China, People’s Republic
Measurement and Modeling on Hydrogen Jet and Combustion from a Pressurize Vessel
Sep 2021
Publication
Hydrogen safety is an important topic for hydrogen energy application. Unintended hydrogen releases and combustions are potential accident scenarios which are of great interest for developing and updating the safety codes and standards. In this paper hydrogen releases and delayed ignitions were studied.
Numerical Study on Thermodynamic Coupling Characteristics of Fluid Sloshing in a Liquid Hydrogen Tank for Heavy-Duty Trucks
Feb 2023
Publication
The large-amplitude sloshing behavior of liquid hydrogen in a tank for heavy-duty trucks may have adverse effects on the safety and stability of driving. With successful application of liquid hydrogen in the field of new energy vehicles the coupled thermodynamic performance during liquid hydrogen large-amplitude sloshing becomes more attractive. In this paper a three-dimensional numerical model is established to simulate the thermodynamic coupling characteristics during liquid hydrogen sloshing in a horizontal tank for heavy-duty trucks. The calculation results obtained by the developed model are in good agreement with experimental data for liquid hydrogen. Based on the established 3D model the large-amplitude sloshing behavior of liquid hydrogen under extreme acceleration as well as the effects of acceleration magnitude and duration on liquid hydrogen sloshing is numerically determined. The simulation results show that under the influence of liquid hydrogen large-amplitude sloshing the convective heat transfer of fluid in the tank is greatly strengthened resulting in a decrease in the vapor temperature and an increase in the liquid temperature. In particular the vapor condensation caused by the sloshing promotes a rapid reduction of pressure in the tank. When the acceleration magnitude is 5 g with a duration of 200 ms the maximum reduction of ullage pressure is 1550 Pa and the maximum growth of the force on the right wall is 3.89 kN. Moreover the acceleration magnitude and duration have a remarkable influence on liquid hydrogen sloshing. With the increase in acceleration magnitude or duration there is a larger sloshing amplitude for the liquid hydrogen. When the duration of acceleration is 200 ms compared with the situation at the acceleration magnitude of 5 g the maximum reductions of ullage pressure decrease by 9.46% and 55.02% and the maximum growth of forces on the right wall decrease by 80.57% and 99.53% respectively at 2 g and 0.5 g. Additionally when the acceleration magnitude is 5 g in contrast with the situation at a duration of acceleration of 200 ms the maximum-ullage-pressure drops decrease by 8.17% and 21.62% and the maximum increase in forces on the right wall decrease by 71.80% and 88.63% at 100 ms and 50 ms respectively. These results can provide a reference to the safety design of horizontal liquid hydrogen tanks for heavy-duty trucks.
Hydrogen Informed Gurson Model for Hydrogen Embrittlement Simulation
Jul 2019
Publication
Hydrogen-microvoid interactions were studied via unit cell analyses with different hydrogen concentrations. The absolute failure strain decreases with hydrogen concentration but the failure loci were found to follow the same trend dependent only on stress triaxiality in other words the effects of geometric constraint and hydrogen on failure are decoupled. Guided by the decoupling principle a hydrogen informed Gurson model is proposed. This model is the first practical hydrogen embrittlement simulation tool based on the hydrogen enhanced localized plasticity (HELP) mechanism. It introduces only one additional hydrogen related parameter into the Gurson model and is able to capture hydrogen enhanced internal necking failure of microvoids with accuracy; its parameter calibration procedure is straightforward and cost efficient for engineering purpose
Research on Multi-Objective Energy Management of Renewable Energy Power Plant with Electrolytic Hydrogen Production
Mar 2024
Publication
This study focuses on a renewable energy power plant equipped with electrolytic hydrogen production system aiming to optimize energy management to smooth renewable energy generation fluctuations participate in peak shaving auxiliary services and increase the absorption space for renewable energy. A multi-objective energy management model and corresponding algorithms were developed incorporating considerations of cost pricing and the operational constraints of a renewable energy generating unit and electrolytic hydrogen production system. By introducing uncertain programming the uncertainty issues associated with renewable energy output were successfully addressed and an improved particle swarm optimization algorithm was employed for solving. A simulation system established on the Matlab platform verified the effectiveness of the model and algorithms demonstrating that this approach can effectively meet the demands of the electricity market while enhancing the utilization rate of renewable energies.
Cradle-grave Energy Consumption, Greenhouse Gas and Acidification Emissions in Current and Future Fuel Cell Vehicles: Study Based on Five Hydrogen Production Methods in China
Jun 2022
Publication
Hydrogen fuel cell vehicles (FCVs) are regarded as a promising solution to the problems of energy security and environmental pollution. However the technology is under development and the hydrogen consumption is uncertain. The quantitative evaluation of life cycle energy consumption pollution emissions of current and future FCVs in China involves complex processes and parameters. Therefore this study addresses Life Cycle Assessment (LCA) of FCV and focuses on the key parameters of FCV production and different hydrogen production methods which include steam methane reforming catalysis decomposition methanol steam reforming electrolysis–photovoltaic (PV) and electrolysis Chinese electricity grid mix (CN). Sensitivity analysis of bipolar plate glider mass power density fuel cell system efficiency and energy control strategy are performed whilst accounting for different assumption scenarios. The results show that all impact assessment indicators will decrease by 28.8– 44.3% under the 2030 positive scenario for the production of FCVs. For cradle-grave FCVs the use of hydrogen from electrolysis operated with photovoltaic power reduces global warming potential (GWP) by almost 76.4% relative to steam methane reforming. By contrast the use of hydrogen from electrolysis operated with the Chinese electricity grid mix results in an increase in GWP of almost 158.3%.
Research on Power Optimization for Energy System of Hydrogen Fuel Cell Wheel-Driven Electric Tractor
Apr 2024
Publication
Hydrogen fuel cell tractors are emerging as a new power source for tractors. Currently there is no mature energy management control method available. Existing methods mostly rely on engineers’ experience to determine the output power of the fuel cell and the power battery resulting in relatively low energy utilization efficiency of the energy system. To address the aforementioned problems a power optimization method for the energy system of hydrogen fuel cell wheel-driven electric tractor was proposed. A dynamic model of tractor ploughing conditions was established based on the system dynamics theory. From this based on the equivalent hydrogen consumption theory the charging and discharging of the power battery were equivalent to the fuel consumption of the hydrogen fuel cell forming an equivalent hydrogen consumption model for the tractor. Using the state of charge (SOC) of the power battery as a constraint and with the minimum equivalent hydrogen consumption as the objective function an instantaneously optimized power allocation method based on load demand in the energy system is proposed by using a traversal algorithm. The optimization method was simulated and tested based on the MATLAB simulation platform and the results showed under ploughing conditions compared with the rule-based control strategy the proposed energy system power optimization method optimized the power output of hydrogen fuel cells and power batteries allowing the energy system to work in a high-efficiency range reducing the equivalent hydrogen consumption of the tractor by 7.79% and solving the energy system power distribution problem.
Prediction of Mixing Uniformity of Hydrogen Injection in Natural Gas Pipeline Based on a Deep Learning Model
Nov 2022
Publication
It is economical and efficient to use existing natural gas pipelines to transport hydrogen. The fast and accurate prediction of mixing uniformity of hydrogen injection in natural gas pipelines is important for the safety of pipeline transportation and downstream end users. In this study the computational fluid dynamics (CFD) method was used to investigate the hydrogen injection process in a T-junction natural gas pipeline. The coefficient of variation (COV) of a hydrogen concentration on a pipeline cross section was used to quantitatively characterize the mixing uniformity of hydrogen and natural gas. To quickly and accurately predict the COV a deep neural network (DNN) model was constructed based on CFD simulation data and the main influencing factors of the COV including flow velocity hydrogen blending ratio gas temperature flow distance and pipeline diameter ratio were taken as input nodes of the DNN model. In the model training process the effects of various parameters on the prediction accuracy of the DNN model were studied and an accurate DNN architecture was constructed with an average error of 4.53% for predicting the COV. The computational efficiency of the established DNN model was also at least two orders of magnitude faster than that of the CFD simulations for predicting the COV.
Enhancing Energy Transition through Sector Coupling: A Review of Technologies and Models
Jul 2023
Publication
In order to effectively combat the effects of global warming all sectors must actively reduce greenhouse gas emissions in a sustainable and substantial manner. Sector coupling has emerged as a critical technology that can integrate energy systems and address the temporal imbalances created by intermittent renewable energy sources. Despite its potential current sector coupling capabilities remain underutilized and energy modeling approaches face challenges in understanding the intricacies of sector coupling and in selecting appropriate modeling tools. This paper presents a comprehensive review of sector coupling technologies and their role in the energy transition with a specific focus on the integration of electricity heat/cooling and transportation as well as the importance of hydrogen in sector coupling. Additionally we conducted an analysis of 27 sector coupling models based on renewable energy sources with the goal of aiding deciders in identifying the most appropriate model for their specific modeling needs. Finally the paper highlights the importance of sector coupling in achieving climate protection goals while emphasizing the need for technological openness and market-driven conditions to ensure economically efficient implementation.
Evaluating Fuel Cell vs. Battery Electric Trucks: Economic Perspectives in Alignment with China’s Carbon Neutrality Target
Mar 2024
Publication
The electrification of heavy-duty trucks stands as a critical and challenging cornerstone in the low-carbon transition of the transportation sector. This paper employs the total cost of ownership (TCO) as the economic evaluation metric framed within the context of China’s ambitious goals for heavy truck electrification by 2035. A detailed TCO model is developed encompassing not only the vehicles but also their related energy replenishing infrastructures. This comprehensive approach enables a sophisticated examination of the economic feasibility for different deployment contexts of both fuel cell and battery electric heavy-duty trucks emphasizing renewable energy utilization. This study demonstrates that in the context where both fuel cell components and hydrogen energy are costly fuel cell trucks (FCTs) exhibit a significantly higher TCO compared to battery electric trucks (BETs). Specifically for a 16 ton truck with a 500 km range the TCO for the FCT is 0.034 USD/tkm representing a 122% increase over its BET counterpart. In the case of a 49 ton truck designed for a 1000 km range the TCO for the FCT is 0.024 USD/tkm marking a 36% premium compared to the BET model. The technological roadmap suggests a narrowing cost disparity between FCTs and BETs by 2035. For the aforementioned 16 ton truck model the projected TCO for the FCT is expected to be 0.016 USD/tkm which is 58% above the BET and for the 49 ton variant it is anticipated at 0.012 USD per ton-kilometer narrowing the difference to just 4.5% relative to BET. Further analysis within this study on the influences of renewable energy pricing and operational range on FCT and BET costs highlights a pivotal finding: for the 49 ton truck achieving TCO parity between FCTs and BETs is feasible when renewable energy electricity prices fall to 0.022 USD/kWh or when the operational range extends to 1890 km. This underscores the critical role of energy costs and efficiency in bridging the cost gap between FCTs and BETs.
The Origin and Occurrence of Natural Hydrogen
Mar 2023
Publication
Hydrogen is an attractive clean sustainable energy source primarily produced via industry. At present most reviews on hydrogen mainly focus on the preparation and storage of hydrogen while the development and utilization of natural hydrogen will greatly reduce its cost. Natural hydrogen has been discovered in many geological environments. Therefore based on extensive literature research in this study the distribution and sources of natural hydrogen were systematically sorted and the identification method and occurrence state of natural hydrogen were examined and summarized. The results of this research show that hydrogen has been discovered in oceanic spreading centers transform faults passive margins convergent margins and intraplate settings. The primary sources of the hydrogen include alterations in Fe(II)-containing rocks the radiolysis of water degassed magma and the reaction of water- and silica-containing rocks during the mechanical fracturing. Hydrogen can appear in free gas it can be adsorbed and trapped in inclusions. Currently natural hydrogen exploration is in its infancy. This systematic review helps to understand the origin distribution and occurrence pattern of natural hydrogen. In addition it facilitates the exploration and development of natural hydrogen deposits thus enabling the production of low-cost hydrogen.
Hydrogen Storage by Liquid Hydrogen Carriers: Catalyst, Renewable Carrier, and Technology - A Review
Mar 2023
Publication
Hydrogen has attracted widespread attention as a carbon-neutral energy source but developing efficient and safe hydrogen storage technologies remains a huge challenge. Recently liquid organic hydrogen carriers (LOHCs) technology has shown great potential for efficient and stable hydrogen storage and transport. This technology allows for safe and economical large-scale transoceanic transportation and long-cycle hydrogen storage. In particular traditional organic hydrogen storage liquids are derived from nonrenewable fossil fuels through costly refining procedures resulting in unavoidable environmental contamination. Biomass holds great promise for the preparation of LOHCs due to its unique carbon-balance properties and feasibility to manufacture aromatic and nitrogen-doped compounds. According to recent studies almost 100% conversion and 92% yield of benzene could be obtained through advanced biomass conversion technologies showing great potential in preparing biomass-based LOHCs. Overall the present LOHCs systems and their unique applications are introduced in this review and the technical paths are summarized. Furthermore this paper provides an outlook on the future development of LOHCs technology focusing on biomass-derived aromatic and N-doped compounds and their applications in hydrogen storage.
Investment Estimation in the Energy and Power Sector towards Carbon Neutrality Target: A Case Study of China
Mar 2023
Publication
The transition towards low-carbon energy and power has been extensively studied by research institutions and scholars. However the investment demand during the transition process has received insufficient attention. To address this gap an energy investment estimation method is proposed in this paper which takes the unit construction costs and potential development of major technology in the energy and power sector as input. The proposed estimation method can comprehensively assess the investment demand for various energy sources in different years including coal oil natural gas biomass power and hydrogen energy. Specifically we applied this method to estimate the investment demand of China’s energy and power sector from 2020 to 2060 at five year intervals. The results indicate that China’s cumulative energy investment demand over this period is approximately 127 trillion CNY with the power sector accounting for the largest proportion at 92.35% or approximately 117 trillion CNY. The calculated cumulative investment demand is consistent with the findings of several influential research institutions providing validation for the proposed method.
Optimization of Integrated Energy System Considering Electricity and Hydrogen Coordination in the Context of Carbon Trading
Apr 2024
Publication
In order to improve the consumption of renewable energy and reduce the carbon emissions of integrated energy systems (IESs) this paper proposes an optimal operation strategy for an integrated energy system considering the coordination of electricity and hydrogen in the context of carbon trading. The strategy makes full use of the traditional power-to-gas hydrogen production process and establishes a coupling model comprising cogeneration and carbon capture equipment an electrolytic cell a methane reactor and a hydrogen fuel cell. Taking a minimum daily operating cost and minimal carbon emissions from the system as objective functions a mixed-integer nonlinear optimal scheduling model is established. This paper designs examples based on MATLAB R2021b and uses the GUROBI solver to solve them. The results show that compared with the traditional two-stage operation process the optimization method can reduce the daily operation cost of an IES by 26.01% and its carbon emissions by 90.32%. The results show that the operation mode of electro-hydrogen synergy can significantly reduce the carbon emissions of the system and realize a two-way flow of electro-hydrogen energy. At the same time the addition of carbon capture equipment and the realization of carbon recycling prove the scheduling strategy’s ability to achieve a lowcarbon economy of the scheduling strategy.
Deep Decarbonisation Pathways of the Energy System in Times of Unprecedented Uncertainty in the Energy Sector
May 2023
Publication
Unprecedented investments in clean energy technology are required for a net-zero carbon energy system before temperatures breach the Paris Agreement goals. By performing a Monte-Carlo Analysis with the detailed ETSAPTIAM Integrated Assessment Model and by generating 4000 scenarios of the world’s energy system climate and economy we find that the uncertainty surrounding technology costs resource potentials climate sensitivity and the level of decoupling between energy demands and economic growth influence the efficiency of climate policies and accentuate investment risks in clean energy technologies. Contrary to other studies relying on exploring the uncertainty space via model intercomparison we find that the CO2 emissions and CO2 prices vary convexly and nonlinearly with the discount rate and climate sensitivity over time. Accounting for this uncertainty is important for designing climate policies and carbon prices to accelerate the transition. In 70% of the scenarios a 1.5 ◦C temperature overshoot was within this decade calling for immediate policy action. Delaying this action by ten years may result in 2 ◦C mitigation costs being similar to those required to reach the 1.5 ◦C target if started today with an immediate peak in emissions a larger uncertainty in the medium-term horizon and a higher effort for net-zero emissions.
Simulation and Control Strategy Study of the Hydrogen Supply System of a Fuel Cell Engine
Jun 2023
Publication
The hydrogen supply system is one of the important components of a hydrogen fuel cell engine and its performance has an important impact on the economy and power of the engine system. In this paper a hydrogen supply system based on cyclic mode is designed for a hydrogen fuel cell stack with a full load power of 150 kW and the corresponding hydrogen fuel cell engine simulation model is built and validated. The control strategy of the fuel cell hydrogen supply system is developed and its effect is verified through bench tests. The results show that the developed control strategy can keep the volume fraction of nitrogen below 6% the hydrogen excess ratio does not exceed 1.5 under medium and high operating conditions the anode pressure is relatively stable and the stack can operate efficiently and reliably.
Distributional Trends in the Generation and End-Use Sector of Low-Carbon Hydrogen Plants
Mar 2023
Publication
This paper uses established and recently introduced methods from the applied mathematics and statistics literature to study trends in the end-use sector and the capacity of low-carbon hydrogen projects in recent and upcoming decades. First we examine distributions in plants over time for various end-use sectors and classify them according to metric discrepancy observing clear similarity across all industry sectors. Next we compare the distribution of usage sectors between different continents and examine the changes in sector distribution over time. Finally we judiciously apply several regression models to analyse the association between various predictors and the capacity of global hydrogen projects. Across our experiments we see a welcome exponential growth in the capacity of zero-carbon hydrogen plants and significant growth of new and planned hydrogen plants in the 2020’s across every sector.
China's Hydrogen Development Strategy in the Context of Double Carbon Targets
Dec 2022
Publication
As a clean low-carbon efficient and renewable energy source hydrogen has gradually become an important energy carrier to combat climate change and achieve sustainable development in the world. China is now facing the stress of realizing the carbon peak and carbon neutrality goals where hydrogen will play a significant role. Against this backdrop to develop China's hydrogen strategy under the carbon peak and carbon neutrality goals this paper explores the hydrogen resource endowment in China presents the concepts such as Hydrogen Ethics and the Hu's Hydrogen Line and discusses the status quo and existing advantages in hydrogen production storage transport and utilization in China. Six major obstacles and challenges that China's hydrogen energy industry is facing are pointed out i.e. cost problem inadequate hydrogen infrastructures low energy efficiency mismatching the development progress of renewable energy insufficient market demand shortcomings in technology and imperfect policy system. Finally five policy suggestions for the future development of China's hydrogen energy industry are proposed as follows: (1) make an action plan as a response to the national hydrogen development plan; (2) build an international and domestic double-cycle hydrogen economic system; (3) incorporate hydrogen into the establishment of a clean low-carbon safe and efficient energy system; (4) accelerate the technological innovation to form advanced hydrogen technologies; and (5) construct hydrogen-oriented industrial clusters/parks to expand the hydrogen utilization market. It is concluded that for meeting the carbon peak and carbon neutrality goals China should leverage the dual advantages of hydrogen as an energy carrier and an industrial raw material allowing the hydrogen industry to play a synergistic role in ensuring the country's energy security promoting the socio-economic transformation and upgrading and protecting the ecological environment thereby providing a technical option and support for China to achieve the ultimate goal of carbon neutrality.
Experimental Study on the Effects of Hydrogen Injection Strategy on the Combustion and Emissions of a Hydrogen/Gasoline Dual Fuel SI Engine under Lean Burn Condition
Oct 2022
Publication
Hydrogen addition can improve the performance and extend the lean burn limit of gasoline engines. Different hydrogen injection strategies lead to different types of hydrogen mixture distribution (HMD) which affects the engine performance. Therefore the present study experimentally investigated the effects of hydrogen injection strategy on the combustion and emissions of a hydrogen/gasoline dual-fuel port-injection engine under lean-burn conditions. Four different hydrogen injection strategies were explored: hydrogen direct injection (HDI) forming a stratified hydrogen mixture distribution (SHMD); hydrogen intake port injection forming a premixed hydrogen mixture distribution (PHMD); split hydrogen direct injection (SHDI) forming a partially premixed hydrogen mixture distribution (PPHMD); and no hydrogen addition (NHMD). The results showed that 20% hydrogen addition could extend the lean burn limit from 1.5 to 2.8. With the increase in the excess air ratio the optimum HMD changed from PPHMD to SHMD. The maximum brake thermal efficiency was obtained with an excess air ratio of 1.5 with PPHMD. The coefficient of variation (COV) with NHMD was higher than that with hydrogen addition since the hydrogen enhanced the stability of ignition and combustion. The engine presented the lowest emissions with PHMD. There were almost no carbon monoxide (CO) and nitrogen oxides (NOx) emissions when the excess air ratio was respectively more than 1.4 and 2.0.
Experiment and Numerical Study of the Combustion Behavior of Hydrogen-blended Natural Gas in Swirl Burners
Oct 2022
Publication
Hydrogen production from renewable energy is gaining increasing attention to enhance energy consumption structure and foster a more eco-friendly and sustainable society. At the same time mixing hydrogen with natural gas and supplying it to civilians is one of the best ways to reduce carbon emissions and increase the reliability of technology while reducing the costs of storing and transporting hydrogen. Even though numerous researchers have conducted experimental and simulation studies on hydrogen-doped natural gas most of these studies have focused on the effects of hydrogen-doped ratio equivalence ratio and fuel combustion mode. The impact of burner structure on hydrogen-enriched natural gas has not received much attention. Compared with conventional direct-flow combustion swirl combustion can improve the mixing effect of the fuel mixture during combustion and the use of regions of reversed flow due to swirl can make the fuel burn more fully to achieve the reduction of pollutant emissions. Swirling flames are widely used in gas turbines and industrial furnaces because of their high stability. However the application of swirl combustion in domestic equipment is still in its infancy which deserves more researchers to explore and enhance the working conditions of domestic combustion equipment. In this paper a three-dimensional swirl burner model is utilized to examine the effect of swirl angle θ and swirl length L of the swirler on the combustion behavior of hydrogen-enriched natural gas in a swirl burner. The results indicate that the swirl angle θ and swirl length L play an essential role in the combustion of natural gas containing hydrogen. As the swirl angle θ increases the flame temperature decreases more slowly the combustion becomes more stable and the length of the flame is slightly increased. Simultaneously CO and NO emissions will gradually decrease and the combustion effect is enhanced when the swirl angle is 45◦. With increased swirl length L the flame length grows the high-temperature region expands and CO and NO emissions decrease. Meanwhile the change in swirl length has little effect on the increase of flame peak temperature when the fuel is thoroughly mixed. When the swirl length is 12 mm CO and NO emissions are lower and NO emissions are reduced by 36.11% compared to a swirl length of 6 mm. This work is a reference point for applying hydrogen-mixed natural gas in the swirl burner but it must be studied and optimized further in future research.
Progress of Performance, Emission, and Technical Measures of Hydrogen Fuel Internal-Combustion Engines
Oct 2022
Publication
To achieve the goals of low carbon emission and carbon neutrality some urgent challenges include the development and utilization of low-carbon or zero-carbon internal combustion engine fuels. Hydrogen as a clean efficient and sustainable fuel has the potential to meet the abovementioned challenges. Thereby hydrogen internal combustion engines have been attracting attention because of their zero carbon emissions high thermal efficiency high reliability and low cost. In this paper the opportunities and challenges faced by hydrogen internal-combustion engines were analyzed. The progress of hydrogen internal-combustion engines on the mixture formation combustion mode emission reduction knock formation mechanism and knock suppression measures were summarized. Moreover possible technical measures for hydrogen internal-combustion engines to achieve higher efficiency and lower emissions were suggested.
No more items...