Skip to content
1900

Research on Energy Management Method of Fuel Cell/Supercapacitor Hybrid Trams Based on Optimal Hydrogen Consumption

Abstract

In this paper, based on the operating states and characteristics of fuel cell/supercapacitor hybrid trams, an optimal hydrogen energy management method is proposed. This method divides the operating states into two parts: traction state and non-traction state. In the traction state, the real-time loss function of the hybrid power system, which is used to obtain the fuel cell optimal output power under the different demand powers and supercapacitor voltage, is established. In the non-traction state, the constant-power charging method, which is obtained by solving the power-voltage charging model, is used to ensure the supercapacitor voltage of the beginning-state and the end-state in an entire operation cycle are the same. The RT-LAB simulation platform is used to verify that the proposed method has the ability to control the hybrid real-time system. Using the comparative experiment between the proposed method and power-follow method, the results show that the proposed method offers a significant improvement in both fuel cell output stability and hydrogen consumption in a full operation cycle.

Funding source: This study was supported by the National Natural Science Foundation of China (Grant No.52206228) and Beijing Institute of Technology Research Fund Program for Young Scholars (22050205-XSQD-202103007).
Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal4842
2023-07-19
2024-12-22
/content/journal4842
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error