect resistive-type and optical systems are evaluated in view of key operating parameters such as sensor response time low energy consumption and low working temperature.
ISO 19880-1, Hydrogen Fueling Station and Vehicle Interface Safety Technical Report
Oct 2015
Publication
Hydrogen Infrastructures are currently being built up to support the initial commercialization of the fuel cell vehicle by multiple automakers. Three primary markets are presently coordinating a large build up of hydrogen stations: Japan; USA; and Europe to support this. Hydrogen Fuelling Station General Safety and Performance Considerations are important to establish before a wide scale infrastructure is established.
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
- H2 production / supply delivery system
- Compression
- Gaseous hydrogen buffer storage;
- Pre-cooling device;
- Gaseous hydrogen dispensers.
- Hydrogen Fuelling Vehicle Interface
Safety Concept of Nuclear Cogeneration of Hydrogen and Electricity
Oct 2015
Publication
There is a significant potential for nuclear combined heat and power (CHP) in quite a number of industries. The reactor concepts of the next generation would be capable to open up in particular the high temperature heat market where nuclear energy is applicable to the production processes of hydrogen (or liquid fuels) by steam reforming or water splitting. Due to the need to locate a nuclear facility near the hydrogen plant an overall safety concept has to deal with the question of safety of the combined nuclear/industrial system by taking into account a qualitatively new class of events characterized by interacting influences. Specific requirements will be determined by such factors as the reactor type the nature of the industrial process the separation distances of the industrial facility and population centers from the nuclear plant and prevailing public attitudes. Based on the Japanese concept of the GTHTR300C nuclear reactor for electricity and hydrogen cogeneration theoretical studies were conducted on the release dispersive transport and explosion of a hydrogen cloud in the atmosphere for the sake of assessing the required minimum separation distance to avoid any risk to the nuclear plant's safety systems. In the case of sulfur-iodine water splitting the accidental release of process intermediates including large amounts of sulfur dioxide sulfur trioxide and sulfuric acid need to be investigated as well to estimate the potential risk to nuclear installations like the operators' room and estimate appropriate separation distances against toxic gas propagation. Results of respective simulation studies will be presented.
The Slow Burst Test as a Method for Probabilistic Quantification of Cylinder Degradation
Sep 2013
Publication
"The current practise of focusing the periodic retesting of composite cylinders primarily on the hydraulic pressure test has to be evaluated as critical - with regard to the damage of the specimen as well as in terms of their significance. This is justified by micro damages caused to the specimen by the test itself and by a lack of informative values. Thus BAM Federal Institute of Materials Research and Testing (Germany) uses a new approach of validation of composite for the determination of re-test periods. It enables the description of the state of a population of composite cylinders based on destructive tests parallel to operation.<br/>An essential aspect of this approach is the prediction of residual safe service life. In cases where it cannot be estimated by means of hydraulic load cycle tests as a replacement the creep or burst test remains. As a combination of these two test procedures BAM suggests the ""slow burst test SBT"". On this a variety of about 150 burst test results on three design types of cylinders with plastic liners are presented. For this purpose both the parameters of the test protocol as well as the nature and intensity of the pre-damage artificially aged test samples are analysed statistically. This leads first to an evaluation of the different types of artificial ageing but also to the clear recommendation that conventional burst tests be substituted totally if indented for assessment of composite pressure receptacles."
Hydrogen Fueling Standardization: Enabling ZEVs with "Same as Today" Fueling and FCEV Range and Safety
Oct 2015
Publication
Zero Emission Vehicles (ZEVs) are necessary to help reduce the emissions in the transportation sector which is responsible for 40% of overall greenhouse gas emissions. There are two types of ZEVs Battery Electric Vehicles (BEVs) and Fuel Cell Electric Vehicles (FCEVs) Commercial Success of BEVs has been challenging thus far also due to limited range and very long charging duration. FCEVs using H2 infrastructure with SAE J2601 and J2799 standards can be consistently fuelled in a safe manner fast and resulting in a range similar to conventional vehicles. Specifically fuelling with SAE J2601 with the SAE J2799 enables FCEVs to fill with hydrogen in 3-5 minutes and to achieve a high State of Charge (SOC) resulting in 300+ mile range without exceeding the safety storage limits. Standardized H2 therefore gives an advantage to the customer over electric charging. SAE created this H2 fuelling protocol based on modelling laboratory and field tests. These SAE standards enable the first generation of commercial FCEVs and H2 stations to achieve a customer acceptable fueling similar to today's experience. This report details the advantages of hydrogen and the validation of H2 fuelling for the SAE standards.
No more items...