Germany
Power Sector Effects of Green Hydrogen Production in Germany
Aug 2023
Publication
The use of green hydrogen can support the decarbonization of sectors which are difficult to electrify such as industry or heavy transport. Yet the wider power sector effects of providing green hydrogen are not well understood so far. We use an open-source electricity sector model to investigate potential power sector interactions of three alternative supply chains for green hydrogen in Germany in the year 2030. We distinguish between model settings in which Germany is modeled as an electric island versus embedded in an interconnected system with its neighboring countries as well as settings with and without technology-specific capacity bounds on wind energy. The findings suggest that large-scale hydrogen storage can provide valuable flexibility to the power system in settings with high renewable energy shares. These benefits are more pronounced in the absence of flexibility from geographical balancing. We further find that the effects of green hydrogen production on the optimal generation portfolio strongly depend on the model assumptions regarding capacity expansion potentials. We also identify a potential distributional effect of green hydrogen production at the expense of other electricity consumers of which policy makers should be aware.
The Role of Hydrogen for the Defossilization of the German Chemical Industry
Apr 2023
Publication
Within the European Green Deal the European industry is summoned to transform towards a green and circular economy to reduce CO2-emissions and reach climate goals. Special focus is on the chemical industry to boost recycling processes for plastics exploit resource efficiency potentials and switch to a completely renewable feedstock (defossilization). Despite common understanding that drastic changes have to take place it is yet unknown how the industrial transformation should be accomplished. This work explains how a cost-optimal defossilization of the chemical industry in the context of national greenhouse gas (GHG) mitigation strategies look like. The central part of this investigation is based on a national energy system model to optimize the future energy system design of Germany as a case study for a highly industrialized country. A replacement of fossil-based feedstocks by renewable feedstocks leads to a significant increase in hydrogen demand by þ40% compared to a reference scenario. The resulting demand of hydrogen-based energy carriers including the demand for renewable raw materials must be produced domestically or imported. This leads to cumulative additional costs of the transformation that are 32% higher than those of a reference scenario without defossilization of the industry. Fischer-Tropsch synthesis and the methanol-to-olefins route can be identified as key technologies for the defossilization of the chemical industry.
Renewable Methanol Synthesis
Oct 2019
Publication
Renewable methanol production is an emerging technology that bridges the gap in the shift from fossil fuel to renewable energy. Two thirds of the global emission of CO2 stems from humanity’s increasing energy need from fossil fuels. Renewable energy mainly from solar and wind energy suffers from supply intermittency which current grid infrastructures cannot accommodate. Excess renewable energy can be harnessed to power the electrolysis of water to produce hydrogen which can be used in the catalytic hydrogenation of waste CO2 to produce renewable methanol. This review considers methanol production in the current context regionally for Europe which is dominated by Germany and globally by China. Appropriate carbon-based feedstock for renewable methanol production is considered as well as state-of-the-art renewable hydrogen production technologies. The economics of renewable methanol production necessitates the consideration of regionally relevant methanol derivatives. The thermodynamics kinetics catalytic reaction mechanism operating conditions and reactor design are reviewed in the context of renewable methanol production to reveal the most up to date understanding.
Performance Assessment of a 25 kW Solid Oxide Cell Module for Hydrogen Production and Power Generation
Jan 2024
Publication
Hydrogen produced via water electrolysis from renewable electricity is considered a key energy carrier to defossilize hard-to-electrify sectors. Solid oxide cells (SOC) based reactors can supply hydrogen not only in electrolysis but also in fuel cell mode when operating with (synthetic) natural gas or biogas at low conversion (polygeneration mode). However the scale-up of SOC reactors to the multi-MW scale is still a research topic. Strategies for transient operation depending on electricity intermittency still need to be developed. In this work a unique testing environment for SOC reactors allows reversible operation demonstrating the successful switching between electrolysis (− 75 kW) and polygeneration (25 kW) modes. Transient and steady state experiments show promising performance with a net hydrogen production of 53 kg day− 1 in SOEL operation with ca. − 75 kW power input. The experimental results validate the scaling approach since the reactor shows homogenous temperature profiles.
Benchmark of J55 and X56 Steels on Cracking and Corrosion Effects Under Hydrogen Salt Cavern Boundary Conditions
Feb 2024
Publication
Salt caverns have great potential to store relevant amounts of hydrogen as part of the energy transition. However the durability and suitability of commonly used steels for piping in hydrogen salt caverns is still under research. In this work aging effects focusing on corrosion and cracking patterns of casing steel API 5CT J55 and “H2ready” pipeline steel API 5L X56 were investigated with scanning electron microscopy and energy dispersive X-ray spectroscopy after accelerated stress tests with pressure/temperature cycling under hydrogen salt cavern-like conditions. Compared to dry conditions significant more corrosion by presence of salt ions was detected. However compared to X56 only for J55 an intensification of corrosion and cracking at the surface due to hydrogen atmosphere was revealed. Pronounced surface cracks were observed for J55 over the entire samples. Overall the results strongly suggest that X56 is more resistant than J55 under the conditions of a hydrogen salt cavern.
Semi-Systematic Literature Review on the Contribution of Hydrogen to Universal Access to Energy in the Rationale of Sustainable Development Goal Target 7.1
Feb 2023
Publication
As part of the United Nations’ (UN) Sustainable Development Goal 7 (SDG7) SDG target 7.1 recognizes universal electrification and the provision of clean cooking fuel as two fundamental challenges for global society. Faltering progress toward SDG target 7.1 calls for innovative technologies to stimulate advancements. Hydrogen has been proposed as a versatile energy carrier to be applied in both pillars of SDG target 7.1: electrification and clean cooking. This paper conducts a semi-systematic literature review to provide the status quo of research on the application of hydrogen in the rationale of SDG 7.1 covering the technical integration pathways as well as the key economic environmental and social aspects of its use. We identify decisive factors for the future development of hydrogen use in the rationale of SDG target 7.1 and by complementing our analysis with insights from the related literature propose future avenues of research. The literature on electrification proposes that hydrogen can serve as a backup power supply in rural off-grid communities. While common electrification efforts aim to supply appliances that use lower amounts of electricity a hydrogen-based power supply can satisfy appliances with higher power demands including electric cook stoves while simultaneously supporting clean cooking efforts. Alternatively with the exclusive aim of stimulating clean cooking hydrogen is proposed to be used as a clean cooking fuel via direct combustion in distribution and utilization infrastructures analogous to Liquid Petroleum Gas (LPG). While expected economic and technical developments are seen as likely to render hydrogen technologies economically competitive with conventional fossil fuels in the future the potential of renewably produced hydrogen usage to reduce climate-change impacts and point-of-use emissions is already evident today. Social benefits are likely when meeting essential safety standards as a hydrogen-based power supply offers service on a high tier that might overachieve SDG 7.1 ambitions while hydrogen cooking via combustion fits into the existing social habits of LPG users. However the literature lacks clear evidence on the social impact of hydrogen usage. Impact assessments of demonstration projects are required to fill this research gap.
Subsurface Renewable Energy Storage Capcity for Hydrogen, Methane and Compress Air - A Performance Assessment Study from the North German Basin
Jul 2021
Publication
The transition to renewable energy sources to mitigate climate change will require large-scale energy storage to dampen the fluctuating availability of renewable sources and to ensure a stable energy supply. Energy storage in the geological subsurface can provide capacity and support the cycle times required. This study investigates hydrogen storage methane storage and compressed air energy storage in subsurface porous formations and quantifies potential storage capacities as well as storage rates on a site-specific basis. For part of the North German Basin used as the study area potential storage sites are identified employing a newly developed structural geological model. Energy storage capacities estimated from a volume-based approach are 6510 TWh and 24544 TWh for hydrogen and methane respectively. For a consistent comparison of storage capacities including compressed air energy storage the stored exergy is calculated as 6735 TWh 25795 TWh and 358 TWh for hydrogen methane and compressed air energy storage respectively. Evaluation of storage deliverability indicates that high deliverability rates are found mainly in two of the three storage formations considered. Even accounting for the uncertainty in geological parameters the storage potential for the three considered storage technologies is significantly larger than the predicted demand and suitable storage rates are achievable in all storage formations.
Towards Climate-neutral Aviation: Assessment of Maintenance Requirements for Airborne Hydrogen Storage and Distribution Systems
Apr 2023
Publication
Airlines are faced with the challenge of reducing their environmental footprint in an effort to push for climate-neutral initiatives that comply with international regulations. In the past the aviation industry has followed the approach of incremental improvement of fuel efficiency while simultaneously experiencing significant growth in annual air traffic. With the increase in air traffic negating any reduction in Greenhouse Gas (GHG) emissions more disruptive technologies such as hydrogen-based onboard power generation are required to reduce the environmental impact of airline operations. However despite initial euphoria and first conceptual studies for hydrogen-powered aircraft several decades ago there still has been no mass adoption to this day. Besides the challenges of a suitable ground infrastructure this can partly be attributed to uncertainties with the associated maintenance requirements and the expected operating costs to demonstrate the economic viability of this technology. With this study we address this knowledge gap by estimating changes towards scheduled maintenance activities for an airborne hydrogen storage and distribution system. In particular we develop a detailed system design for a hydrogen-powered fuel-cell-based auxiliary power generation and perform a comparative analysis with an Airbus A320 legacy system. That analysis allows us to (a) identify changes for the expected maintenance effort to enhance subsequent techno-economic assessments (b) identify implications of specific design assumptions with corresponding maintenance activities while ensuring regulatory compliance and (c) describe the impact on the resulting task execution. The thoroughly examined interactions between system design and subsequent maintenance requirements of this study can support practitioners in the development of prospective hydrogen-powered aircraft. In particular it allows the inclusion of maintenance implications in early design stages of corresponding system architectures. Furthermore since the presented methodology is transferable to different design solutions it provides a blueprint for alternative operating concepts such as the complete substitution of kerosene by hydrogen to power the main engines.
Hydrogen Behavior and Mitigation Measures: State of Knowledge and Database from Nuclear Community
Sep 2023
Publication
Hydrogen has become a key enabler for decarbonization as countries pledge to reach net zero carbon emissions by 2050. With hydrogen infrastructure expanding rapidly beyond its established applications there is a requirement for robust safety practices solutions and regulations. Since the 1980s considerable efforts have been undertaken by the nuclear community to address hydrogen safety issues because in severe accidents of water-cooled nuclear reactors a large amount of hydrogen can be produced from the oxidation of metallic components with steam. As evidenced in the Fukushima accident hydrogen combustion can cause severe damage to reactor building structures promoting the release of radioactive fission products to the environment. A number of large-scale experiments were conducted in the framework of national and international projects to understand the hydrogen dispersion and combustion behaviour under postulated accidental conditions. Empirical engineering models and numerical codes were developed and validated for safety analysis. Hydrogen recombiners known as Passive Autocatalytic Recombiner (PAR) were developed and have been widely installed in nuclear containments to mitigate hydrogen risk. Complementary actions and strategies were established as part of severe accident management guidelines to prevent or limit the consequences of hydrogen explosions. In addition hydrogen monitoring systems were developed and implemented in nuclear power plants. The experience and knowledge gained from the nuclear community on hydrogen safety is valuable and applicable for other industries involving hydrogen production transport storage and use.
AMHYCO Project - Advances in H2/CO Combustion, Recombination and Containment Modelling
Sep 2023
Publication
During a severe accident in a nuclear power plant one of the potential threats to the containment is the occurrence of energetic combustion events. In modern plants Severe Accident Management Guidelines (SAMG) as well as dedicated mitigation hardware are in place to minimize/mitigate this combustion risk and thus avoid the release of radioactive material into the environment. Advancements in SAMGs are in the focus of AMHYCO an EU-funded Horizon 2020 project officially launched on October 1st 2020. The project consortium consists of 12 organizations (from six European countries and one from Canada) and is coordinated by the Universidad Politécnica de Madrid (UPM). The progress made in the first two years of the AMHYCO project is here presented. A comprehensive bibliographic review has been conducted providing a common foundation to build the knowledge gained during the project. After an extensive set of accident transients simulated both for phases occurring inside and outside the reactor pressure vessel a set of challenging sequences from the combustion risk perspective for different power plant types were identified. At the same time three generic containment models for the three considered reactor designs have been created to provide the full containment analysis simulations with lumped parameter models 3-dimensional containment codes and CFD codes. In order to further consolidate the model base combustion experiments and performance tests on passive auto-catalytic recombiners under explosion prone H2/CO atmospheres were performed at CNRS (France) and FZJ (Germany). Finally it is worth saying that the experimental data and engineering models generated from the AMHYCO project are useful for other industries outside the nuclear one.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Heat and Mass Transfer Modeling of Vacuum Insulated Vessel Storing Cryogenic Liquid in Loss of Vacuum Accident
Sep 2023
Publication
Cryogenic liquid is often stored in a vacuum insulated Dewar vessel for a high efficiency of thermal insulation. Multi-layer insulation (MLI) can be further applied in the double-walled vacuum space to reduce the heat transfer from the environment to the stored cryogenic fluid. However in loss-of-vacuum accident (LOVA) scenarios heat flux across the MLI will raise to orders of magnitudes larger than with an intact vacuum shield. The cryogenic liquid will boil intensively and pressurize the vessel due to the heat ingress. The pressurization endangers the integrity of the vessel and poses an extra catastrophic risk if the vapor is flammable e.g. hydrogen. Therefore safety valves have to be designed and installed appropriately to make sure the pressure is limited to acceptable levels. In this work the dynamic process of the heat and mass transfers in the LOVA scenarios is studied theoretically. The mass deposition - desublimation of gaseous nitrogen on cryogenic surfaces is modeled as it provides the dominant contribution of the thermal load to the cryogenic fluid. The conventional heat convection and radiation are modeled too although they play only secondary roles as realized in the course of the study. The temperature dependent thermal properties of e.g. gaseous and solid nitrogen and stainless steel are used to improve the accuracy of calculation in the cryogenic temperature range. Presented methodology enabling the computation of thermodynamic parameters in the cryogenic storage system during LOVA scenarios provides further support for the future risk assessment and safety system design.
Experimental Study on the Ignition of Hydrogen Containing Atmospheres by Mechanical Impacts
Sep 2023
Publication
In international regulations on explosion protection mechanical friction impact or abrasion is usually named as one of 13 ignition sources that must be avoided in hazardous zones with explosive atmospheres. In different studies it is even identified as one of the most frequent ignition sources in practice. The effectiveness of mechanical impacts as ignition source is dependent from several parameters including the minimum ignition energy of the explosive atmosphere the properties of the material pairing the kinetic impact energy or the impact velocity. By now there is no standard procedure to determine the effectiveness of mechanical impacts as ignition source. In some previous works test procedures with poor reproducibility or undefined kinetic impact energy were applied for this purpose. In other works only homogeneous material pairings were considered. In this work the effectiveness of mechanical impacts with defined and reproducible kinetic impact energy as ignition source for hydrogen containing atmospheres was studied systematically in dependence from the inhomogeneous material pairing considering materials with practical relevance like stainless steel low alloy steel concrete and non-iron-metals. It was found that ignition can be avoided if non-iron metals are used in combination with different metallic materials but in combination with concrete even the impact of non-iron-metals can be an effective ignition source if the kinetic impact energy is not further limited. Moreover the consequence of hydrogen admixture to natural gas on the effectiveness of mechanical impacts as ignition source was studied. In many cases ignition of atmospheres containing natural gas by mechanical impacts is rather unlikely. No influence could be observed for admixtures up to 25% hydrogen and even more. The results are mainly relevant in the context of repurposing the natural gas grid or adding hydrogen to the natural gas grid. Based on the test results it can be evaluated under which circumstances the use of tools made of non-iron-metals or other non-sparking materials can be an effective measure to avoid ignition sources in hazardous zones containing hydrogen for example during maintenance work.
Numerical Investigations of Hydrogen Release and Dispersion Due to Silane Decomposition in a Ventilated Container
Sep 2023
Publication
In recent years new chemical release agents based on silane are being used in the tire industry. Silane is an inorganic chemical compound consisting of a silicon backbone and hydrogen. Silanes can be thermally decomposed into high-purity silicon and hydrogen. If silane is stored and transported in Intermediate Bulk Containers (IBCs) equipped with safety valves in vented semi-confined spaces such as ISO-Containers hydrogen can be accumulated and become explosive mixture with air. A conservative CFD analysis using the GASFLOW-MPI code has been carried out to assess the hydrogen risk inside the vented containers. Two types of containers with different natural ventilation systems were investigated under various hypothetical accident scenarios. A continuous release of hydrogen due to the chemical decomposition of silane from IBCs was studied as the reference case. The effect of the safety valves on hydrogen accumulation in the container which results in small pulsed releases of hydrogen was investigated. The external effects of the sun and wind on hydrogen distribution and ventilation were also evaluated. The results can provide detailed information on hydrogen dispersion and mixing within the vented enclosures and used to evaluate the hydrogen risks such as flammability. Based on the assumptions used in this study it indicates that the geometry of ventilation openings plays a key role in the efficiency of the indoor air exchange process. In addition the use of safety valves makes it possible to reduce the concentration of hydrogen by volume in air compared to the reference case. The effect of the sun which results in a temperature difference between two container walls allows a strong mixing of hydrogen and air which helps to obtain a concentration lower than both the base case and the case of the pulsed releases. But the best results for the venting process are obtained with the wind that can drive the mixture to the downwind wall vent holes.
Towards the Simulation of Hydrogen Leakage Scenarios in Closed Buildings Using ContainmentFOAM
Sep 2023
Publication
The increase of using hydrogen as a replacement for fossil fuels in power generation and mobility is expected to witness a huge leap in the next decades. However several safety issues arise due to the physical and chemical properties of hydrogen especially its wide range of flammability. In case of Hydrogen leakage in confined areas Hydrogen clouds can accumulate in the space and their concentration can build up quickly to reach the lower flammability limit (LFL) in case of not applying a proper ventilation system. As a part of the Living Lab Energy Campus (LLEC) project at Jülich Research Centre the use of hydrogen mixed with natural gas as a fuel for the central heating system of the campus is being studied. The current research aims to investigate the release dispersion and formation and the spread of a hydrogen cloud inside the central utility building at the campus of Jülich Research Centre in case of hypothetical accidental leakage. Such a leakage is simulated using the opensource containmentFoam package base on OpenFOAM CFD code to numerically simulate the behavior of the air-hydrogen mixture. The critical locations where hydrogen concentrations can reach the LFL values are shown.
Simulations of Hydrogen Dispersion from Fuel Cell Vehicles' Leakages Inside Full-scale Tunnel
Sep 2023
Publication
In this work real scale experiments involving hydrogen dispersion inside a road tunnel have been modelled using the Computational Fluid Dynamics (CFD) methodology. The aim is to assess the performance of the ADREA-HF CFD tool against full-scale tunnel dispersion data resulting from high-pressure hydrogen leakage through Thermal Pressure Relief Device (TPRD) of a vehicle. The assessment was performed with the help of experiments conducted by the French Alternative Energies and Atomic Energy Commission (CEA) in a real inclined tunnel in France. In the experiments helium as hydrogen surrogate has been released from 200 bar storage pressure. Several tests were carried out examining different TPRD sizes and release directions (upwards and downwards). For the CFD evaluation two tests were considered: one with downwards and one with upwards release both through a TPRD with a diameter of 2 mm. The comparison between the CFD results and the experiments shows the good predictive capabilities of the ADREA-HF code that can be used as a safety tool in hydrogen dispersion studies. The comparison reveals some of the strengths and weaknesses of both the CFD and the experiments. It is made clear that CFD can contribute to the design of the experiments and to the interpretation of the experimental results.
QRA of Hydrogen Vehicles in a Road Tunnel
Sep 2023
Publication
Hydrogen energy is recognized by many European governments as an important part of the development to achieve a more sustainable energy infrastructure. Great efforts are spent to build up a hydrogen supply chain to support the increasing number of hydrogen-powered vehicles. Naturally these vehicles will use the common traffic infrastructure. Thus it has to be ensured these infrastructures are capable to withstand the hazards and associated risks that may arise from these new technologies. In order to have an appropriate assessment tool for hydrogen vehicles transport through tunnels a new QRA methodology is developed and presented here. In Europe the PIARC is a very common approach. It is therefore chosen as a starting point for the new methodology. It provides data on traffic statistics accident frequencies tunnel geometries including certain prevention and protection measures. This approach is enhanced by allowing better identification of hazards and their respective sources for hydrogen vehicles. A detailed analysis of the accident scenarios that are unique for hydrogen vehicles hereunder the initiating events severity of collision types that may result in a release of hydrogen gas in a tunnel and the location of such an accident are included. QRA enables the assessment and evaluation of scenarios involving external fires or vehicles that burst into fire because of an accident or other fire sources. Event Tree Analysis is the technique used to estimate the event frequencies. The consequence analysis includes the hazards from blast waves hydrogen jet fires DDT.
IEA TCP Task 43 - Subtask Safety Distances: State of the Art
Sep 2023
Publication
The large deployment of hydrogen technologies for new applications such as heat power mobility and other emerging industrial utilizations is essential to meet targets for CO2 reduction. This will lead to an increase in the number of hydrogen installations nearby local populations that will handle hydrogen technologies. Local regulations differ and provide different safety and/or separation distances in different geographies. The purpose of this work is to give an insight on different methodologies and recommendations developed for hydrogen (mainly) risk management and consequences assessment of accidental scenarios. The first objective is to review available methodologies and to identify the divergent points on the methodology. For this purpose a survey has been launched to obtain the needed inputs from the subtask participants. The current work presents the outcomes of this survey highlighting the gaps and suggesting the prioritization of the actions to take to bridge these gaps.
The Regulatory Framework of Geological Storage of Hydrogen in Salt Caverns
Sep 2023
Publication
A growing share of renewable energy production in the energy supply systems is key to reaching the European political goal of zero CO2 emission in 2050 highlighted in the green deal. Linked to the irregular production of solar and wind energies which have the highest potential for development in Europe massive energy storage solutions are needed as energy buffers. The European project HyPSTER [1] (Hydrogen Pilot STorage for large Ecosystem Replication) granted by the Clean Hydrogen Partnership addresses this topic by demonstrating a cyclic test in an experimental salt cavern filled with hydrogen up to 3 tons using hydrogen that is produced onsite by a 1 MW electrolyser. One specific objective of the project is the assessment of the risks and environmental impacts of cyclic hydrogen storage in salt caverns and providing guidelines for safety regulations and standards. This paper highlights the first outcome of the task WP5.5 of the HyPSTER project addressing the regulatory and normative frameworks for the safety of hydrogen storage in salt caverns from some selected European Countries which is dedicated to defining recommendations for promoting the safe development of this industry within Europe.
Unconfined Hydrogen Detonations: Experiments, Modelling, Scaling
Sep 2023
Publication
A series of unconfined hydrogen detonation bench-mark experiments are analyzed with respect to CFD code validation and safety measures development. 1-Dimensional in-house code COM1D was applied for validation against experimental data for unconfined detonation of a hemispherical envelope of about 3- and 5-m radius with hydrogen-air mixtures from 20 to 30% hydrogen in air. The code demonstrates a very good agreement with experimental data and allows an adequate simulation of the unconfined hydrogen detonation. All calculated data were scaled in Sachs coordinates to compare with experimental data and to approximate the data for practical evaluation of safety distances. Numerical experiments with different hydrogen inventories from 50 g to 50 kg and different sizes of the cloud from 1 to 2 m radius of the same amount of hydrogen 50g were carried out to clarify the problem of energy of gaseous explosion responsible for the strength of blast wave. Additionally a comparison of hydrogen-air explosion pressure with blast wave properties from the hypothetical cloud of hot compressed combustion products (P=Picc; T=Ticc) and simply a hot air of the same initial pressure and temperature as combustion products showed very good agreement of shock wave strength at far distances beyond the cloud. This confirms the governing role of energy of combustion on blast wave propagation and its ability to scale the strength of blast waves. The dynamics of the explosion process and combustion product expansion were also analyzed experimentally and numerically to evaluate the dimension of the heat radiation zone and heat flux from combustion products. To demonstrate the capability of tested COM1D code the modeling and analysis of high-pressure hydrogen tanks rupture at 350 and 700 bar were conducted to investigate blast wave strength and evaluate the safety distances.
Modeling of Tube Deformation and Failure under Conditions of Hydrogen Detonation
Sep 2023
Publication
In case of accidental conditions involving high-speed hydrogen combustion the considerable pressure and thermal loads could result in substantial deformation and/or destruction of the industrial appliances. Accounting of such effects in the safety analysis with CFD tools can provide critical information on the design and construction of the sensitive appliances’ elements. The current paper presents the development and the implementation of a new 3D-technique which makes possible to perform simulations of the gas-dynamic processes simultaneously with adaptation of the geometry of complex configurations. Using the data obtained in the experiments on the flame acceleration and DDT in the tubes of industrial arrangements performed in MPA and KIT the authors performed a series of the combustion simulations corresponding to the experimental conditions. The combustion gas-dynamics was simulated using COM3D code and the tube wall material behavior was modelled using finite-element code ABAQUS - © Dassault Systèmes with real-time data exchange between the codes. Obtained numerical results demonstrated good agreement with the observed experimental data on both pressure dynamics and tube deformation history.
Risk Management in a Containerized Metal Hydride Storage System
Sep 2023
Publication
HyCARE project supported by the Clean Hydrogen Partnership of the European Union deals with a prototype of hydrogen storage tank using a solid-state hydrogen carrier. Up to 40 kilograms of hydrogen are stored in twelve tanks at less than 50 barg and less than 100 °C. The innovative design is based on a standard twenty-foot container including twelve TiFe-based metal hydride (MH) hydrogen storage tanks coupled with a thermal energy storage in phase change materials (PCM). This article aims at showing the main risks related to hydrogen storage in a MH system and the safety barriers considered based on HyCARE’s specific risk analysis.<br/>Regarding the TiFe MH material used to store hydrogen experimental tests showed that the exposure of the MH to air or water did not cause spontaneous ignition. Furthermore an explosion within the solid MH cannot propagate due to internal pore size. Additionally in case of leakage the speed of hydrogen desorption from the MH is self-limited which is an important safety characteristic since it reduces the potential consequences from the hydrogen release scenario.<br/>Regarding the integrated system the critical scenarios identified during the risk analysis were: explosion due to release of hydrogen inside or outside the container internal explosion inside MH tanks due to accidental mix of hydrogen and air and asphyxiation due to inert gas accumulation in the container. This identification phase of the risk analysis allowed to pinpoint the most relevant safety barriers already in place and recommend additional ones if needed to further reduce the risk that were later implemented.<br/>The main safety barriers identified were: material and component selection (including the MH selected) safety interlocks safety valves ventilation gas detection and safety distances.<br/>The risk management process based on risk identification and assessment contributed to coherently integrate inherently safe design features and safety barriers.
Engineering Models for Refueling Protocol Development: Validation and Recommendations
Sep 2023
Publication
Fouad Ammouri,
Nicola Benvenuti,
Elena Vyazmina,
Vincent Ren,
Guillaume Lodier,
Quentin Nouvelot,
Thomas Guewouo,
Dorine Crouslé,
Rony Tawk,
Nicholas Hart,
Steve Mathison,
Taichi Kuroki,
Spencer Quong,
Antonio Ruiz,
Alexander Grab,
Alexander Kvasnicka,
Benoit Poulet,
Christopher Kutz and
Martin Zerta
The PRHYDE project (PRotocol for heavy duty HYDrogEn refueling) funded by the Clean Hydrogen partnership aims at developing recommendations for heavy-duty refueling protocols used for future standardization activities for trucks and other heavy duty transport systems applying hydrogen technologies. Development of a protocol requires a validated approach. Due to the limited time and budget the experimental data cannot cover the whole possible ranges of protocol parameters such as initial vehicle pressure and temperature ambient and precooling temperatures pressure ramp refueling time hardware specifications etc. Hence a validated numerical tool is essential for a safe and efficient protocol development. For this purpose engineering tools are used. They give good results in a very reasonable computation time of several seconds or minutes. These tools provide the heat parameters estimation in the gas (volume average temperature) and 1D temperature distribution in the tank wall. The following models were used SOFIL (Air Liquide tool) HyFill (by ENGIE) and H2Fills (open access code by NREL). The comparison of modelling results and experimental data demonstrated a good capability of codes to predict the evolution of average gas temperature in function of time. Some recommendations on model validation for the future protocol development are given.
Experimental Characterization of the Operational Behavior of a Catalytic Recombiner for Hydrogen Mitigation
Sep 2023
Publication
One of the significant safety concerns in large-scale storage and transportation of liquefied (cryogenic) hydrogen (LH2) is the formation of flammable hydrogen/air mixtures after leakages during storage or transportation. Especially in maritime transportation hydrogen accumulations could occur within large and congested geometries. The installation of passive auto-catalytic recombiners (PARs) is a suitable mitigation measure for local areas where venting is insufficient or even impossible. Numerical models describing the operational behavior of PARs are required to allow for optimizing the location and assessing the efficiency of the mitigation measure. In the present study the operational behavior of a PAR with a compact design has been experimentally investigated. In order to obtain data for model validation an experimental program has been performed in the REKO-4 facility a 5.5 m³ vessel. The test procedure includes two phases steady-state and dynamic. The results provide insights into the hydrogen recombination rates and catalyst temperatures under different boundary conditions.
A Techno-economic Analysis of Future Hydrogen Reconversion Technologies
Jun 2024
Publication
The transformation of fossil fuel-based power generation systems towards greenhouse gas-neutral ones based on renewable energy sources is one of the key challenges facing contemporary society. The temporal volatility that accompanies the integration of renewable energy (e.g. solar radiation and wind) must be compensated to ensure that at any given time a sufficient supply of electrical energy for the demands of different sectors is available. Green hydrogen which is produced using renewable energy sources via electrolysis can be used to chemically store electrical energy on a seasonal basis. Reconversion technologies are needed to generate electricity from stored hydrogen during periods of low renewable electricity generation. This study presents a detailed technoeconomic assessment of hydrogen gas turbines. These technologies are also superior to fuel cells due to their comparatively low investment costs especially when it comes to covering the residual loads. As of today hydrogen gas turbines are only available in laboratory or small-scale settings and have no market penetration or high technology readiness level. The primary focus of this study is to analyze the effects on gas turbine component costs when hydrogen is used instead of natural gas. Based on these findings an economic analysis addressing the current state of these turbine components is conducted. A literature review on the subsystems is performed considering statements from leading manufactures and researchers to derive the cost deviations and total cost per installed capacity (€/kWel). The results reveal that a hydrogen gas turbine power plant has an expected cost increase of 8.5% compared to a conventional gas turbine one. This leads to an average cost of 542.5 €/kWel for hydrogen gas turbines. For hydrogen combined cycle power plants the expected cost increase corresponds to the cost of the gas turbine system as the steam turbine subsystem remains unaffected by fuel switching. Additionally power plant retrofit potentials were calculated and the respective costs in the case of an upgrade were estimated. For Germany as a case study for an industrialized country the potential of a possible retrofit is between 2.7 and 11.4 GW resulting to a total investment between 0.3 and 1.1 billion €.
Numerical Analysis of the Hydrogen-air Mixture Formation Process in a Direct-injection Engine for Off-road Applications
Jun 2024
Publication
Among the different hydrogen premixed combustion concepts direct injection (DI) is one of the most promising for internal combustion engine (ICE) applications. However to fully exploit the benefits of this solution the optimization of the mixture preparation process is a crucial factor. In the present work a study of the hydrogenair mixture formation process in a DI H2-ICE for off-road applications was performed through 3D-CFD simulations. First a sensitivity analysis on the injection timing was carried out to select the optimal injection operating window capable of maximizing mixture homogeneity without a significant volumetric efficiency reduction. Then different spray injector guiding caps were tested to assess their effect on in-cylinder dynamics and mixture characteristics consequently. Finally the impact of swirl intensity on hydrogen distribution has been assessed. The optimization of the combustion chamber geometry has allowed the achievement of significant improvements in terms of mixture homogeneity.
Repurposing Natural Gas Pipelines for Hydrogen: Limits and Options from a Case Study in Germany
Jul 2024
Publication
We investigate the challenges and options for repurposing existing natural gas pipelines for hydrogen transportation. Challenges of re-purposing are mainly related to safety and due to the risk of hydrogen embrittlement of pipeline steels and the smaller molecular size of the gas. From an economic perspective the lower volumetric energy density of hydrogen compared to natural gas is a challenge. We investigate three pipeline repurposing options in depth: a) no modification to the pipeline but enhanced maintenance b) use of gaseous inhibitors and c) the pipe-in-pipe approach. The levelized costs of transportation of these options are compared for the case of the German Norddeutsche Erdgasleitung (NEL) pipeline. We find a similar cost range for all three options. This indicates that other criteria such as the sunk costs public acceptance and consumer requirements are likely to shape the decision making for gas pipeline repurposing.
Numerical Investigation and Simulation of Hydrogen Blending into Natural Gas Combustion
Aug 2024
Publication
This study reviews existing simulation models and describes a selected model for analysing combustion dynamics in hydrogen and natural gas mixtures specifically within non-ferrous melting furnaces. The primary objectives are to compare the combustion characteristics of these two energy carriers and assess the impact of hydrogen integration on furnace operation and efficiency. Using computational fluid dynamics (CFD) simulations incorporating actual furnace geometries and a detailed combustion and NOx emission prediction model this research aims to accurately quantify the effects of hydrogen blending. Experimental tests on furnaces using only natural gas confirmed the validity of these simulations. By providing precise predictions for temperature distribution and NOx emissions this approach reduces the need for extensive laboratory testing facilitates broader exploration of design modifications accelerates the design process and ultimately lowers product development costs.
Strategy Development for Hydrogen-Conversion Businesses in Côte d’Ivoire
Aug 2024
Publication
Côte d’Ivoire has substantially neglected crop residues from farms in rural areas so this study aimed to provide strategies for the sustainable conversion of these products to hydrogen. The use of existing data showed that in the Côte d’Ivoire there were up to 16801306 tons of crop residues from 11 crop types in 2019 from which 1296424.84 tons of hydrogen could potentially be derived via theoretical gasification and dark fermentation approaches. As 907497.39 tons of hydrogen is expected annually the following estimations were derived. The three hydrogen-project implementation scenarios developed indicate that Ivorian industries could be supplied with 9026635 gigajoules of heat alongside 17910 cars and 4732 buses in the transport sector. It was estimated that 817293.95 tons of green ammonia could be supplied to farmers. According to the study 5727992 households could be expected to have access to 1718.40 gigawatts of electricity. Due to these changes in the transport energy industry and agricultural sectors a reduction of 1644722.08 tons of carbon dioxide per year could theoretically be achieved. With these scenarios around 263276.87 tons of hydrogen could be exported to other countries. The conversion of crop residues to hydrogen is a promising opportunity with environmental and socio-economic impacts. Therefore this study requires further extensive research.
Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors
Jul 2024
Publication
In the quest for a sustainable future energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous metals steel cement lime chemicals fertilisers ceramics and glass. It maps out their current environmental impact and potential for mitigation through innovative strategies. The analysis spans across Spain Greece Germany and the Netherlands highlighting sector-specific ecosystems and the technological breakthroughs shaping them. It addresses the urgency for the industry-wide adoption of electrification the utilisation of green hydrogen biomass bio-based or synthetic fuels and the deployment of carbon capture utilisation and storage to ensure a smooth transition. Investment decisions in EIIs will depend on predictable economic and regulatory landscapes. This analysis discusses the risks associated with continued investment in high-emission technologies which may lead to premature decommissioning and significant economic repercussions. It presents a dichotomy: invest in climate-neutral technologies now or face the closure and offshoring of operations later with consequences for employment. This open discussion concludes that while the technology for near-complete climate neutrality in EIIs exists and is rapidly advancing the higher costs compared to conventional methods pose a significant barrier. Without the ability to pass these costs to consumers the adoption of such technologies is stifled. Therefore it calls for decisive political commitment to support the industry’s transition ensuring a greener more resilient future for Europe’s industrial backbone.
Assessment of a Coupled Electricity and Hydrogen Sector in the Texas Energy System in 2050
Oct 2024
Publication
Due to its ability to reduce emissions in the hard-to-abate sectors hydrogen is expected to play a significant role in future energy systems. This study modifies a sector-coupled dynamic modeling framework for electricity and hydrogen by including policy constraints carbon prices and possible hydrogen pathways and applies it to Texas in 2050. The impact of financial policies including the US clean hydrogen production tax credit on required infrastructure and costs are explored. Due to low natural gas prices financial levers are necessary to promote low-carbon hydrogen production as the optimized solution. The Levelized Costs of Hydrogen are found to be $1.50/kg in the base case (primarily via steam methane reformation production) and lie between $2.10 - 3.10/kg when production is via renewable electrolysis. The supporting infrastructure required to supply those volumes of renewable hydrogen is immense. The hydrogen tax credit was found to be enough to drive production via electrolysis.
Green Hydrogen Cooperation between Egypt and Europe: The Perspective of Locals in Suez and Port Said
Jun 2024
Publication
Hydrogen produced by renewable energy sources (green hydrogen) is at the centrepiece of European decarbonization strategies necessitating large imports from third countries. Egypt potentially stands out as major production hub. While technical and economic viability are broadly discussed in literature analyses of local acceptance are absent. This study closes this gap by surveying 505 locals in the Suez Canal Economic Zone (Port Said and Suez) regarding their attitudes towards renewable energy development and green hydrogen production. We find overall support for both national deployment and export to Europe. Respondents see a key benefit in rising income thereby strongly underlying the economic argument. Improved trade relationships or improved political relationships are seen as potential benefits of export but as less relevant for engaging in cooperation putting a spotlight on local benefits. Our study suggests that the local population is more positive than negative towards the development and scaling up of green hydrogen projects in Egypt.
Mapping Local Green Hydrogen Cost-potentials by a Multidisciplinary Approach
Sep 2024
Publication
S. Ishmam,
Heidi Heinrichs,
C. Winkler,
B. Bayat,
Amin Lahnaoui,
Solomon Nwabueze Agbo,
E.U. Pena Sanchez,
David Franzmann,
N. Oijeabou,
C. Koerner,
Y. Michael,
B. Oloruntoba,
C. Montzka,
H. Vereecken,
H. Hendricks Franssen,
J. Brendtf,
S. Brauner,
W. Kuckshinrichs,
S. Venghaus,
Daouda Kone,
Bruno Korgo,
Kehinde Olufunso Ogunjobi,
V. Chiteculo,
Jane Olwoch,
Z. Getenga,
Jochen Linßen and
Detlef Stolten
For fast-tracking climate change response green hydrogen is key for achieving greenhouse gas neutral energy systems. Especially Sub-Saharan Africa can benefit from it enabling an increased access to clean energy through utilizing its beneficial conditions for renewable energies. However developing green hydrogen strategies for Sub-Saharan Africa requires highly detailed and consistent information ranging from technical environmental economic and social dimensions which is currently lacking in literature. Therefore this paper provides a comprehensive novel approach embedding the required range of disciplines to analyze green hydrogen costpotentials in Sub-Saharan Africa. This approach stretches from a dedicated land eligibility based on local preferences a location specific renewable energy simulation locally derived sustainable groundwater limitations under climate change an optimization of local hydrogen energy systems and a socio-economic indicator-based impact analysis. The capability of the approach is shown for case study regions in Sub-Saharan Africa highlighting the need for a unified interdisciplinary approach.
Advancing Renewable Energy: Strategic Modeling and Optimization of Flywheel and Hydrogen-based Energy System
Sep 2024
Publication
This study introduces a hybrid energy storage system that combines advanced flywheel technology with hydrogen fuel cells and electrolyzers to address the variability inherent in renewable energy sources like solar and wind. Flywheels provide quick energy dispatch to meet peak demand while hydrogen fuel cells offer sustained power over extended periods. The research explores the strategic integration of these technologies within a hybrid photovoltaic (PV)-flywheel‑hydrogen framework aiming to stabilize the power supply. To evaluate the impact of flywheel integration on system sizing and load fluctuations simulations were conducted both before and after the flywheel integration. The inclusion of the flywheel resulted in a more balanced energy production and consumption profile across different seasons notably reducing the required fuel cell capacity from 100 kW to 30 kW. Additionally the integration significantly enhanced system stability enabling the fuel cell and electrolyzer to operate at consistent power during load fluctuations. The system achieved efficiencies of 71.42 % for the PEM electrolyzer and 62.14 % for the PEM fuel cell. However the introduction of the flywheel requires a higher capacity of PV modules and a larger electrolyzer. The overall flywheel's efficiency was impacted by parasitic energy losses resulting in an overall efficiency of 46.41 %. The minimum efficiency observed across various scenarios of the model studied was 3.14 % highlighting the importance of considering these losses in the overall system design. Despite these challenges the hybrid model demonstrated a substantial improvement in the reliability and stability of renewable energy systems effectively bridging short-term and long-term energy storage solutions.
A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances
Aug 2024
Publication
Climate change is a major concern for the sustainable development of global energy systems. Hydrogen produced through water electrolysis offers a crucial solution by storing and generating renewable energy with minimal environmental impact thereby reducing carbon emissions in the energy sector. Our research evaluates current hydrogen production technologies such as alkaline water electrolysis (AWE) proton exchange membrane water electrolysis (PEMWE) solid oxide electrolysis (SOEC) and anion exchange membrane water electrolysis (AEMWE). We systematically review life cycle assessments (LCA) for these technologies analyzing their environmental impacts and recent technological advancements. This study fills essential gaps by providing detailed LCAs for emerging technologies and evaluating their scalability and environmental footprints. Our analysis outlines the strengths and weaknesses of each technology guiding future research and assisting stakeholders in making informed decisions about integrating hydrogen production into the global energy mix. Our approach highlights operational efficiencies and potential sustainability enhancements by employing comparative analyses and reviewing advancements in membrane technology and electrocatalysts. A significant finding is that PEMWE when integrated with renewable energy sources offers rapid response capabilities that are vital for adaptive energy systems and reducing carbon footprints.
Life Cycle Costing Approaches of Fuel Cell and Hydrogen Systems: A Literature Review
Apr 2023
Publication
Hydrogen is a versatile energy carrier which can be produced from variety of feedstocks stored and transported in various forms for multi-functional end-uses in transportation energy and manufacturing sectors. Several regional national and supra-national climate policy frameworks emphasize the need value and importance of Fuel cell and Hydrogen (FCH) technologies for deep and sector-wide decarbonization. Despite these multi-faceted advantages familiar and proven FCH technologies such as alkaline electrolysis and proton-exchange membrane fuel cell (PEMFC) often face economic technical and societal barriers to mass-market adoption. There is no single unified standardized and globally harmonized normative definition of costs. Nevertheless the discussion and debates surrounding plausible candidates and/or constituents integral for assessing the economics and value proposition of status-quo as well as developmental FCH technologies are steadily increasing—Life Cycle Costing (LCC) being one of them if not the most important outcome of such exercises.<br/>To that end this review article seeks to improve our collective understanding of LCC of FCH technologies by scrutinizing close to a few hundred publications drawn from representative databases—SCOPUS and Web of Science encompassing several tens of technologies for production and select transportation storage and end-user utilization cases. This comprehensive review forms part of and serves as the basis for the Clean Hydrogen Partnership funded SH2E project whose ultimate goal is the methodical development a formal set of principles and guardrails for evaluating the economic environmental and social impacts of FCH technologies. Additionally the SH2E projects will also facilitate the proper comparison of different FCH technologies whilst reconciling range of technologies methodologies modelling assumptions and parameterization found in existing literature.
Assessment of the Green Hydrogen Value Chain in Cases of the Local Industry in Chile Applying an Optimization Model
May 2024
Publication
This study assessed the feasibility of integrating a green hydrogen value chain into the local industry examining two case studies by comparing four scenarios. The optimization focused on generating electricity from stationary renewable sources such as solar or through Power Purchase Agreements to produce sufficient hydrogen in electrolyzers. Current demand profiles renewable participation targets electricity supply sources levelized costs of energy and hydrogen and technology options were considered. The most cost-effective scenario showed a levelized cost of energy of 0.032 and 0.05 US$/kWh and a hydrogen cost below 1.0 US$/kgH2 for cases 1 and 2 respectively. A sensitivity analysis highlighted the critical influence of fuel cell technology on cost modification underscoring the importance of focusing cost reduction strategies on these technologies to enhance the economic viability of the green hydrogen value chain. Specifically a high sensitivity towards reducing the levelized costs of energy and hydrogen in the port sector with adjustments in fuel cell technology costs was identified indicating the need for specific policies and supports to facilitate their adoption.
Advancing Life Cycle Assessment of Sustainable Green Hydrogen Production Using Domain-Specific Fine-Tuning by Large Language Models Augmentation
Nov 2024
Publication
Assessing the sustainable development of green hydrogen and assessing its potential environmental impacts using the Life Cycle Assessment is crucial. Challenges in LCA like missing environmental data are often addressed using machine learning such as artificial neural networks. However to find an ML solution researchers need to read extensive literature or consult experts. This research demonstrates how customised LLMs trained with domain-specific papers can help researchers overcome these challenges. By starting small by consolidating papers focused on the LCA of proton exchange membrane water electrolysis which produces green hydrogen and ML applications in LCA. These papers are uploaded to OpenAI to create the LlamaIndex enabling future queries. Using the LangChain framework researchers query the customised model (GPT-3.5-turbo) receiving tailored responses. The results demonstrate that customised LLMs can assist researchers in providing suitable ML solutions to address data inaccuracies and gaps. The ability to quickly query an LLM and receive an integrated response across relevant sources presents an improvement over manually retrieving and reading individual papers. This shows that leveraging fine-tuned LLMs can empower researchers to conduct LCAs more efficiently and effectively.
Cost-optimal Design and Operation of Hydrogen Refueling Stations with Mechanical and Electrochemical Hydrogen Compressors
Sep 2024
Publication
Hydrogen refueling stations (HRS) can cause a significant fraction of the hydrogen refueling cost. The main cost contributor is the currently used mechanical compressor. Electrochemical hydrogen compression (EHC) has recently been proposed as an alternative. However its optimal integration in an HRS has yet to be investigated. In this study we compare the performance of a gaseous HRS equipped with different compressors. First we develop dynamic models of three process configurations which differ in the compressor technology: mechanical vs. electrochemical vs. combined. Then the design and operation of the compressors are optimized by solving multi-stage dynamic optimization problems. The optimization results show that the three configurations lead to comparable hydrogen dispensing costs because the electrochemical configuration exhibits lower capital cost but higher energy demand and thus operating cost than the mechanical configuration. The combined configuration is a trade-off with intermediate capital and operating cost.
Perspective on the Development and Integration of Hydrogen Sensors for Fuel Cell Control
Oct 2024
Publication
The measurement of hydrogen concentration in fuel cell systems is an important prerequisite for the development of a control strategy to enhance system performance reduce purge losses and minimize fuel cell aging effects. In this perspective paper the working principles of hydrogen sensors are analyzed and their requirements for hydrogen control in fuel cell systems are critically discussed. The wide measurement range absence of oxygen high humidity and limited space turn out to be most limiting. A perspective on the development of hydrogen sensors based on palladium as a gas-sensitive metal and based on the organic magnetic field effect in organic lightemitting devices is presented. The design of a test chamber where the sensor response can easily be analyzed under fuel cell-like conditions is proposed. This allows the generation of practical knowledge for further sensor development. The presented sensors could be integrated into the end plate to measure the hydrogen concentration at the anode in- and outlet. Further miniaturization is necessary to integrate them into the flow field of the fuel cell to avoid fuel starvation in each single cell. Compressed sensing methods are used for more efficient data analysis. By using a dynamical sensor model control algorithms are applied with high frequency to control the hydrogen concentration the purge process and the recirculation pump.
Closed Loop Model Predictive Control of a Hybrid Battery-Hydrogen Energy Storage System using Mixed-Integer Linear Programming
Mar 2024
Publication
The derivation of an efficient operational strategy for storing intermittent renewable energies using a hybrid battery-hydrogen energy storage system is a difficult task. One approach for deriving an efficient operational strategy is using mathematical optimization in the context of model predictive control. However mathematical optimization derives an operational strategy based on a non-exact mathematical system representation for a specified prediction horizon to optimize a specified target. Thus the resulting operational strategies can vary depending on the optimization settings. This work focuses on evaluating potential improvements in the operational strategy for a hybrid batteryhydrogen energy storage system using mathematical optimization. To investigate the operation a simulation model of a hybrid energy storage system and a tailor-made mixed integer linear programming optimization model of this specific system are utilized in the context of a model predictive control framework. The resulting operational strategies for different settings of the model predictive control framework are compared to a rule-based controller to show the potential benefits of model predictive control compared to a conventional approach. Furthermore an in-depth analysis of different factors that impact the effectiveness of the model predictive controller is done. Therefore a sensitivity analysis of the effect of different electricity demands and resource sizes on the performance relative to a rule-based controller is conducted. The model predictive controller reduced the energy consumption by at least 3.9 % and up to 17.9% compared to a rule-based controller. Finally Pareto fronts for multi-objective optimizations with different prediction and control horizons are derived and compared to the results of a rule-based controller. A cost reduction of up to 47 % is achieved by a model predictive controller with a prediction horizon of 7 days and perfect foresight. Keywords: Model Predictive Control Optimization Mixed Integer Linear Programming Hybrid Battery-Hydrogen Energy Storage System
Net Zero Fuel (Mixed Hydrogen and Biofuels) Cement Clinker: Characterisation, Microstructure, and Performance
Oct 2024
Publication
Over 35% of the CO2 associated with cement production comes from operational energy. The cement industry needs alternative fuels to meet its net zero emissions target. This study investigated the influence of hydrogen mixed with biofuels herein designated net zero fuel as an alternative to coal on the clinker quality and performance of cement produced in an industrial cement plant. Scanning electron microscopy X-ray diffraction and nuclear magnetic resonance were coupled to study the clinker mineralogy and polymorphs. Hydration and microstructure development in plain and slag blended cements based on the clinker were compared to commercial cement equivalent. The results revealed a lower alite/belite ratio but a significant proportion of the belite was of the α’H-C2S polymorph. These reacted faster and compensated for the alite/belite ratio. Gel and micro-capillary pores were densified which reduced total porosity and attained comparable strength to the reference plain and blended cement. This study demonstrates that the investigated net zero fuel-produced clinker meets compositional and strength requirements for plain and blended cement providing a feasible pathway for the cement industry to lower its operational carbon significantly.
Electrification or Hydrogen? The Challenge of Decarbonizing Industrial (High-Temperature) Process Heat
Oct 2024
Publication
The decarbonization of industrial process heat is one of the bigger challenges of the global energy transition. Process heating accounts for about 20% of final energy demand in Germany and the situation is similar in other industrialized nations around the globe. Process heating is indispensable in the manufacturing processes of products and materials encountered every day ranging from food beverages paper and textiles to metals ceramics glass and cement. At the same time process heating is also responsible for significant greenhouse gas emissions as it is heavily dependent on fossil fuels such as natural gas and coal. Thus process heating needs to be decarbonized. This review article explores the challenges of decarbonizing industrial process heat and then discusses two of the most promising options the use of electric heating technologies and the substitution of fossil fuels with low-carbon hydrogen in more detail. Both energy carriers have their specific benefits and drawbacks that have to be considered in the context of industrial decarbonization but also in terms of necessary energy infrastructures. The focus is on high-temperature process heat (>400 ◦C) in energy-intensive basic materials industries with examples from the metal and glass industries. Given the heterogeneity of industrial process heating both electricity and hydrogen will likely be the most prominent energy carriers for decarbonized high-temperature process heat each with their respective advantages and disadvantages.
Green Hydrogen Transitions Deepen Socioecological Risks and Extractivist Patterns: Evidence from 28 Perspective Exporting Countries in the Global South
Sep 2024
Publication
The global green hydrogen rush is prone to repeat extractivist patterns at the expense of economies ecologies and communities in the production zones in the Global South. With a socio-ecological risk analysis grounded in energy water and environmental justice scholarship we systematically assess the risks of the ‘green’ hydrogen transition and related injustices arising in 28 countries in the Global South with regard to energy water land and global justice dimensions. Our findings show that risks materialize through the exclusion of affected communities and civil society the enclosure of land and resources for extractivist purposes and through the externalization of socio-ecological costs and conflicts. We further demonstrate that socio-ecological risks are enhanced through country-specific conditions such as water scarcity historical continuities such as post-colonial land tenure systems as well as repercussions of a persistently uneven global politico-economic order. Contributing to debates on power inequality and justice in the global green hydrogen transition we argue that addressing hydrogen risks requires a framework of environmental justice and a transformative perspective that encompasses structural shifts in the global economy including degrowth and a decentering of industrial hegemonies in the Global North.
Safety of Hydrogen Storage Technologies
Oct 2024
Publication
While hydrogen is regularly discussed as a possible option for storing regenerative energies its low minimum ignition energy and broad range of explosive concentrations pose safety challenges regarding hydrogen storage and there are also challenges related to hydrogen production and transport and at the point of use. A risk assessment of the whole hydrogen energy system is necessary to develop hydrogen utilization further. Here we concentrate on the most important hydrogen storage technologies especially high-pressure storage liquid hydrogen in cryogenic tanks methanol storage and salt cavern storage. This review aims to study the most recent research results related to these storage techniques by describing typical sensors and explosion protection measures thus allowing for a risk assessment of hydrogen storage through these technologies.
19 Import Options for Green Hydrogen and Derivatives - An Overview of Efficiencies and Technology Readiness Levels
Oct 2024
Publication
The import of hydrogen and derivatives forms part of many national strategies and is fundamental to achieving climate protection targets. This paper provides an overview and technical comparison of import pathways for hydrogen and derivatives in terms of efficiency technological maturity and development and construction times with a focus on the period up to 2030. The import of hydrogen via pipeline has the highest system efficiency at 57–67 % and the highest technological maturity with a technology readiness level (TRL) of 8–9. The import of ammonia and methanol via ship and of SNG via pipeline shows efficiencies in the range of 39–64 % and a technological maturity of TRL 7 to 9 when using point sources. Liquid hydrogen LOHC and Fischer-Tropsch products have the lowest efficiency and TRL in comparison. The use of direct air capture (DAC) reduces efficiency and TRL considerably. Reconversion of the derivatives to hydrogen is also associated with high losses and is not achievable for all technologies on an industrial scale up to 2030. In the short to medium term import routes for derivatives that can utilise existing infrastructures and mature technologies are the most promising for imports. In the long term the most promising option is hydrogen via pipelines.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
Hydrogen Production from Wastewater: A Comprehensive Review of Conventional and Solar Powered Technologies
Mar 2024
Publication
The need to reduce the carbon footprint of conventional energy sources has made green hydrogen a promising solution for the energy transition. The most environmentally friendly way to produce hydrogen is through water-based production using renewable energy. However the availability of fresh water is limited so switching to wastewater instead of fresh water is the key solution to this problem. In response to this issue the present review reports the main findings of the research studies dealing with the feasibility of hydrogen production from wastewater using various technologies including biological electrochemical and advanced oxidation routes. These methods have been studied in a large number of experiments with the aim of investigating and improving the potential of each method. On the other hand the maturity of solar energy technologies has led researchers to focus on the possibility of harnessing this source and combining it with wastewater treatment techniques for the production of green hydrogen. Therefore the present review pays special attention to solar driven hydrogen production from wastewater by highlighting the potential of several technologies for simultaneous water treatment and green hydrogen production from wastewater. Recent results limitations challenges possible improvements and techno-economic assessments reported by several authors as well as future directions of research and industrial implementation in this field are reported.
Generalized Thermodynamic Modelling of Hydrogen Storage Tankes for Truck Application
Mar 2024
Publication
Hydrogen-driven heavy-duty trucks are a promising technology for reducing CO2 emissions in the transportation sector. Thus storing hydrogen efficiently onboard is vital. The three available or currently developed physical hydrogen storage technologies (compressed gaseous subcooled liquid and cryo-compressed hydrogen) are promising solutions. For a profound thermodynamic comparison of these storage systems a universally applicable model is required. Thus this article introduces a generalized thermodynamic model and conducts thermodynamic comparisons in terms of typical drive cycle scenarios. Therefore a model introduced by Hamacher et al. [1] for cryo-compressed hydrogen tanks is generalized by means of an explicit model formulation using the property ��2� from REFPROP [2] which is understood as a generic specific isochoric two-phase heat capacity. Due to an implemented decision logic minor changes to the equation system are automatically made whenever the operation mode or phase of the tank changes. The resulting model can simulate all three storage tank systems in all operating scenarios and conditions in the single- and two-phase region. Additionally the explicit model formulation provides deeper insights into the thermodynamic processes in the tank. The model is applied to the three physical hydrogen storage technologies to compare drive cycles heat requirement dormancy behavior and optimal usable density. The highest driving ranges were achieved with cryo-compressed hydrogen however it also comes with higher heating requirements compared to subcooled liquid hydrogen.
What will be the Hydrogen and Power Demands of the Process Industry in a Climate-neutral Germany?
Apr 2024
Publication
The defossilization of industry has far-reaching implications regarding the future demand for hydrogen and other forms of energy. This paper presents and applies a fundamental bottom-up model that relies on techno-economic data of industrial production processes. Its aim is to identify across a range of scenarios the most cost-effective low-carbon options considering a variety of production systems. Subsequently it derives the hydrogen and electricity demand that would result from the implementation of these least-cost low-carbon options in process industries in Germany. Aligning with the German government's target year for achieving climate neutrality this study’s reference year is 2045. The primary contribution lies in analyzing which hydrogen-based and direct electrification solutions would be cost-effective for a range of energy price levels under climate-neutral industrial production and what the resulting hydrogen and electricity demand would be. To this end the methodology of this paper comprises the following steps: selection of the relevant industries (I) definition of conventional reference production systems and their low-carbon options (II) investigation and processing of the techno-economic data of the standardized production systems (III) establishment of a scenario framework (IV) determination of the least-cost low-carbon solution of a conventional reference production system under the scenario assumptions made (V) and estimation of the resulting hydrogen and electricity demand (VI). According to the results the expected industrial hydrogen consumption in 2045 ranges from 255 TWh for higher hydrogen prices in or above the range of onshore wind-based green hydrogen supply costs to up to 542 TWh for very low hydrogen prices corresponding to typical blue hydrogen production costs. Meanwhile the direct electricity consumption of the process industries in the results ranges from 122 TWh for these rather low hydrogen prices to 368 TWh for the higher hydrogen prices in the region of or above the hydrogen supply costs from the electrolysis of energy from an onshore wind farm. Most of the break-even hydrogen prices that are relevant to the choice of low-carbon options are in the range of the benchmark purchase costs for blue hydrogen and green hydrogen produced from offshore wind power which span between €40 per MWh and €97 per MWh.
No more items...