China, People’s Republic
Hydrogen Production by Water Electrolysis with Low Power and High Efficiency Based on Pre‐Magnetic Polarization
Mar 2022
Publication
In this paper a method of efficient hydrogen production using low‐power electrolysis based on pre‐magnetic polarization was proposed in order to improve the rate of hydrogen produc‐ tion by water electrolysis with reduced energy consumption molecular polarity and stress–strain characteristics of distilled water under the condition of a pre‐magnetic field. By constructing a mi‐ crophysical model of hydrogen proton energy‐level transition and a macroscopic mathematical model corresponding to magnetization vector‐polarization hydrogen proton concentration in the pre‐magnetic field the ionic conductivity electrolyte current density interelectrode voltage and hydrogen production efficiency under a varying magnetic field were qualitatively and quantita‐ tively analyzed. In addition an adjustable pre‐magnetic polarization hydrolyzing hydrogen pro‐ duction test platform was set up to verify the effectiveness of the proposed method. The repeated test results within a magnetic field strength range of 0–10000 GS showed that the conductivity of distilled water after pre‐magnetic polarization treatment increased by 2–3 times the electrolytic current density of the PEM (Proton Exchange Membrane) increased with increasing magnetic field strength the voltage between the poles continuously decreased and the hydrogen production rate was significantly improved. When the magnetic field strength reached 10000 GS the rate of hydro‐ gen production by the electrolysis of distilled water increased by 15%–20% within a certain period of time.
Temperature Effect on the Mechanical Properties of Liner Materials used for Type IV Hydrogen Storage Tanks
Sep 2021
Publication
Type IV hydrogen storage tanks play an important role in hydrogen fuel cell vehicles (HFCVs) due to their superiority of lightweight good corrosion and fatigue resistance. It is planned to be used between -40℃ and 85℃ at which the polymer liner may have a degradation of mechanical properties and buckling collapse. This demand a good performance of liner materials in that temperature range. In this article the temperature effect on mechanical properties of polyamide 6 (PA6) liner material including specimens with weld seam was investigated via the stress-strain curve (S-S curve) macroscopic and microscopic morphology. Considering that the mechanical properties will change after the liner molding process this test takes samples directly from the liner. Results show that the tensile strength and tensile modulus increased by 2.46 times and 10.6 times respectively with the decrease of temperature especially in the range from 50℃ to -90℃. For the elongation at break and work of fracture they do not monotonously increase with the temperature up. Both of them reduce when the temperature rises from 20°C to 50°C especially for the work of fracture decreasing by 63%. The weld seam weakens the mechanical properties and the elongation at break and work of fracture are more obvious which are greater than 40% at each temperature. In addition the SEM images indicate that the morphology of fracture surface at -90°C is different from that at other temperatures which is a sufficient evidence of toughness reducing in low temperature.
Optimization of Operating Hydrogen Storage System for Coal–Wind–Solar Power Generation
Jul 2022
Publication
To address the severity of the wind and light abandonment problem and the economics of hydrogen energy production and operation this paper explores the problem of multi-cycle resource allocation optimization of hydrogen storage systems for coal–wind–solar power generation. In view of the seriousness of the problem of abandoning wind and photovoltaic power and the economy of hydrogen production and operation the node selection and scale setting issues for hydrogen production and storage as well as decision-making problems such as the capacity of new transmission lines and new pipelines and route planning are studied. This research takes the satisfaction of energy supply as the basic constraint and constructs a multi-cycle resource allocation optimization model for an integrated energy system aiming to achieve the maximum benefit of the whole system. Using data from Inner Mongolia where wind abandonment and power limitation are severe and Beijing and Shanxi provinces where hydrogen demand is high this paper analyzes the benefits of the hydrogen storage system for coal–wind–solar power generation and explores the impact of national subsidy policies and technological advances on system economics.
Two-stage Optimization of Hydrogen and Storage Coordination for a Multi-region Flexible Intermodal Multi-energy Port System
Jan 2024
Publication
To address the issue of imbalanced electricity and hydrogen supply and demand in the flexible multi-energy port area system a multi-regional operational optimization and energy storage capacity allocation strategy considering the working status of flexible multi-status switches is proposed. Firstly based on the characteristics of the port area system models for system operating costs generation equipment energy storage devices flexible multi-status switches and others are established. Secondly the system is subjected to a first-stage optimization where different regions are optimized individually. The working periods of flexible multi-status switches are determined based on the results of this first-stage optimization targeting the minimization of the overall daily operating costs while ensuring 100% integration of renewable energy in periods with electricity supply-demand imbalances. Subsequently additional constraints are imposed based on the results of the first-stage optimization to optimize the entire system obtaining power allocation during system operation as well as power and capacity requirements for energy storage devices and flexible multi-status switches. Finally the proposed approach is validated through simulation examples demonstrating its advantages in terms of economic efficiency reduced power and capacity requirements for energy storage devices and carbon reduction.
Operational Optimization of Regional Integrated Energy Systems with Heat Pumps and Hydrogen Renewable Energy under Integrated Demand Response
Jan 2024
Publication
A regional integrated energy system (RIES) synergizing multiple energy forms is pivotal for enhancing renewable energy use and mitigating the greenhouse effect. Considering that the equipment of the current regional comprehensive energy system is relatively simple there is a coupling relationship linking power generation refrigeration and heating in the cogeneration system which is complex and cannot directly meet various load demands. This article proposes a RIES optimization model for bottom-source heat pumps and hydrogen storage systems in the context of comprehensive demand response. First P2G electric hydrogen production technology was introduced into RIES to give full play to the high efficiency advantages of hydrogen energy storage system and the adjustable thermoelectric ratio of the HFC was considered. The HFC could adjust its own thermoelectric ratio according to the system load and unit output. Second through the groundsource heat pump’s cleaning efficiency function further separation and cooling could be achieved. The heat and electrical output of RIES improved the operating efficiency of the system. Thirdly a comprehensive demand response model for heating cooling and electricity was established to enable users to reasonably adjust their own energy use strategies to promote the rational distribution of energy in the system. The model integrates power-to-gas (P2G) technology leveraging the tunable thermoelectric ratio of a hydrogen fuel cell (HFC) to optimize the generation of electricity and heat while maximizing the efficiency of the hydrogen storage system. Empirical analysis substantiated the proposed RIES model’s effectiveness and economic benefits when integrating ground-source HP and electric hydrogen production with IDR. Compared with the original model the daily operating cost of the proposed model was reduced by RMB 1884.16.
Optimal Multi-layer Economical Schedule for Coordinated Multiple Mode Operation of Wind-solar Microgrids with Hybrid Energy Storage Systems
Nov 2023
Publication
The aim of this paper is the design and implementation of an advanced model predictive control (MPC) strategy for the management of a wind–solar microgrid (MG) both in the islanded and grid-connected modes. The MG includes energy storage systems (ESSs) and interacts with external hydrogen and electricity consumers as an extra feature. The system participates in two different electricity markets i.e. the daily and real-time markets characterized by different time-scales. Thus a high-layer control (HLC) and a low-layer control (LLC) are developed for the daily market and the real-time market respectively. The sporadic characteristics of renewable energy sources and the variations in load demand are also briefly discussed by proposing a controller based on the stochastic MPC approach. Numerical simulations with real wind and solar generation profiles and spot prices show that the proposed controller optimally manages the ESSs even when there is a deviation between the predicted scenario determined at the HLC and the real-time one managed by the LLC. Finally the strategy is tested on a lab-scale MG set up at Khalifa University Abu Dhabi UAE.
Optimization of Emergency Alternatives for Hydrogen Leakage and Explosion Accidents Based on Improved VIKOR
Nov 2023
Publication
Hydrogen leakage and explosion accidents have obvious dangers ambiguity of accident information and urgency of decision-making time. These characteristics bring challenges to the optimization of emergency alternatives for such accidents. Effective emergency decision making is crucial to mitigating the consequences of accidents and minimizing losses and can provide a vital reference for emergency management in the field of hydrogen energy. An improved VIKOR emergency alternatives optimization method is proposed based on the combination of hesitant triangular fuzzy set (HTFS) and the cumulative prospect theory (CPT) termed the HTFS-CPT-VIKOR method. This method adopts the hesitant triangular fuzzy number to represent the decision information on the alternatives under the influence of multi-attributes constructs alternatives evaluation indicators and solves the indicator weights by using the deviation method. Based on CPT positive and negative ideal points were used as reference points to construct the prospect matrix which then utilized the VIKOR method to optimize the emergency alternatives for hydrogen leakage and explosion accidents. Taking an accident at a hydrogen refueling station as an example the effectiveness and rationality of the HTFS-CPT-VIKOR method were verified by comparing with the existing three methods and conducting parameter sensitivity analysis. Research results show that the HTFS-CPT-VIKOR method effectively captures the limited psychological behavior characteristics of decision makers and enhances their ability to identify filter and judge ambiguous information making the decisionmaking alternatives more in line with the actual environment which provided strong support for the optimization of emergency alternatives for hydrogen leakage and explosion accidents.
Multi-Objective Robust Optimization of Integrated Energy System with Hydrogen Energy Storage
Feb 2024
Publication
A novel multi-objective robust optimization model of an integrated energy system with hydrogen storage (HIES) considering source–load uncertainty is proposed to promote the low-carbon economy operation of the integrated energy system of a park. Firstly the lowest total system cost and carbon emissions are selected as the multi-objective optimization functions. The Pareto front solution set of the objective function is applied by compromise planning and the optimal solution among them is obtained by the maximum–minimum fuzzy method. Furthermore the robust optimization (RO) approach is introduced to cope with the source–load uncertainty effectively. Finally it is demonstrated that the illustrated HIES can significantly reduce the total system cost carbon emissions and abandoned wind and solar power. Meanwhile the effectiveness of the proposed model and solution method is verified by analyzing the influence of multi-objective solutions and a robust coefficient on the Chongli Demonstration Project in Hebei Province.
A Review of the Research Progress and Application of Key Components in the Hydrogen Fuel Cell System
Jan 2024
Publication
The hydrogen cycle system one of the main systems used for hydrogen fuel cells has many advantages. It can improve the efficiency the water capacity and the management of thermal fuel cells. It can also enhance the safety of the system. Therefore it is widely used in hydrogen fuel cell vehicles. We introduce the structure and principles of hydrogen cycle pumps ejectors and steam separators and analyze and summarize the advantages of the components as well as reviewing the latest research progress and industrialization status of hydrogen cycle pumps and ejectors. The technical challenges in hydrogen circulation systems and the development direction of key technologies in the future are discussed. This paper aims to provide a reference for research concerning hydrogen energy storage application technology in hydrogen fuel cell systems.
Numerical Simulation of the Transport and the Thermodynamic Properties of Imported Natural Gas Inected with Hydrogen in the Manifold
Nov 2023
Publication
Blending hydrogen with natural gas (NG) is an efficient method for transporting hydrogen on a large scale at a low cost. The manifold at the NG initial station is an important piece of equipment that enables the blending of hydrogen with NG. However there are differences in the components and component contents of imported NG from different countries. The components of hydrogen-blended NG can affect the safety and efficiency of transportation through pipeline systems. Therefore numerical simulations were performed to investigate the blending process and changes in the thermodynamic properties of four imported NGs and hydrogen in the manifold. The higher the heavy hydrocarbon content in the imported NG the longer the distance required for the gas to mix uniformly with hydrogen in the pipeline. Hydrogen blending reduces the temperature and density of NG. The gas composition is the main factor affecting the molar calorific value of a gas mixture and hydrogen blending reduces the molar calorific value of NG. The larger the content of high-molar calorific components in the imported NG the higher the molar calorific value of the gas after hydrogen blending. Increasing both the temperature and hydrogen mixing ratio reduces the Joule-Thomson coefficient of the hydrogen-blended NG. The results of this study provide technical references for the transport of hydrogen-blended NG.
Green Hydrogen Credit Subsidized Renewable Energy-hydrogen Business Models for Achieving the Carbon Netural Future
Feb 2024
Publication
The global resurgence of hydrogen as a clean energy source particularly green hydrogen derived from renewable energy is pivotal for achieving a carbon-neutral future. However scalability poses a significant challenge. This research proposes innovative business models leveraging the low-emission property of green hydrogen to reduce its financial costs thereby fostering its widespread adoption. Key components of the business workflow are elaborated mathematical formulations of market parameters are derived and case studies are presented to demonstrate the feasibility and efficiency of these models. Results demonstrate that the substantial costs associated with the current hydrogen industry can be effectively subsidized via the implementation of proposed business models. When the carbon emission price falls within the range of approximately 86–105 USD/ton free access to hydrogen becomes a viable option for end-users. This highlights the significance and promising potential of the proposed business models within the green hydrogen credit framework.
Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties
Nov 2023
Publication
Hydrogen production modules (HPMs) play a crucial role in harnessing abundant photovoltaic power by producing and supplying hydrogen to factories resulting in significant operational cost reductions and efficient utilization of the photovoltaic panel output. However the output of photovoltaic power is stochastic which will affect the revenue of investing in an HPM. This paper presents a comprehensive analysis of HPMs starting with the modeling of their operational process and investigating their influence on distribution system operations. Building upon these discussions a deterministic optimization model is established to address the corresponding challenges. Furthermore a two-stage stochastic planning model is proposed to determine optimal locations and sizes of HPMs in distribution systems accounting for uncertainties. The objective of the twostage stochastic planning model is to minimize the distribution system’s operational costs plus the investment costs of the HPM subject to power flow constraints. To tackle the stochastic nature of photovoltaic power a data-driven algorithm is introduced to cluster historical data into representative scenarios effectively reducing the planning model’s scale. To ensure an efficient solution a Benders’ decomposition-based algorithm is proposed which is an iterative method with a fast convergence speed. The proposed model and algorithms are validated using a widely utilized IEEE 33-bus system through numerical experiments demonstrating the optimality of the HPM plan generated by the algorithm. The proposed model and algorithms offer an effective approach for decision-makers in managing uncertainties and optimizing HPM deployment paving the way for sustainable and efficient energy solutions in distribution systems. Sensitivity analysis verifies the optimality of the HPM’s siting and sizing obtained by the proposed algorithm which also reveals immense economic and environmental benefits.
Research on Hydrogen Production System Technology Based on Photovoltaic-Photothermal Coupling Electrolyzer
Dec 2023
Publication
Solar hydrogen production technology is a key technology for building a clean low-carbon safe and efficient energy system. At present the intermittency and volatility of renewable energy have caused a lot of “wind and light.” By combining renewable energy with electrolytic water technology to produce high-purity hydrogen and oxygen which can be converted into electricity the utilization rate of renewable energy can be effectively improved while helping to improve the solar hydrogen production system. This paper summarizes and analyzes the research status and development direction of solar hydrogen production technology from three aspects. Energy supply mode: the role of solar PV systems and PT systems in this technology is analyzed. System control: the key technology and system structure of different types of electrolytic cells are introduced in detail. System economy: the economy and improvement measures of electrolytic cells are analyzed from the perspectives of cost consumption efficiency and durability. Finally the development prospects of solar hydrogen production systems in China are summarized and anticipated. This article reviews the current research status of photovoltaic-photothermal coupled electrolysis cell systems fills the current research gap and provides theoretical reference for the further development of solar hydrogen production systems.
Safety Risk and Strategy Analysis of On-Board Hydrogen System of Hydrogen Fuel Cell Vehicles in China
Nov 2023
Publication
Hydrogen fuel cell vehicles (HFCVs) represent an important breakthrough in the hydrogen energy industry. The safe utilization of hydrogen is critical for the sustainable and healthy development of hydrogen fuel cell vehicles. In this study risk factors and preventive measures are proposed for on-board hydrogen systems during the process of transportation storage and use of fuel cell vehicles. The relevant hydrogen safety standards in China are also analyzed and suggestions involving four safety strategies and three safety standards are proposed.
Research on Energy Management Method of Fuel Cell/Supercapacitor Hybrid Trams Based on Optimal Hydrogen Consumption
Jul 2023
Publication
In this paper based on the operating states and characteristics of fuel cell/supercapacitor hybrid trams an optimal hydrogen energy management method is proposed. This method divides the operating states into two parts: traction state and non-traction state. In the traction state the real-time loss function of the hybrid power system which is used to obtain the fuel cell optimal output power under the different demand powers and supercapacitor voltage is established. In the non-traction state the constant-power charging method which is obtained by solving the power-voltage charging model is used to ensure the supercapacitor voltage of the beginning-state and the end-state in an entire operation cycle are the same. The RT-LAB simulation platform is used to verify that the proposed method has the ability to control the hybrid real-time system. Using the comparative experiment between the proposed method and power-follow method the results show that the proposed method offers a significant improvement in both fuel cell output stability and hydrogen consumption in a full operation cycle.
Evaluation of Hydrogen Addition on Combustion and Emission Characteristics of Dual-Fuel Diesel Engines with Different Compression Ratios
Sep 2023
Publication
In this paper a computational fluid dynamics (CFD) model was established and verified on the basis of experimental results and then the effect of hydrogenation addition on combustion and emission characteristics of a diesel–hydrogen dual-fuel engine fueled with hydrogenation addition (0% 5% and 10%) under different hydrogenation energy shares (HESs) and compression ratios (CRs) were investigated using CONVERGE3.0 software. And this work assumed that the hydrogen and air were premixed uniformly. The correctness of the simulation model was verified by experimental data. The values of HES are in the range of 0% 5% 10% and 15%. And the values of CR are in the range of 14 16 18 and 20. The results of this study showed that the addition of hydrogen to diesel fuel has a significant effect on the combustion characteristics and the emission characteristics of diesel engines. When the HES was 15% the in-cylinder pressure increased by 10.54%. The in-cylinder temperature increased by 15.11%. When the CR was 20 the in-cylinder pressure and the in-cylinder temperature increased by 66.10% and 13.09% respectively. In all cases HC CO CO2 and soot emissions decreased as the HES increased. But NOx emission increased.
Distributionally Robust Optimal Scheduling of Integrated Energy Systems Including Hydrogen Fuel Cells Considering Uncertainties
Aug 2023
Publication
The economic operation of the integrated energy system faces the problems of coupling between energy production and conversion equipment in the system and the imbalance of various energy demands. Therefore taking system safety as the constraint and minimum economic cost as the objective function including fuel cost operation and maintenance cost this paper proposes the operation dispatching model of the integrated energy system based on hydrogen fuel cell (HFC) including HFC photovoltaic wind turbine electric boiler electric chiller absorption chiller electric energy storage and thermal energy storage equipment. On this basis a distributionally robust optimization (DRO) model is introduced to deal with the uncertainty of wind power and photovoltaic output. In the distributionally robust optimization model Kullback–Leibler (KL) divergence is used to construct an ambiguity set which is mainly used to describe the prediction errors of renewable energy output. Finally the DRO economic dispatching model of the HFC integrated energy system (HFCIES) is established. Besides based on the same load scenario the economic benefits of hybrid energy storage equipment are discussed. The dispatching results show that compared with the scenario of only electric energy storage and only thermal energy storage the economic cost of the scenario of hybrid electric and thermal storage can be reduced by 3.92% and 7.55% respectively and the use of energy supply equipment can be reduced and the stability of the energy storage equipment can be improved.
Off-grid Wind/Hydrogen Systems with Multi-electrolyzers: Optimized Operational Strategies
Sep 2023
Publication
Optimized operation of wind/hydrogen systems can increase the system efficiency and further reduce the hydrogen production cost. In this regard extensive research has been done but there is a lack of detailed electrolyzer models and effective management of multiple electrolyzers considering their physical restrictions. This work proposes electrolyzer models that integrate the efficiency variation caused by load level change start–stop cycle (including hot and cold start) thermal management and degradation caused by frequent starts. Based on the proposed models three operational strategies are considered in this paper: two traditionally utilized methods simple start–stop and cycle rotation strategies and a newly proposed rolling optimizationbased strategy. The results from daily operation show that the new strategy results in a more balanced load level among the electrolyzers and a more stable temperature. Besides from a yearly operation perspective it is found that the proposed rolling optimization method results in more hydrogen production higher system efficiency and lower LCOH. The new method leads to hydrogen production of 311297 kg compared to 289278 kg and 303758 kg for simple start–stop and cycle rotation methods. Correspondingly the system efficiencies for the new simple start–stop and cycle rotation methods are 0.613 0.572 and 0.587. The resulting LCOH from the new method is 3.89 e/kg decreasing by 0.35 e/kg and 0.21 e/kg compared to the simple start–stop and cycle rotation methods. Finally the proposed model is compared with two conventional models to show its effectiveness in revealing more operational details and reliable results.
Real-Time Energy Management Strategy of Hydrogen Fuel Cell Hybrid Electric Vehicles Based on Power Following Strategy–Fuzzy Logic Control Strategy Hybrid Control
Nov 2023
Publication
Fuel cell hybrid electric vehicles have the advantages of zero emission high efficiency and fast refuelling etc. and are one of the key directions for vehicle development. The energy management problem of fuel cell hybrid electric vehicles is the key technology for power distribution. The traditional power following strategy has the advantage of a real-time operation but the power correction is usually based only on the state of charge of a lithium battery which causes the operating point of the fuel cell to be in the region of a low efficiency. To solve this problem this paper proposes a hybrid power-following-fuzzy control strategy where a fuzzy logic control strategy is used to optimise the correction module based on the power following strategy which regulates the state of charge while correcting the output power of the fuel cell towards the efficient operating point. The results of the joint simulation with Matlab + Advisor under the Globally Harmonised Light Vehicle Test Cycle Conditions show that the proposed strategy still ensures the advantages of real-time energy management and for the hydrogen fuel cell the hydrogen consumption is reduced by 13.5% and 4.1% compared with the power following strategy and the fuzzy logic control strategy and the average output power variability is reduced by 14.6% and 5.1% respectively which is important for improving the economy of the whole vehicle and prolonging the lifetime of fuel cell.
Capacity Configuration Optimization for Green Hydrogen Generation by Solar-wind Hybrid Power Based on Comprehensive Performance Criteria
Aug 2023
Publication
Green hydrogen generation driven by solar-wind hybrid power is a key strategy for obtaining the low-carbon energy while by considering the fluctuation natures of solar-wind energy resource the system capacity configuration of power generation hydrogen production and essential storage devices need to be comprehensively optimized. In this work a solar-wind hybrid green hydrogen production system is developed by combining the hydrogen storage equipment with the power grid the coordinated operation strategy of solar-wind hybrid hydrogen production is proposed furthermore the NSGA-III algorithm is used to optimize the system capacity configuration with the comprehensive performance criteria of economy environment and energy efficiency. Through the implemented case study with the hydrogen production capacity of 20000 tons/year the abandoned energy power rate will be reduced to 3.32% with the electrolytic cell average load factor of 64.77% and the system achieves the remarkable carbon emission reduction. In addition with the advantage of connect to the power grid the generated surplus solar/wind power can be readily transmitted with addition income when the sale price of produced hydrogen is suggested to 27.80 CNY/kgH2 the internal rate of return of the system reaches to 8% which present the reasonable economic potential. The research provides technical and methodological suggestions and guidance for the development of solar-wind hybrid hydrogen production schemes with favorable comprehensive performance.
No more items...