Germany
HYDRIDE4MOBILITY: An EU HORIZON 2020 Project on Hydrogen Powered Fuel Cell Utility Vehicles Using Metal Hydrides in Hydrogen Storage and Refuelling Systems
Feb 2021
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Vladimir Linkov,
Sivakumar Pasupathi,
Moegamat Wafeeq Davids,
Gojmir Radica,
Roman V. Denys,
Jon Eriksen,
José Bellosta von Colbe,
Klaus Taube,
Giovanni Capurso,
Martin Dornheim,
Fahmida Smith,
Delisile Mathebula,
Dana Swanepoel,
Suwarno Suwarno and
Ivan Tolj
The goal of the EU Horizon 2020 RISE project 778307 “Hydrogen fuelled utility vehicles and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY) is in addressing critical issues towards a commercial implementation of hydrogen powered forklifts using metal hydride (MH) based hydrogen storage and PEM fuel cells together with the systems for their refuelling at industrial customers facilities. For these applications high specific weight of the metallic hydrides has an added value as it allows counterbalancing of a vehicle with no extra cost. Improving the rates of H2 charge/discharge in MH on the materials and system level simplification of the design and reducing the system cost together with improvement of the efficiency of system “MH store-FC” is in the focus of this work as a joint effort of consortium uniting academic teams and industrial partners from two EU and associated countries Member States (Norway Germany Croatia) and two partner countries (South Africa and Indonesia).<br/>The work within the project is focused on the validation of various efficient and cost-competitive solutions including (i) advanced MH materials for hydrogen storage and compression (ii) advanced MH containers characterised by improved charge-discharge dynamic performance and ability to be mass produced (iii) integrated hydrogen storage and compression/refuelling systems which are developed and tested together with PEM fuel cells during the collaborative efforts of the consortium.<br/>This article gives an overview of HYDRIDE4MOBILITY project focused on the results generated during its first phase (2017–2019).
Membrane Based Purification of Hydrogen System (MEMPHYS)
Feb 2019
Publication
A hydrogen purification system based on the technology of the electrochemical hydrogen compression and purification is introduced. This system is developed within the scope of the project MEMPHYS. Therefore the project its targets and the different work stages are presented. The technology of the electrochemical purification and the state of the art of hydrogen purification are described. Early measurements in the project have been carried out and the results are shown and discussed. The ability of the technology to recover hydrogen from a gas mixture can be recognized and an outlook into further optimizations shows the future potential. A big advantage is the simultaneous compression of the purified hydrogen up to 200 bar therefore facilitating the transportation and storage.
Energy Storage as Part of a Secure Energy Supply
Mar 2017
Publication
Florian Ausfelder,
Christian Beilmann,
Martin Bertau,
Sigmar Bräuninger,
Angelika Heinzel,
Renate Hoer,
Wolfram Koch,
Falko Mahlendorf,
Anja Metzelthin,
Marcell Peuckert,
Ludolf Plass,
Konstantin Räuchle,
Martin Reuter,
Georg Schaub,
Sebastian Schiebahn,
Ekkehard Schwab,
Ferdi Schüth,
Detlef Stolten,
Gisa Teßmer,
Kurt Wagemann and
Karl-Friedrich Ziegahn
The current energy system is subject to a fundamental transformation: A system that is oriented towards a constant energy supply by means of fossil fuels is now expected to integrate increasing amounts of renewable energy to achieve overall a more sustainable energy supply. The challenges arising from this paradigm shift are currently most obvious in the area of electric power supply. However it affects all areas of the energy system albeit with different results. Within the energy system various independent grids fulfill the function of transporting and spatially distributing energy or energy carriers and the demand-oriented supply ensures that energy demands are met at all times. However renewable energy sources generally supply their energy independently from any specific energy demand. Their contribution to the overall energy system is expected to increase significantly.<br/>Energy storage technologies are one option for temporal matching of energy supply and demand. Energy storage systems have the ability to take up a certain amount of energy store it in a storage medium for a suitable period of time and release it in a controlled manner after a certain time delay. Energy storage systems can also be constructed as process chains by combining unit operations each of which cover different aspects of these functions. Large-scale mechanical storage of electric power is currently almost exclusively achieved by pumped-storage hydroelectric power stations.<br/>These systems may be supplemented in the future by compressed-air energy storage and possibly air separation plants. In the area of electrochemical storage various technologies are currently in various stages of research development and demonstration of their suitability for large-scale electrical energy storage. Thermal energy storage technologies are based on the storage of sensible heat exploitation of phase transitions adsorption/desorption processes and chemical reactions. The latter offer the possibility of permanent and loss-free storage of heat. The storage of energy in chemical bonds involves compounds that can act as energy carriers or as chemical feedstocks. Thus they are in direct economic competition with established (fossil fuel) supply routes. The key technology here – now and for the foreseeable future – is the electrolysis of water to produce hydrogen and oxygen.<br/>Hydrogen can be transformed by various processes into other energy carriers which can be exploited in different sectors of the energy system and/or as raw materials for energy-intensive industrial processes. Some functions of energy storage systems can be taken over by industrial processes. Within the overall energy system chemical energy storage technologies open up opportunities to link and interweave the various energy streams and sectors. Chemical energy storage not only offers means for greater integration of renewable energy outside the electric power sector it also creates new opportunities for increased flexibility novel synergies and additional optimization.<br/>Several examples of specific energy utilization are discussed and evaluated with respect to energy storage applications. The article describes various technologies for energy storage and their potential applications in the context of Germany’s Energiewende i.e. the transition towards a more sustainable energy system. Therefore the existing legal framework defines some of the discussions and findings within the article specifically the compensation for renewable electricity providers defined by the German Renewable Energy Sources Act which is under constant reformation. While the article is written from a German perspective the authors hope this article will be of general interest for anyone working in the areas of energy systems or energy technology.
Evaluation of an Improved Vented Deflagration CFD Model Against Nine Experimental Cases
Sep 2019
Publication
In the present work a newly developed CFD deflagration model incorporated into the ADREA-HF code is evaluated against hydrogen vented deflagrations experiments carried out by KIT and FM-Global in a medium (1 m3) and a real (63.7 m3) scale enclosure respectively. A square vent of 0.5 m2 and 5.4 m2 respectively is located in the center of one of side walls. In the case of the medium scale enclosure the 18% v/v homogeneous hydrogen-air mixture and back-wall ignition case is examined. In the case of the real scale enclosure the examined cases cover different homogeneous mixture concentrations (15% and 18% v/v) different ignition locations (back-wall and center) and different levels of initial turbulence. The CFD model accounts for flame instabilities that develop as the flame propagates inside the chamber and turbulence that mainly develops outside the vent. Pressure predictions are compared against experimental measurements revealing a very good performance of the CFD model for the back-wall ignition cases. For the center ignition cases the model overestimates the maximum overpressure. The opening of the vent cover is identified as a possible reason for the overprediction. The analysis indicates that turbulence is the main factor which enhances external explosion strength causing the sudden pressure increase confirming previous findings.
Indoor Use of Hydrogen, Knowledge Gaps and Priorities for the Improvement of Current Standards on Hydrogen, a Presentation of HyIndoor European Project
Sep 2013
Publication
To develop safety strategies for the use of hydrogen indoors the HyIndoor project is studying the behaviour of a hydrogen release deflagration or non-premixed flame in an enclosed space such as a fuel cell or its cabinet a room or a warehouse. The paper proposes a safety approach based on safety objectives that can be used to take various scenarios of hydrogen leaks into account for the safe design of Hydrogen and Fuel Cell (HFC) early market applications. Knowledge gaps on current engineering models and unknown influence of specific parameters were identified and prioritized thereby re-focusing the objectives of the project test campaign and numerical simulations. This approach will enable the improvement of the specification of openings and use of hydrogen sensors for enclosed spaces. The results will be disseminated to all stakeholders including hydrogen industry and RCS bodies.
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Numerical Study of the Detonation Benchmark using GASFLOW-MPI
Sep 2019
Publication
Hydrogen has been widely used as an energy carrier in recent years. It should a better understand of the potential hydrogen risk under the unintended release of hydrogen scenario since the hydrogen could be ignited in a wide range of hydrogen concentrations in the air and generate a fast flame speed. During the accidental situation the hydrogen-air detonation may happen in the large-scale space which is viewed as the worst case state of affairs. GASFLOW-MPI is a powerful CFD-based numerical tool to predict the complicated hydrogen turbulent transport and combustion dynamics behaviours in the three-dimensional large-scale industrial facility. There is a serious of well-developed physical models in GASFLOW-MPI to simulate a wide spectrum of combustion behaviours ranging from slow flames to deflagration-to-detonation transition and even to detonation. The hydrogen–air detonation experiment which was carried out at the RUT tunnel facility is a well-known benchmark to validate the combustion model. In this work a numerical study of the detonation benchmark at RUT tunnel facility is performed using the CFD code GASFLOW-MPI. The complex shock wave structures in the detonation are captured accurately. The experimental pressure records and the simulated pressure dynamics are compared and discussed.
Partitioning of Interstitial Segregants during Decohesion: A DFT Case Study of the Σ3 Symmetric Tilt Grain Boundary in Ferritic Steel
Sep 2019
Publication
The effect of hydrogen atoms at grain boundaries in metals is usually detrimental to the cohesion of the interface. This effect can be quantified in terms of the strengthening energy which is obtained following the thermodynamic model of Rice and Wang. A critical component of this model is the bonding or solution energy of the atoms to the free surfaces that are created during decohesion. At a grain boundary in a multicomponent system it is not immediately clear how the different species would partition and distribute on the cleaved free surfaces. In this work it is demonstrated that the choice of partitioning pattern has a significant effect on the predicted influence of H and C on grain boundary cohesion. To this end the Σ3(112)[11¯0] symmetric tilt grain boundary in bcc Fe with different contents of interstitial C and H was studied taking into account all possible distributions of the elements as well as surface diffusion effects. H as a single element has a negative influence on grain boundary cohesion independent of the details of the H distribution. C on the other hand can act both ways enhancing or reducing the cohesion of the interface. The effect of mixed H and C compositions depends on the partition pattern. However the general trend is that the number of detrimental cases increases with increasing H content. A decomposition of the strengthening energy into chemical and mechanical contributions shows that the elastic contribution dominates at high C contents while the chemical contribution sets the trend for high H contents.
Flexible Power and Hydrogen Production: Finding Synergy Between CCS and Variable Renewables
Dec 2019
Publication
The expansion of wind and solar power is creating a growing need for power system flexibility. Dispatchable power plants with CO2 capture and storage (CCS) offer flexibility with low CO2 emissions but these plants become uneconomical at the low running hours implied by renewables-based power systems. To address this challenge the novel gas switching reforming (GSR) plant was recently proposed. GSR can alternate between electricity and hydrogen production from natural gas offering flexibility to the power system without reducing the utilization rate of the capital stock embodied in CCS infrastructure. This study assesses the interplay between GSR and variable renewables using a power system model which optimizes investment and hourly dispatch of 13 different technologies. Results show that GSR brings substantial benefits relative to conventional CCS. At a CO2 price of V100/ton inclusion of GSR increases the optimal wind and solar share by 50% lowers total system costs by 8% and reduces system emissions from 45 to 4 kgCO2/MWh. In addition GSR produces clean hydrogen equivalent to about 90% of total electricity demand which can be used to decarbonize transport and industry. GSR could therefore become a key enabling technology for a decarbonization effort led by wind and solar power.
Hydrogen Embrittlement at Cleavage Planes and Grain Boundaries in Bcc Iron—Revisiting the First-Principles Cohesive Zone Model
Dec 2020
Publication
Hydrogen embrittlement which severely affects structural materials such as steel comprises several mechanisms at the atomic level. One of them is hydrogen enhanced decohesion (HEDE) the phenomenon of H accumulation between cleavage planes where it reduces the interplanar cohesion. Grain boundaries are expected to play a significant role for HEDE since they act as trapping sites for hydrogen. To elucidate this mechanism we present the results of first-principles studies of the H effect on the cohesive strength of α-Fe single crystal (001) and (111) cleavage planes as well as on the Σ5(310)[001] and Σ3(112)[11¯0] symmetrical tilt grain boundaries. The calculated results show that within the studied range of concentrations the single crystal cleavage planes are much more sensitive to a change in H concentration than the grain boundaries. Since there are two main types of procedures to perform ab initio tensile tests different in whether or not to allow the relaxation of atomic positions which can affect the quantitative and qualitative results these methods are revisited to determine their effect on the predicted cohesive strength of segregated interfaces
Methodology of CFD Safety Analysis for Large-Scale Industrial Structures
Sep 2005
Publication
The current work is devoted to problems connected with application of CFD tools for safety analysis of large-scale industrial structures. With the aim to preserve conservatism of overall process of multistage procedure of such analysis special efforts are required. A strategy which has to lead to obtaining of reliable results in CFD analysis is discussed. Different aspects of proposed strategy including: adequate choice of physical and numerical models procedure of validation simulations and problem of ‘under-resolved’ simulations are considered. For physical phenomena which could cause significant uncertainties in the course of scenario simulation an approach which complements CFD simulations by application of auxiliary criteria is presented. Physical basis and applicability of strong flame acceleration and detonation-to-deflagration transition criteria are discussed. In concluding part two examples of application of presented approach for nuclear power plant and workshop cell for hydrogen driven vehicles are presented.
Pool Spreading and Vaporization of Liquid Hydrogen
Sep 2005
Publication
An essential part of a safety analysis to evaluate the risks of a liquid hydrogen (LH2) containing system is the understanding of cryogenic pool spreading and its vaporization. It represents the initial step in an accident sequence with the inadvertent spillage of LH2 e.g. after failure of a transport container tank or the rupture of a pipeline. This stage of an accident scenario provides pertinent information as a source term for the subsequent analysis steps of atmospheric dispersion and at presence of an ignition source the combustion of the hydrogen-air vapor cloud. A computer model LAUV has been developed at the Research Center Juelich which is able to simulate the spreading and vaporization of a cryogenic liquid under various conditions such as different grounds (solid water). It is based on the so-called shallow-layer differential equations taking into account physical phenomena such as ice formation if the cryogen is spilled on a water surface. The presentation will give a description of the computer model and its validation against existing experimental data. Furthermore calculational results will be analyzed describing the prediction and quantification of the consequences of an LH2 spill for different cases. They also include the comparison of an LH2 spillage versus the corresponding release of other cryogens such as liquid natural gas liquid oxygen and liquid nitrogen.
Large Scale Experiments- Deflagration and Deflagration to Detonation within a Partial Confinement Similar to a Lane
Sep 2005
Publication
About 20 years ago Fraunhofer ICT has performed large scale experiments with premixed hydrogen air mixtures [1]. A special feature has been the investigation of the combustion of the mixture within a partial confinement simulating some sort of a “lane” which may exist in reality within a hydrogen production or storage plant for example. Essentially three different types of tests have been performed: combustion of quiescent mixtures combustion of mixtures with artificially generated turbulence by means of a fan and combustion of mixtures with high speed flame jet ignition. The observed phenomena will be discussed on the basis of measured turbulence levels flame speeds and overpressures. Conditions for DDT concerning critical turbulence levels and flame speeds as well as a scaling rule for DDT related to the detonation cell size of the mixture can be derived from the experiments for this special test setup. The relevance of the results with respect to safety aspects of future hydrogen technology is assessed. Combustion phenomena will be highlighted by the presentation of impressive high speed film videos.
Hydrogen-air Deflagrations in Open Atmosphere- Large Eddy Simulation Analysis of Experimental Data
Sep 2005
Publication
The largest known experiment on hydrogen-air deflagration in the open atmosphere has been analysed by means of the large eddy simulation (LES). The combustion model is based on the progress variable equation to simulate a premixed flame front propagation and the gradient method to decouple the physical combustion rate from numerical peculiarities. The hydrodynamic instability has been partially resolved by LES and unresolved effects have been modelled by Yakhot's turbulent premixed combustion model. The main contributor to high flame propagation velocity is the additional turbulence generated by the flame front itself. It has been modelled based on the maximum flame wrinkling factor predicted by Karlovitz et al. theory and the transitional distance reported by Gostintsev with colleagues. Simulations are in a good agreement with experimental data on flame propagation dynamics flame shape and outgoing pressure wave peaks and structure. The model is built from the first principles and no adjustable parameters were applied to get agreement with the experiment.
Experimental Study of Jet-formed Hydrogen-air Mixtures and Pressure Loads from their Deflagrations in Low Confined Surroundings
Sep 2007
Publication
To provide more practical data for safety assessments a systematic study of explosion and combustion processes which can take place in mixtures produced by jet releases in realistic environmental conditions is required. The presented work is aimed to make step forward in this direction binding three inter-connected tasks: (i) study of horizontal and vertical jets (ii) study of the burnable clouds formed by jets in different geometry configurations and (iii) examination of combustion and explosion processes initiated in such mixtures. Test matrix for the jet experiments included variation of the release pressure and nozzle diameter with the aim to study details of the resulting hydrogen concentration and velocity profiles depending on the release conditions. In this study the following parameters were varied: mass flow rate jet nozzle diameter (to alter gas speed) and geometry of the hood located on top of the jet. The carried out experiments provided data on detailed structure for under-expanded horizontal and buoyant vertical jets and data on pressure loads resulted from deflagration of various mixtures formed by jet releases. The data on pressures waves generated in the conditions under consideration provides conservative estimation of pressure loads for realistic leaks.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
On The Kinetics of Alh3 Decomposition and the Subsequent Al Oxidation
Sep 2011
Publication
Metal hydrides are used for hydrogen storage. AlH3 shows a capacity to store about 10 wt% hydrogen. Its hydrogen is split-off in the temperature interval of 400–500 K. On dehydrogenation a nano-structured Al material emerges with specific surfaces up to 15–20 m2/g. The surface areas depend on the heating rate because of a temperature dependent crystallite growth. The resulting Al oxidizes up to 20–25% weight on air access forming an alumina passivation layer of 3–4 nm thickness on all exposed surfaces. The heat released from this Al oxidation induces a high risk to this type of hydrogen storage if the containment might be destroyed accidentally. The kinetics of the dehydrogenation and the subsequent oxidation is investigated by methods of thermal analysis. A reaction scheme is confirmed which consists of a starting Avrami-Erofeev mechanism followed by formal 1st order oxidation on unlimited air access. The kinetic parameters activation energies and pre-exponentials are evaluated and can be used to calculate the reaction progress. Together with the heat of the Al oxidation the overall heat release and the related rate can be estimated.
Chemical Utilization of Hydrogen from Fluctuating Energy Sources- Catalytic Transfer Hydrogenation from Charged Liquid Organic Hydrogen Carrier Systems
Nov 2015
Publication
Liquid Organic Hydrogen Carrier (LOHC) systems offer a very attractive way for storing and distributing hydrogen from electrolysis using excess energies from solar or wind power plants. In this contribution an alternative high-value utilization of such hydrogen is proposed namely its use in steady-state chemical hydrogenation processes. We here demonstrate that the hydrogen-rich form of the LOHC system dibenzyltoluene/perhydro-dibenzyltoluene can be directly applied as sole source of hydrogen in the hydrogenation of toluene a model reaction for large-scale technical hydrogenations. Equilibrium experiments using perhydro-dibenzyltoluene and toluene in a ratio of 1:3 (thus in a stoichiometric ratio with respect to H2) yield conversions above 60% corresponding to an equilibrium constant significantly higher than 1 under the applied conditions (270 °C).
Hydrogen Embrittlement: The Game Changing Factor in the Applicability of Nickel Alloys in Oilfield Technology
Jun 2017
Publication
Precipitation hardenable (PH) nickel (Ni) alloys are often the most reliable engineering materials for demanding oilfield upstream and subsea applications especially in deep sour wells. Despite their superior corrosion resistance and mechanical properties over a broad range of temperatures the applicability of PH Ni alloys has been questioned due to their susceptibility to hydrogen embrittlement (HE) as confirmed in documented failures of components in upstream applications. While extensive work has been done in recent years to develop testing methodologies for benchmarking PH Ni alloys in terms of their HE susceptibility limited scientific research has been conducted to achieve improved foundational knowledge about the role of microstructural particularities in these alloys on their mechanical behaviour in environments promoting hydrogen uptake. Precipitates such as the γ′ γ′′ and δ-phase are well known for defining the mechanical and chemical properties of these alloys. To elucidate the effect of precipitates in the microstructure of the oil-patch PH Ni alloy 718 on its HE susceptibility slow strain rate tests under continuous hydrogen charging were conducted on material after several different age-hardening treatments. By correlating the obtained results with those from the microstructural and fractographic characterization it was concluded that HE susceptibility of oil-patch alloy 718 is strongly influenced by the amount and size of precipitates such as the γ′ and γ′′ as well as the δ-phase rather than by the strength level only. In addition several HE mechanisms including hydrogen-enhanced decohesion and hydrogen-enhanced local plasticity were observed taking place on oil-patch alloy 718 depending upon the characteristics of these phases when present in the microstructure.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Effect of Temperature on Laminar Flame Velocity for Hydrogen-air Mixtures at Reduced Pressures
Sep 2013
Publication
The work was done with respect to hydrogen safety of ITER vacuum vessel in cases of loss of cooling and loss of vacuum accidents. Experiments were conducted at sub-atmospheric pressures from 1 bar to 200 mbar and elevated temperatures up to 300 oC. Hydrogen concentration was changed from lower to upper flammability limits in all the range of pressures and temperatures. The experiments were performed in a spherical explosion bomb equipped with two quartz windows. The flame propagation velocity was measured using pressure method and high speed shadow cinematography. The theoretical flame velocities were calculated by Cantera code using Lutz and Mueller mechanisms. The influence of the initial temperature and pressure conditions on the laminar flame speed SL overall reaction order n and Markstein length LM are presented in this work and compared with the results of a theoretical model.
Hydrogen and Fuel Cell Stationary Applications: Key Findings of Modelling and Experimental Work in the Hyper Project
Sep 2009
Publication
Síle Brennan,
A. Bengaouer,
Marco Carcassi,
Gennaro M. Cerchiara,
Andreas Friedrich,
O. Gentilhomme,
William G. Houf,
N. Kotchourko,
Alexei Kotchourko,
Sergey Kudriakov,
Dmitry Makarov,
Vladimir V. Molkov,
Efthymia A. Papanikolaou,
C. Pitre,
Mark Royle,
R. W. Schefer,
G. Stern,
Alexandros G. Venetsanos,
Anke Veser,
Deborah Willoughby,
Jorge Yanez and
Greg H. Evans
"This paper summarises the modelling and experimental programme in the EC FP6 project HYPER. A number of key results are presented and the relevance of these findings to installation permitting guidelines (IPG) for small stationary hydrogen and fuel cell systems is discussed. A key aim of the activities was to generate new scientific data and knowledge in the field of hydrogen safety and where possible use this data as a basis to support the recommendations in the IPG. The structure of the paper mirrors that of the work programme within HYPER in that the work is described in terms of a number of relevant scenarios as follows: 1. high pressure releases 2. small foreseeable releases 3. catastrophic releases and 4. the effects of walls and barriers. Within each scenario the key objectives activities and results are discussed.<br/>The work on high pressure releases sought to provide information for informing safety distances for high-pressure components and associated fuel storage activities on both ignited and unignited jets are reported. A study on small foreseeable releases which could potentially be controlled through forced or natural ventilation is described. The aim of the study was to determine the ventilation requirements in enclosures containing fuel cells such that in the event of a foreseeable leak the concentration of hydrogen in air for zone 2 ATEX is not exceeded. The hazard potential of a possibly catastrophic hydrogen leakage inside a fuel cell cabinet was investigated using a generic fuel cell enclosure model. The rupture of the hydrogen feed line inside the enclosure was considered and both dispersion and combustion of the resulting hydrogen air mixture were examined for a range of leak rates and blockage ratios. Key findings of this study are presented. Finally the scenario on walls and barriers is discussed; a mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. Conclusions of experimental and modelling work which aim to provide guidance on configuration and placement of these walls to minimise overall hazards is presented. "
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
HIAD – Hydrogen Incident and Accident Database
Sep 2011
Publication
The Hydrogen Incident and Accident Database (HIAD) is being developed as a repository of systematic data describing in detail hydrogen-related undesired events (incidents or accidents). It is an open web-based information system serving various purposes such as a data source for lessons learnt risk communication and partly risk assessment. The paper describes the features of the three HIAD modules – the Data Entry Module (DEM) the Data Retrieval Module (DRM) and the Data Analysis Module (DAM) – and the potential impact the database may have on hydrogen safety. The importance of data quality assurance process is also addressed.
Validation Strategy for CFD Models Describing Safety-relevant Scenarios Including LH2/GH2 Release and the Use of Passive Autocatalytic Recombiners
Sep 2013
Publication
An increase in use of hydrogen for energy storage and clean energy supply in a future energy and mobility market will strengthen the focus on safety and the safe handling of hydrogen facilities. The ability to simulate the whole chain of physical phenomena that may occur during an accident is mandatory for future safety studies on an industrial or urban scale. Together with the RWTH Aachen University Forschungszentrum Jülich (JÜLICH) develops numerical methods to predict safety incidents connected with the release of either LH2 or GH2 using the commercial CFD code ANSYS CFX. The full sequence from the release distribution or accumulation of accidentally released hydrogen till the mitigation of accident consequences by safety devices is considered. For specific phenomena like spreading and vaporization of LH2 pools or the operational behavior of passive auto-catalytic recombiners (PAR) in-house sub-models are developed and implemented. The paper describes the current development status gives examples of the validation and concludes with future work to provide the full range of hydrogen release and recombination simulation.
Experimental Investigation of Nonideality and Nonadiabatic Effects Under High Pressure Releases
Sep 2013
Publication
Due to the nonideality of a high pressure hydrogen release the possibility of a two-phase flow and its effect on the dynamics of the discharge process was experimentally investigated. A small-scale facility was designed and constructed to simulate the transient blow-down of a cryogenic fluid through a small break. Gaseous and liquid nitrogen were planned to were used as a surrogate for GH2 and LH2. The results will complement the quasi-stationary safety regulation tests and will provide time-dependent data for verification of the theoretical models. Different orifice sizes (0.5 1 2 4 mm) and initial N2 pressures (30 – 200 bar) were used in the tests. The measured time-dependent data for vessel discharge pressure thrust discharge mass flow rate and gas temperatures were compared against a theoretical model for high pressure nitrogen release. This verification for nitrogen also assures the equation of state for hydrogen which is based on the same methodology.
Trends in Gas Sensor Development for Hydrogen Safety
Sep 2013
Publication
Gas sensors are applied for facilitating the safe use of hydrogen in for example fuel cell and hydrogen fuelled vehicles. New sensor developments aimed at meeting the increasingly stringent performance requirements in emerging applications are presented based on in-house technical developments and a literature study. The strategy of combining different detection principles i.e. sensors based on electrochemical cells semiconductors or field effects in combination with thermal conductivity sensor or catalytic combustion elements in one new measuring system is reported. This extends the dynamic measuring range of the sensor while improving sensor reliability to achieve higher safety integrity through diverse redundancy. The application of new nanoscaled materials nano wires carbon tubes and graphene as well as the improvements in electronic components of field-effect resistive-type and optical systems are evaluated in view of key operating parameters such as sensor response time low energy consumption and low working temperature.
ISO 19880-1, Hydrogen Fueling Station and Vehicle Interface Safety Technical Report
Oct 2015
Publication
Hydrogen Infrastructures are currently being built up to support the initial commercialization of the fuel cell vehicle by multiple automakers. Three primary markets are presently coordinating a large build up of hydrogen stations: Japan; USA; and Europe to support this. Hydrogen Fuelling Station General Safety and Performance Considerations are important to establish before a wide scale infrastructure is established.
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
- H2 production / supply delivery system
- Compression
- Gaseous hydrogen buffer storage;
- Pre-cooling device;
- Gaseous hydrogen dispensers.
- Hydrogen Fuelling Vehicle Interface
Safety Concept of Nuclear Cogeneration of Hydrogen and Electricity
Oct 2015
Publication
There is a significant potential for nuclear combined heat and power (CHP) in quite a number of industries. The reactor concepts of the next generation would be capable to open up in particular the high temperature heat market where nuclear energy is applicable to the production processes of hydrogen (or liquid fuels) by steam reforming or water splitting. Due to the need to locate a nuclear facility near the hydrogen plant an overall safety concept has to deal with the question of safety of the combined nuclear/industrial system by taking into account a qualitatively new class of events characterized by interacting influences. Specific requirements will be determined by such factors as the reactor type the nature of the industrial process the separation distances of the industrial facility and population centers from the nuclear plant and prevailing public attitudes. Based on the Japanese concept of the GTHTR300C nuclear reactor for electricity and hydrogen cogeneration theoretical studies were conducted on the release dispersive transport and explosion of a hydrogen cloud in the atmosphere for the sake of assessing the required minimum separation distance to avoid any risk to the nuclear plant's safety systems. In the case of sulfur-iodine water splitting the accidental release of process intermediates including large amounts of sulfur dioxide sulfur trioxide and sulfuric acid need to be investigated as well to estimate the potential risk to nuclear installations like the operators' room and estimate appropriate separation distances against toxic gas propagation. Results of respective simulation studies will be presented.
The Slow Burst Test as a Method for Probabilistic Quantification of Cylinder Degradation
Sep 2013
Publication
"The current practise of focusing the periodic retesting of composite cylinders primarily on the hydraulic pressure test has to be evaluated as critical - with regard to the damage of the specimen as well as in terms of their significance. This is justified by micro damages caused to the specimen by the test itself and by a lack of informative values. Thus BAM Federal Institute of Materials Research and Testing (Germany) uses a new approach of validation of composite for the determination of re-test periods. It enables the description of the state of a population of composite cylinders based on destructive tests parallel to operation.<br/>An essential aspect of this approach is the prediction of residual safe service life. In cases where it cannot be estimated by means of hydraulic load cycle tests as a replacement the creep or burst test remains. As a combination of these two test procedures BAM suggests the ""slow burst test SBT"". On this a variety of about 150 burst test results on three design types of cylinders with plastic liners are presented. For this purpose both the parameters of the test protocol as well as the nature and intensity of the pre-damage artificially aged test samples are analysed statistically. This leads first to an evaluation of the different types of artificial ageing but also to the clear recommendation that conventional burst tests be substituted totally if indented for assessment of composite pressure receptacles."
Hydrogen Fueling Standardization: Enabling ZEVs with "Same as Today" Fueling and FCEV Range and Safety
Oct 2015
Publication
Zero Emission Vehicles (ZEVs) are necessary to help reduce the emissions in the transportation sector which is responsible for 40% of overall greenhouse gas emissions. There are two types of ZEVs Battery Electric Vehicles (BEVs) and Fuel Cell Electric Vehicles (FCEVs) Commercial Success of BEVs has been challenging thus far also due to limited range and very long charging duration. FCEVs using H2 infrastructure with SAE J2601 and J2799 standards can be consistently fuelled in a safe manner fast and resulting in a range similar to conventional vehicles. Specifically fuelling with SAE J2601 with the SAE J2799 enables FCEVs to fill with hydrogen in 3-5 minutes and to achieve a high State of Charge (SOC) resulting in 300+ mile range without exceeding the safety storage limits. Standardized H2 therefore gives an advantage to the customer over electric charging. SAE created this H2 fuelling protocol based on modelling laboratory and field tests. These SAE standards enable the first generation of commercial FCEVs and H2 stations to achieve a customer acceptable fueling similar to today's experience. This report details the advantages of hydrogen and the validation of H2 fuelling for the SAE standards.
Heat Radiation of Burning Hydrogen Air Mixtures Impurified by Organic Vapour and Particles
Sep 2007
Publication
Experiments were performed to investigate the radiative heat emission of small scale hydrogen/air explosions also impurified by minor amounts of inert particles and organic fuels. A volume of 1.5 dm3 hydrogen was injected into ambient air as free-jet and ignited. In further experiments simultaneously inert Aerosil and combustible fuels were injected into the blasting hydrogen/air gas cloud. Fuels were a spray of a solvent (Dipropyleneglycol-methylether) and dispersed particles (milk powder). The combustion was observed with a DV camcorder an IR camera and two different fast scanning spectrometers in NIR and IR range using a sampling rate of 100 spectra/s. The intensity calibrated spectra were analyzed using ICT-BaM code to evaluate emission temperature and intensity of H2O CO2 CO NO and soot emission. Using the same code combined with the experimental results total heat emission of such explosions was estimated.
Hydrogen Safety- New Challenges Based on BMW Hydrogen 7
Sep 2007
Publication
The BMW Hydrogen 7 is the world’s first premium sedan with a bi-fuelled internal combustion engine concept that has undergone the series development process. This car also displays the BMW typical driving pleasure. During development the features of the hydrogen energy source were emphasized. Engine tank system and vehicle electronics were especially developed as integral parts of the vehicle for use with hydrogen. The safety-oriented development process established additional strict hydrogen-specific standards for the Hydrogen 7. The fulfilment of these standards were demonstrated in a comprehensive experimentation and testing program which included all required tests and a large number of additional hydrogen-specific crash tests such as side impacts to the tank coupling system or rear impacts. Furthermore the behaviour of the hydrogen tank was tested under extreme conditions for instance in flames and after strong degradation of the insulation. Testing included over 1.7 million km of driving; and all tests were passed successfully proving the intrinsic safety of the vehicle and also confirming the success of the safety-oriented development process which is to be continued during future vehicle development. A safety concept for future hydrogen vehicles poses new challenges for vehicles and infrastructure. One goal is to develop a car fuelled by hydrogen only while simultaneously optimizing the safety concept. Another important goal is removal of (self-imposed) restrictions for parking in enclosed spaces such as garages. We present a vision of safety standards requirements and a program for fulfilling them.
Radiation from Hydrogen Jet Fires Investigated by Time-resolved Spectroscopy
Sep 2013
Publication
Jet fires develop on release of hydrogen from pressurized storage depending on orifice pressures and volumes. Risks arise from flame contact dispersion of hot gases and heat radiation. The latter varies strongly in time at short scales down to milliseconds caused by turbulent air entrainment and fluctuations. These jets emit bands of OH in the UV and water in the NIR and IR spectral range. These spectra enable the temperature measurement and the estimation of the air number of the measuring spot which can be used to estimate the total radiation at least from the bright combustion zones. Compared to video and IR camera frames the radiation enables to estimate species and temperatures distributions and total emissions. Impurities generate continuum radiation and the emission of CO2 in the IR indicates air entrainment which can be compared to CHEMKIN II calculation of the reaction with air.
Progress in Power-to-Gas Energy Systems
Dec 2022
Publication
Hydrogen is expected to become a key component in the decarbonized energy systems of the future. Its unique chemical characteristics make hydrogen a carbon-free fuel that is suitable to be used as broadly as fossil fuels are used today. Since hydrogen can be produced by splitting water molecules using electricity as the only energy input needed hydrogen offers the opportunity to produce a fully renewable fuel if the electricity input also only stems from renewable sources. Once renewable electricity is converted into hydrogen it can be stored over long periods of time and transported over long even intercontinental distances. Underground hydrogen storage pipelines compressors liquefaction-units and transportation ships are infrastructures and suitable technologies to establish a global hydrogen energy system. Several chemical synthesis routes exist to produce more complex products from green hydrogen to fulfil the demands of various end-users and industries. One exemplary power-to-gas product is methane which can be used as a natural gas substitute. Furthermore ammonia alcohols kerosene and all other important products from hydrocarbon chemistry can be synthesized using green hydrogen.
The National Hydrogen Strategy - The Federal Government Germany
Jun 2020
Publication
The energy transition – which represents the efforts undertaken and results achieved on renewable energy expansion and energy efficiency – is our basis for a clean secure and affordable energy supply which is essential for all our lives. By adopting the 2030 Climate Action Plan the Federal Government has paved the way for meeting its climate targets for 2030. Its long-term goal is to achieve carbon neutrality in line with the targets agreed under the Paris Agreement which seeks to keep global warming well below 2 degrees and if possible below 1.5 degrees. In addition Germany has committed itself together with the other European Member States to achieving greenhouse gas (GHG) neutrality by 2050. Apart from phasing out coal-fired power for which Germany has already taken the relevant decisions this means preventing emissions which are particularly hard to reduce such as process-related GHG emissions from the industrial sector.<br/>In order for the energy transition to be successful security of supply affordability and environmental compatibility need to be combined with innovative and smart climate action. This means that the fossil fuels we are currently using need to be replaced by alternative options. This applies in particular to gaseous and liquid energy sources which will continue to be an integral part of Germany’s energy supply. Against this backdrop hydrogen will play a key role in enhancing and completing the energy transition.
The Correlation Method to Analyze the Gas Mixing Process On The Basis Of BOS Method
Sep 2011
Publication
Structures formed during gas mixing following an injection of a gas into atmosphere are analyzed using optic methods based on the detection of density non-uniformities. Methods for determination of fractal parameters for a random distribution of these non-uniformities are described and information revealed on the gas mixing structure is analyzed. The BOS (background oriented schlieren) technique is utilized to obtain the optical image of the forming structures which afterward is processed using the correlation procedure allowing to extract the quantitative information on the mixing. Additionally a possibility to link the characteristics of the injected gas source and the system fractal parameters was demonstrated. The method can be used in the development of the non-contact methods for the evaluation of the gaseous system parameters based on the optical diagnostics and potentially for the obtaining more detailed information of the gaseous turbulence.
The New Oil? The Geopolitics and International Governance of Hydrogen
Jun 2020
Publication
While most hydrogen research focuses on the technical and cost hurdles to a full-scale hydrogen economy little consideration has been given to the geopolitical drivers and consequences of hydrogen developments. The technologies and infrastructures underpinning a hydrogen economy can take markedly different forms and the choice over which pathway to take is the object of competition between different stakeholders and countries. Over time cross-border maritime trade in hydrogen has the potential to fundamentally redraw the geography of global energy trade create a new class of energy exporters and reshape geopolitical relations and alliances between countries. International governance and investments to scale up hydrogen value chains could reduce the risk of market fragmentation carbon lock-in and intensified geo-economic rivalry.
Safety Considerations of Hydrogen Application in Shipping in Comparison to LNG
Apr 2022
Publication
Shipping accounts for about 3% of global CO2 emissions. In order to achieve the target set by the Paris Agreement IMO introduced their GHG strategy. This strategy envisages 50% emission reduction from international shipping by 2050 compared with 2008. This target cannot be fulfilled if conventional fuels are used. Amongst others hydrogen is considered to be one of the strong candidates as a zero-emissions fuel. Yet concerns around the safety of its storage and usage have been formulated and need to be addressed. “Safety” in this article is defined as the control of recognized hazards to achieve an acceptable level of risk. This article aims to propose a new way of comparing two systems with regard to their safety. Since safety cannot be directly measured fuzzy set theory is used to compare linguistic terms such as “safer”. This method is proposed to be used during the alternative design approach. This approach is necessary for deviations from IMO rules for example when hydrogen should be used in shipping. Additionally the properties of hydrogen that can pose a hazard such as its wide flammability range are identified.
Visualisation of Jet Fires from Hydrogen Release
Sep 2009
Publication
In order to achieve a high level of safety while using hydrogen as a vehicle fuel the possible hazards must be estimated. Especially hydrogen release tests with defined ignition represent a very important way to characterize the basics of hydrogen combustion in a potential accident. So ICT participated on a hydrogen jet release campaign at HSL (Buxton) in 2008 to deploy their measurement techniques and evaluation methods to visualize jets ignition and subsequent flames. The following paper shows the application of high speed cinematography in combination with image processing techniques the Background Oriented Schlieren (BOS) and a difference method to visualize the shape of hydrogen jet. In addition these methods were also used to observe ignition and combustion zone after defined initiation. In addition the combustion zone was recorded by a fast spectral radiometer and a highspeed-IR-camera. The IR-camera was synchronized with a rotating filter wheel to generate four different motion pictures at 100Hz each on a defined spectral range. The results of this preliminary evaluation provide some detailed information that might be used for improving model predictions.
Guidelines and Recommendations for Indoor Use of Fuel Cells and Hydrogen Systems
Oct 2015
Publication
Deborah Houssin-Agbomson,
Simon Jallais,
Elena Vyazmina,
Guy Dang-Nhu,
Gilles Bernard-Michel,
Mike Kuznetsov,
Vladimir V. Molkov,
Boris Chernyavsky,
Volodymyr V. Shentsov,
Dmitry Makarov,
Randy Dey,
Philip Hooker,
Daniele Baraldi,
Evelyn Weidner,
Daniele Melideo,
Valerio Palmisano,
Alexandros G. Venetsanos,
Jan Der Kinderen and
Béatrice L’Hostis
Hydrogen energy applications often require that systems are used indoors (e.g. industrial trucks for materials handling in a warehouse facility fuel cells located in a room or hydrogen stored and distributed from a gas cabinet). It may also be necessary or desirable to locate some hydrogen system components/equipment inside indoor or outdoor enclosures for security or safety reasons to isolate them from the end-user and the public or from weather conditions.<br/>Using of hydrogen in confined environments requires detailed assessments of hazards and associated risks including potential risk prevention and mitigation features. The release of hydrogen can potentially lead to the accumulation of hydrogen and the formation of a flammable hydrogen-air mixture or can result in jet-fires. Within Hyindoor European Project carried out for the EU Fuel Cells and Hydrogen Joint Undertaking safety design guidelines and engineering tools have been developed to prevent and mitigate hazardous consequences of hydrogen release in confined environments. Three main areas are considered: Hydrogen release conditions and accumulation vented deflagrations jet fires and including under-ventilated flame regimes (e.g. extinguishment or oscillating flames and steady burns). Potential RCS recommendations are also identified.
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
Effects of Radiation on the Flame Front of Hydrogen-air Explosions
Oct 2015
Publication
The flame velocities of unconfined gas explosions depend on the cloud size and the distance from the initiating source. The mechanisms for this effect are not fully understood; a possible explanation is turbulence generated by the propagating flame front. The molecular bands in the flame front are exposed to continuously increasing radiation intensity of water bands in the interior of the reaction product ball. A first approach to verifying this assumption is described in this paper. The flame propagation was observed by high speed video techniques including time resolved spectroscopy in the UV-Vis-NIR spectral range with a time resolution up to 3000 spectra/s. Ignition flame head velocity flame contours reacting species and temperatures were evaluated. The evaluation used video brightness subtraction and 1-dimensional image contraction to obtain traces of the movements perpendicular to the direction of propagation. Flame front velocities are found to be between 16m/s and 25 m/s. Analysis focused in particular on the flame front which is not smooth. Salients emerge on the surface to result in the well-known cellular structures. The radiation of various bands from the fire ball on the reacting species is estimated to have an influence on the flame velocity depending on the distance from initiation. Evaluation of OH-band and water band spectra might indicate might indicate higher temperatures of the flame front induced by radiation of the fireball. But it is difficult to verify the effect relative to competing flame acceleration mechanisms.
State of the Art of Hydrogen Production via Pyrolysis of Natural Gas
Jul 2020
Publication
Fossil fuels have to be substituted by climate neutral fuels to contribute to CO2 reduction in the future energy system. Pyrolysis of natural gas is a well-known technical process applied for production of e. g. carbon black.
In the future it might contribute to carbon dioxide-free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by-product of this process can be used for material production or can be sequestrated the produced hydrogen has a low carbon footprint.
This article reviews literature on the state of the art of methane/ natural gas pyrolysis process developments and at-tempts to assess the technology readiness level (TRL).
In the future it might contribute to carbon dioxide-free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by-product of this process can be used for material production or can be sequestrated the produced hydrogen has a low carbon footprint.
This article reviews literature on the state of the art of methane/ natural gas pyrolysis process developments and at-tempts to assess the technology readiness level (TRL).
Simulation of Deflagration-to-detonation Transition of Lean H2-CO-Air Mixtures in Obstructed Channels
Sep 2019
Publication
The possibility of flame acceleration (FA) and deflagration-to-detonation transition (DDT) when homogeneous hydrogen-carbon monoxide-air (H2-CO-air) mixtures are used rises the need for an efficient simulation approach for safety assessment. In this study a modelling approach for H2-CO-air flames incorporating deflagration and detonation within one framework is presented. It extends the previous work on H2-air mixtures. The deflagration is simulated by means of the turbulent flame speed closure model incorporating a quenching term. Since high flow velocities e.g. the characteristic speed of sound of the combustion products are reached during FA the flow passing obstacles generates turbulence at high enough levels to partially quench the flame. Partial flame quenching has the potential to stall the onset of detonation. An altered formulation for quenching is introduced to the modelling approach to better account for the combustion characteristics for accelerating lean H2-CO-air flames. The presented numerical approach is validated with experimental flame velocity data of the small-scale GraVent test rig [1] with homogeneous fuel contents of 22.5 and 25.0 vol-% and fuel compositions of 75/25 and 50/50 vol-% H2/CO respectively. The impact of the quenching term is further discussed on simulations of the FZK-7.2m test rig [2] whose obstacle spacing is smaller than the spacing in the GraVent test rig.
Combustion Features of CH4/NH3/H2 Ternary Blends
Mar 2022
Publication
The use of so-called “green” hydrogen for decarbonisation of the energy and propulsion sectors has attracted considerable attention over the last couple of decades. Although advancements are achieved hydrogen still presents some constraints when used directly in power systems such as gas turbines. Therefore another vector such as ammonia can serve as a chemical to transport and distribute green hydrogen whilst its use in gas turbines can limit combustion reactivity compared to hydrogen for better operability. However pure ammonia on its own shows slow complex reaction kinetics which requires its doping by more reactive molecules thus ensuring greater flame stability. It is expected that in forthcoming years ammonia will replace natural gas (with ~ 90% methane in volume) in power and heat production units thus making the co-firing of ammonia/methane a clear path towards replacement of CH4 as fossil fuel. Hydrogen can be obtained from the precracking of ammonia thus denoting a clear path towards decarbonisation by the use of ammonia/hydrogen blends. Therefore ammonia/methane/hydrogen might be co-fired at some stage in current combustion units hence requiring a more intrinsic analysis of the stability emissions and flame features that these ternary blends produce. In return this will ensure that transition from natural gas to renewable energy generated e-fuels such as so-called “green” hydrogen and ammonia is accomplished with minor detrimentals towards equipment and processes. For this reason this work presents the analysis of combustion properties of ammonia/methane/hydrogen blends at different concentrations. A generic tangential swirl burner was employed at constant power and various equivalence ratios. Emissions OH*/NH*/NH2*/CH* chemiluminescence operability maps and spectral signatures were obtained and are discussed. The extinction behaviour has also been investigated for strained laminar premixed flames. Overall the change from fossils to e-fuels is led by the shift in reactivity of radicals such as OH CH CN and NH2 with an increase of emissions under low and high ammonia content. Simultaneously hydrogen addition improves operability when injected up to 30% (vol) an amount at which the hydrogen starts governing the reactivity of the blends. Extinction strain rates confirm phenomena found in the experiments with high ammonia blends showing large discrepancies between values at different hydrogen contents. Finally a 20/55/25% (vol) methane/ammonia/hydrogen blend seems to be the most promising at high equivalence ratios (1.2) with no apparent flashback low emissions and moderate formation of NH2/OH radicals for good operability.
A Coupled Transient Gas Flow Calculation with a Simultaneous Calorific-value-gradient Improved Hydrogen Tracking
Apr 2022
Publication
Gas systems can provide considerable flexibility in integrated energy systems to accommodate hydrogen produced from Power-to-Hydrogen units using excess volatile renewable energy generation. To use the flexibility in integrated energy systems while ensuring a secure and reliable system operation gas system operators need to accurately and easily analyze the effects of varying hydrogen levels on the dynamic gas behavior and vice versa. Existing methods for hydrogen tracking however either solve the hydrogen propagation and dynamic gas behavior separately or must cope with a large inaccuracy. Hence existing methods do not allow an accurate and coupled analysis of gas systems in integrated energy systems considering varying hydrogen levels. This paper proposes a calorific-value-gradient method which can accurately track the propagation of varying hydrogen levels in a gas system even with large simulation time increments of up to one hour. The new method is joined and simultaneously solved with an implicit finite difference scheme describing the transient gas behavior in a single equation system in a coupled Newton–Raphson gas flow calculation. As larger simulation time increments can be chosen without reducing the accuracy the computation time can be strongly reduced compared to existing Euler-based methods. With its high accuracy and its coupled approach this paper provides gas system operators a method to accurately analyze how the propagation of hydrogen affects the entire gas system. With its coupled approach the presented method can enhance the investigation of integrated energy systems as the transient gas behavior and varying hydrogen propagation of the gas system can be easily included in such analyses.
A Concept to Support the Transformation from a Linear to Circular Carbon Economy: Net Zero emissions, Resource Efficiency and Conservation Through a Coupling of the Energy, Chemical and Waste Management Sectors
Dec 2017
Publication
Coal and carbon-containing waste are valuable primary and secondary carbon carriers. In the current dominant linear economy such carbon resources are generally combusted to produce electricity and heat and as a way to resolve a nation’s waste issue. Not only is this a wastage of precious carbon resources which can be chemically utilized as raw materials for production of other value-added goods it is also contrary to international efforts to reduce carbon emissions and increase resource efficiency and conservation. This article presents a concept to support the transformation from a linear ‘one-way cradle to grave manufacturing model’ toward a circular carbon economy. The development of new and sustainable value chains through the utilization of coal and waste as alternative raw materials for the chemical industry via a coupling of the energy chemical and waste management sectors offers a viable and future-oriented perspective for closing the carbon cycle. Further benefits also include a lowering of the carbon footprint and increasing resource efficiency and conservation of primary carbon resources. In addition technological innovations and developments that are necessary to support a successful sector coupling will be identified. To illustrate our concept a case analysis of domestic coal and waste as alternative feedstock to imported crude oil for chemical production in Germany will be presented. Last but not least challenges posed by path dependency along technological institutional and human dimensions in the sociotechnical system for a successful transition toward a circular carbon economy will be discussed.
Experimental Study of Ignited Unsteady Hydrogen Jets into Air
Sep 2009
Publication
In order to simulate an accidental hydrogen release from the low pressure pipe system of a hydrogen vehicle a systematic study on the nature of transient hydrogen jets into air and their combustion behaviour was performed at the FZK hydrogen test site HYKA. Horizontal unsteady hydrogen jets with an amount of hydrogen up to 60 STP dm3 and initial pressures of 5 and 16 bar have been investigated. The hydrogen jets were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen-air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.
Analysis of the Parametric-Acoustic Instability for Safety Assessment of Hydrogen-Air Mixtures in Closed Volumes
Sep 2011
Publication
The acoustic to the parametric instability has been studied for H2-air mixtures at normal conditions. Two approaches for the investigation of the problem have been considered. The simplified analytical model proposed by Bychkov was selected initially. Its range of applicability resulted to be very restricted and therefore numerical solutions of the problem were taken into account. The results obtained were used to study the existence of spontaneous transition from the acoustic to the parametric instability for different fuel concentrations. Finally the growth rate of the instabilities was numerically calculated for a set of typical mixtures for hydrogen safety.
Experimental Study of Ignited Unsteady Hydrogen Releases from a High Pressure Reservoir
Sep 2011
Publication
In order to simulate an accidental hydrogen release from the high pressure pipe system of a hydrogen facility a systematic study on the nature of transient hydrogen jets into air and their combustion behavior was performed at the KIT hydrogen test site HYKA. Horizontal unsteady hydrogen jets from a reservoir of 0.37 dm3 with initial pressures of up to 200 bar have been investigated. The hydrogen jets released via round nozzles 3 4 and 10 mm were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen–air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.
No more items...