Germany
Heat Radiation of Burning Hydrogen Air Mixtures Impurified by Organic Vapour and Particles
Sep 2007
Publication
Experiments were performed to investigate the radiative heat emission of small scale hydrogen/air explosions also impurified by minor amounts of inert particles and organic fuels. A volume of 1.5 dm3 hydrogen was injected into ambient air as free-jet and ignited. In further experiments simultaneously inert Aerosil and combustible fuels were injected into the blasting hydrogen/air gas cloud. Fuels were a spray of a solvent (Dipropyleneglycol-methylether) and dispersed particles (milk powder). The combustion was observed with a DV camcorder an IR camera and two different fast scanning spectrometers in NIR and IR range using a sampling rate of 100 spectra/s. The intensity calibrated spectra were analyzed using ICT-BaM code to evaluate emission temperature and intensity of H2O CO2 CO NO and soot emission. Using the same code combined with the experimental results total heat emission of such explosions was estimated.
Hydrogen Safety- New Challenges Based on BMW Hydrogen 7
Sep 2007
Publication
The BMW Hydrogen 7 is the world’s first premium sedan with a bi-fuelled internal combustion engine concept that has undergone the series development process. This car also displays the BMW typical driving pleasure. During development the features of the hydrogen energy source were emphasized. Engine tank system and vehicle electronics were especially developed as integral parts of the vehicle for use with hydrogen. The safety-oriented development process established additional strict hydrogen-specific standards for the Hydrogen 7. The fulfilment of these standards were demonstrated in a comprehensive experimentation and testing program which included all required tests and a large number of additional hydrogen-specific crash tests such as side impacts to the tank coupling system or rear impacts. Furthermore the behaviour of the hydrogen tank was tested under extreme conditions for instance in flames and after strong degradation of the insulation. Testing included over 1.7 million km of driving; and all tests were passed successfully proving the intrinsic safety of the vehicle and also confirming the success of the safety-oriented development process which is to be continued during future vehicle development. A safety concept for future hydrogen vehicles poses new challenges for vehicles and infrastructure. One goal is to develop a car fuelled by hydrogen only while simultaneously optimizing the safety concept. Another important goal is removal of (self-imposed) restrictions for parking in enclosed spaces such as garages. We present a vision of safety standards requirements and a program for fulfilling them.
Radiation from Hydrogen Jet Fires Investigated by Time-resolved Spectroscopy
Sep 2013
Publication
Jet fires develop on release of hydrogen from pressurized storage depending on orifice pressures and volumes. Risks arise from flame contact dispersion of hot gases and heat radiation. The latter varies strongly in time at short scales down to milliseconds caused by turbulent air entrainment and fluctuations. These jets emit bands of OH in the UV and water in the NIR and IR spectral range. These spectra enable the temperature measurement and the estimation of the air number of the measuring spot which can be used to estimate the total radiation at least from the bright combustion zones. Compared to video and IR camera frames the radiation enables to estimate species and temperatures distributions and total emissions. Impurities generate continuum radiation and the emission of CO2 in the IR indicates air entrainment which can be compared to CHEMKIN II calculation of the reaction with air.
Progress in Power-to-Gas Energy Systems
Dec 2022
Publication
Hydrogen is expected to become a key component in the decarbonized energy systems of the future. Its unique chemical characteristics make hydrogen a carbon-free fuel that is suitable to be used as broadly as fossil fuels are used today. Since hydrogen can be produced by splitting water molecules using electricity as the only energy input needed hydrogen offers the opportunity to produce a fully renewable fuel if the electricity input also only stems from renewable sources. Once renewable electricity is converted into hydrogen it can be stored over long periods of time and transported over long even intercontinental distances. Underground hydrogen storage pipelines compressors liquefaction-units and transportation ships are infrastructures and suitable technologies to establish a global hydrogen energy system. Several chemical synthesis routes exist to produce more complex products from green hydrogen to fulfil the demands of various end-users and industries. One exemplary power-to-gas product is methane which can be used as a natural gas substitute. Furthermore ammonia alcohols kerosene and all other important products from hydrocarbon chemistry can be synthesized using green hydrogen.
The National Hydrogen Strategy - The Federal Government Germany
Jun 2020
Publication
The energy transition – which represents the efforts undertaken and results achieved on renewable energy expansion and energy efficiency – is our basis for a clean secure and affordable energy supply which is essential for all our lives. By adopting the 2030 Climate Action Plan the Federal Government has paved the way for meeting its climate targets for 2030. Its long-term goal is to achieve carbon neutrality in line with the targets agreed under the Paris Agreement which seeks to keep global warming well below 2 degrees and if possible below 1.5 degrees. In addition Germany has committed itself together with the other European Member States to achieving greenhouse gas (GHG) neutrality by 2050. Apart from phasing out coal-fired power for which Germany has already taken the relevant decisions this means preventing emissions which are particularly hard to reduce such as process-related GHG emissions from the industrial sector.<br/>In order for the energy transition to be successful security of supply affordability and environmental compatibility need to be combined with innovative and smart climate action. This means that the fossil fuels we are currently using need to be replaced by alternative options. This applies in particular to gaseous and liquid energy sources which will continue to be an integral part of Germany’s energy supply. Against this backdrop hydrogen will play a key role in enhancing and completing the energy transition.
The Correlation Method to Analyze the Gas Mixing Process On The Basis Of BOS Method
Sep 2011
Publication
Structures formed during gas mixing following an injection of a gas into atmosphere are analyzed using optic methods based on the detection of density non-uniformities. Methods for determination of fractal parameters for a random distribution of these non-uniformities are described and information revealed on the gas mixing structure is analyzed. The BOS (background oriented schlieren) technique is utilized to obtain the optical image of the forming structures which afterward is processed using the correlation procedure allowing to extract the quantitative information on the mixing. Additionally a possibility to link the characteristics of the injected gas source and the system fractal parameters was demonstrated. The method can be used in the development of the non-contact methods for the evaluation of the gaseous system parameters based on the optical diagnostics and potentially for the obtaining more detailed information of the gaseous turbulence.
The New Oil? The Geopolitics and International Governance of Hydrogen
Jun 2020
Publication
While most hydrogen research focuses on the technical and cost hurdles to a full-scale hydrogen economy little consideration has been given to the geopolitical drivers and consequences of hydrogen developments. The technologies and infrastructures underpinning a hydrogen economy can take markedly different forms and the choice over which pathway to take is the object of competition between different stakeholders and countries. Over time cross-border maritime trade in hydrogen has the potential to fundamentally redraw the geography of global energy trade create a new class of energy exporters and reshape geopolitical relations and alliances between countries. International governance and investments to scale up hydrogen value chains could reduce the risk of market fragmentation carbon lock-in and intensified geo-economic rivalry.
Safety Considerations of Hydrogen Application in Shipping in Comparison to LNG
Apr 2022
Publication
Shipping accounts for about 3% of global CO2 emissions. In order to achieve the target set by the Paris Agreement IMO introduced their GHG strategy. This strategy envisages 50% emission reduction from international shipping by 2050 compared with 2008. This target cannot be fulfilled if conventional fuels are used. Amongst others hydrogen is considered to be one of the strong candidates as a zero-emissions fuel. Yet concerns around the safety of its storage and usage have been formulated and need to be addressed. “Safety” in this article is defined as the control of recognized hazards to achieve an acceptable level of risk. This article aims to propose a new way of comparing two systems with regard to their safety. Since safety cannot be directly measured fuzzy set theory is used to compare linguistic terms such as “safer”. This method is proposed to be used during the alternative design approach. This approach is necessary for deviations from IMO rules for example when hydrogen should be used in shipping. Additionally the properties of hydrogen that can pose a hazard such as its wide flammability range are identified.
Visualisation of Jet Fires from Hydrogen Release
Sep 2009
Publication
In order to achieve a high level of safety while using hydrogen as a vehicle fuel the possible hazards must be estimated. Especially hydrogen release tests with defined ignition represent a very important way to characterize the basics of hydrogen combustion in a potential accident. So ICT participated on a hydrogen jet release campaign at HSL (Buxton) in 2008 to deploy their measurement techniques and evaluation methods to visualize jets ignition and subsequent flames. The following paper shows the application of high speed cinematography in combination with image processing techniques the Background Oriented Schlieren (BOS) and a difference method to visualize the shape of hydrogen jet. In addition these methods were also used to observe ignition and combustion zone after defined initiation. In addition the combustion zone was recorded by a fast spectral radiometer and a highspeed-IR-camera. The IR-camera was synchronized with a rotating filter wheel to generate four different motion pictures at 100Hz each on a defined spectral range. The results of this preliminary evaluation provide some detailed information that might be used for improving model predictions.
Guidelines and Recommendations for Indoor Use of Fuel Cells and Hydrogen Systems
Oct 2015
Publication
Deborah Houssin-Agbomson,
Simon Jallais,
Elena Vyazmina,
Guy Dang-Nhu,
Gilles Bernard-Michel,
Mike Kuznetsov,
Vladimir V. Molkov,
Boris Chernyavsky,
Volodymyr V. Shentsov,
Dmitry Makarov,
Randy Dey,
Philip Hooker,
Daniele Baraldi,
Evelyn Weidner,
Daniele Melideo,
Valerio Palmisano,
Alexandros G. Venetsanos,
Jan Der Kinderen and
Béatrice L’Hostis
Hydrogen energy applications often require that systems are used indoors (e.g. industrial trucks for materials handling in a warehouse facility fuel cells located in a room or hydrogen stored and distributed from a gas cabinet). It may also be necessary or desirable to locate some hydrogen system components/equipment inside indoor or outdoor enclosures for security or safety reasons to isolate them from the end-user and the public or from weather conditions.<br/>Using of hydrogen in confined environments requires detailed assessments of hazards and associated risks including potential risk prevention and mitigation features. The release of hydrogen can potentially lead to the accumulation of hydrogen and the formation of a flammable hydrogen-air mixture or can result in jet-fires. Within Hyindoor European Project carried out for the EU Fuel Cells and Hydrogen Joint Undertaking safety design guidelines and engineering tools have been developed to prevent and mitigate hazardous consequences of hydrogen release in confined environments. Three main areas are considered: Hydrogen release conditions and accumulation vented deflagrations jet fires and including under-ventilated flame regimes (e.g. extinguishment or oscillating flames and steady burns). Potential RCS recommendations are also identified.
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
Effects of Radiation on the Flame Front of Hydrogen-air Explosions
Oct 2015
Publication
The flame velocities of unconfined gas explosions depend on the cloud size and the distance from the initiating source. The mechanisms for this effect are not fully understood; a possible explanation is turbulence generated by the propagating flame front. The molecular bands in the flame front are exposed to continuously increasing radiation intensity of water bands in the interior of the reaction product ball. A first approach to verifying this assumption is described in this paper. The flame propagation was observed by high speed video techniques including time resolved spectroscopy in the UV-Vis-NIR spectral range with a time resolution up to 3000 spectra/s. Ignition flame head velocity flame contours reacting species and temperatures were evaluated. The evaluation used video brightness subtraction and 1-dimensional image contraction to obtain traces of the movements perpendicular to the direction of propagation. Flame front velocities are found to be between 16m/s and 25 m/s. Analysis focused in particular on the flame front which is not smooth. Salients emerge on the surface to result in the well-known cellular structures. The radiation of various bands from the fire ball on the reacting species is estimated to have an influence on the flame velocity depending on the distance from initiation. Evaluation of OH-band and water band spectra might indicate might indicate higher temperatures of the flame front induced by radiation of the fireball. But it is difficult to verify the effect relative to competing flame acceleration mechanisms.
State of the Art of Hydrogen Production via Pyrolysis of Natural Gas
Jul 2020
Publication
Fossil fuels have to be substituted by climate neutral fuels to contribute to CO2 reduction in the future energy system. Pyrolysis of natural gas is a well-known technical process applied for production of e. g. carbon black.
In the future it might contribute to carbon dioxide-free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by-product of this process can be used for material production or can be sequestrated the produced hydrogen has a low carbon footprint.
This article reviews literature on the state of the art of methane/ natural gas pyrolysis process developments and at-tempts to assess the technology readiness level (TRL).
In the future it might contribute to carbon dioxide-free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by-product of this process can be used for material production or can be sequestrated the produced hydrogen has a low carbon footprint.
This article reviews literature on the state of the art of methane/ natural gas pyrolysis process developments and at-tempts to assess the technology readiness level (TRL).
Simulation of Deflagration-to-detonation Transition of Lean H2-CO-Air Mixtures in Obstructed Channels
Sep 2019
Publication
The possibility of flame acceleration (FA) and deflagration-to-detonation transition (DDT) when homogeneous hydrogen-carbon monoxide-air (H2-CO-air) mixtures are used rises the need for an efficient simulation approach for safety assessment. In this study a modelling approach for H2-CO-air flames incorporating deflagration and detonation within one framework is presented. It extends the previous work on H2-air mixtures. The deflagration is simulated by means of the turbulent flame speed closure model incorporating a quenching term. Since high flow velocities e.g. the characteristic speed of sound of the combustion products are reached during FA the flow passing obstacles generates turbulence at high enough levels to partially quench the flame. Partial flame quenching has the potential to stall the onset of detonation. An altered formulation for quenching is introduced to the modelling approach to better account for the combustion characteristics for accelerating lean H2-CO-air flames. The presented numerical approach is validated with experimental flame velocity data of the small-scale GraVent test rig [1] with homogeneous fuel contents of 22.5 and 25.0 vol-% and fuel compositions of 75/25 and 50/50 vol-% H2/CO respectively. The impact of the quenching term is further discussed on simulations of the FZK-7.2m test rig [2] whose obstacle spacing is smaller than the spacing in the GraVent test rig.
Combustion Features of CH4/NH3/H2 Ternary Blends
Mar 2022
Publication
The use of so-called “green” hydrogen for decarbonisation of the energy and propulsion sectors has attracted considerable attention over the last couple of decades. Although advancements are achieved hydrogen still presents some constraints when used directly in power systems such as gas turbines. Therefore another vector such as ammonia can serve as a chemical to transport and distribute green hydrogen whilst its use in gas turbines can limit combustion reactivity compared to hydrogen for better operability. However pure ammonia on its own shows slow complex reaction kinetics which requires its doping by more reactive molecules thus ensuring greater flame stability. It is expected that in forthcoming years ammonia will replace natural gas (with ~ 90% methane in volume) in power and heat production units thus making the co-firing of ammonia/methane a clear path towards replacement of CH4 as fossil fuel. Hydrogen can be obtained from the precracking of ammonia thus denoting a clear path towards decarbonisation by the use of ammonia/hydrogen blends. Therefore ammonia/methane/hydrogen might be co-fired at some stage in current combustion units hence requiring a more intrinsic analysis of the stability emissions and flame features that these ternary blends produce. In return this will ensure that transition from natural gas to renewable energy generated e-fuels such as so-called “green” hydrogen and ammonia is accomplished with minor detrimentals towards equipment and processes. For this reason this work presents the analysis of combustion properties of ammonia/methane/hydrogen blends at different concentrations. A generic tangential swirl burner was employed at constant power and various equivalence ratios. Emissions OH*/NH*/NH2*/CH* chemiluminescence operability maps and spectral signatures were obtained and are discussed. The extinction behaviour has also been investigated for strained laminar premixed flames. Overall the change from fossils to e-fuels is led by the shift in reactivity of radicals such as OH CH CN and NH2 with an increase of emissions under low and high ammonia content. Simultaneously hydrogen addition improves operability when injected up to 30% (vol) an amount at which the hydrogen starts governing the reactivity of the blends. Extinction strain rates confirm phenomena found in the experiments with high ammonia blends showing large discrepancies between values at different hydrogen contents. Finally a 20/55/25% (vol) methane/ammonia/hydrogen blend seems to be the most promising at high equivalence ratios (1.2) with no apparent flashback low emissions and moderate formation of NH2/OH radicals for good operability.
A Coupled Transient Gas Flow Calculation with a Simultaneous Calorific-value-gradient Improved Hydrogen Tracking
Apr 2022
Publication
Gas systems can provide considerable flexibility in integrated energy systems to accommodate hydrogen produced from Power-to-Hydrogen units using excess volatile renewable energy generation. To use the flexibility in integrated energy systems while ensuring a secure and reliable system operation gas system operators need to accurately and easily analyze the effects of varying hydrogen levels on the dynamic gas behavior and vice versa. Existing methods for hydrogen tracking however either solve the hydrogen propagation and dynamic gas behavior separately or must cope with a large inaccuracy. Hence existing methods do not allow an accurate and coupled analysis of gas systems in integrated energy systems considering varying hydrogen levels. This paper proposes a calorific-value-gradient method which can accurately track the propagation of varying hydrogen levels in a gas system even with large simulation time increments of up to one hour. The new method is joined and simultaneously solved with an implicit finite difference scheme describing the transient gas behavior in a single equation system in a coupled Newton–Raphson gas flow calculation. As larger simulation time increments can be chosen without reducing the accuracy the computation time can be strongly reduced compared to existing Euler-based methods. With its high accuracy and its coupled approach this paper provides gas system operators a method to accurately analyze how the propagation of hydrogen affects the entire gas system. With its coupled approach the presented method can enhance the investigation of integrated energy systems as the transient gas behavior and varying hydrogen propagation of the gas system can be easily included in such analyses.
A Concept to Support the Transformation from a Linear to Circular Carbon Economy: Net Zero emissions, Resource Efficiency and Conservation Through a Coupling of the Energy, Chemical and Waste Management Sectors
Dec 2017
Publication
Coal and carbon-containing waste are valuable primary and secondary carbon carriers. In the current dominant linear economy such carbon resources are generally combusted to produce electricity and heat and as a way to resolve a nation’s waste issue. Not only is this a wastage of precious carbon resources which can be chemically utilized as raw materials for production of other value-added goods it is also contrary to international efforts to reduce carbon emissions and increase resource efficiency and conservation. This article presents a concept to support the transformation from a linear ‘one-way cradle to grave manufacturing model’ toward a circular carbon economy. The development of new and sustainable value chains through the utilization of coal and waste as alternative raw materials for the chemical industry via a coupling of the energy chemical and waste management sectors offers a viable and future-oriented perspective for closing the carbon cycle. Further benefits also include a lowering of the carbon footprint and increasing resource efficiency and conservation of primary carbon resources. In addition technological innovations and developments that are necessary to support a successful sector coupling will be identified. To illustrate our concept a case analysis of domestic coal and waste as alternative feedstock to imported crude oil for chemical production in Germany will be presented. Last but not least challenges posed by path dependency along technological institutional and human dimensions in the sociotechnical system for a successful transition toward a circular carbon economy will be discussed.
Experimental Study of Ignited Unsteady Hydrogen Jets into Air
Sep 2009
Publication
In order to simulate an accidental hydrogen release from the low pressure pipe system of a hydrogen vehicle a systematic study on the nature of transient hydrogen jets into air and their combustion behaviour was performed at the FZK hydrogen test site HYKA. Horizontal unsteady hydrogen jets with an amount of hydrogen up to 60 STP dm3 and initial pressures of 5 and 16 bar have been investigated. The hydrogen jets were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen-air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.
Analysis of the Parametric-Acoustic Instability for Safety Assessment of Hydrogen-Air Mixtures in Closed Volumes
Sep 2011
Publication
The acoustic to the parametric instability has been studied for H2-air mixtures at normal conditions. Two approaches for the investigation of the problem have been considered. The simplified analytical model proposed by Bychkov was selected initially. Its range of applicability resulted to be very restricted and therefore numerical solutions of the problem were taken into account. The results obtained were used to study the existence of spontaneous transition from the acoustic to the parametric instability for different fuel concentrations. Finally the growth rate of the instabilities was numerically calculated for a set of typical mixtures for hydrogen safety.
Experimental Study of Ignited Unsteady Hydrogen Releases from a High Pressure Reservoir
Sep 2011
Publication
In order to simulate an accidental hydrogen release from the high pressure pipe system of a hydrogen facility a systematic study on the nature of transient hydrogen jets into air and their combustion behavior was performed at the KIT hydrogen test site HYKA. Horizontal unsteady hydrogen jets from a reservoir of 0.37 dm3 with initial pressures of up to 200 bar have been investigated. The hydrogen jets released via round nozzles 3 4 and 10 mm were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen–air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.
No more items...