China, People’s Republic
Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications
Jul 2016
Publication
Fuel cells are the most clean and efficient power source for vehicles. In particular proton exchange membrane fuel cells (PEMFCs) are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade the performance of PEMFCs including energy efficiency volumetric and mass power density and low temperature startup ability have achieved significant breakthroughs. In 2014 fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review the technical progress of key materials and components for PEMFCs has been summarized and critically discussed including topics such as the membrane catalyst layer gas diffusion layer and bipolar plate. The development of high-durability processing technologies is also introduced. Finally this review is concluded with personal perspectives on the future research directions of this area.
Review on the Hydrogen Dispersion and the Burning Behavior of Fuel Cell Electric Vehicles
Oct 2022
Publication
The development of a hydrogen energy-based society is becoming the solution for more and more countries. Fuel cell electric vehicles are the best carriers for developing a hydrogen energy-based society. The current research on hydrogen leakage and the diffusion of fuel cell electric vehicles has been sufficient. However the study of hydrogen safety has not reduced the safety concerns for society and government management departments concerning the large-scale promotion of fuel cell electric vehicles. Hydrogen safety is both a technical and psychological issue. This paper aims to provide a comprehensive overview of fuel cell electric vehicles’ hydrogen dispersion and the burning behavior and introduce the relevant work of international standardization and global technical regulations. The CFD simulations in tunnels underground car parks and multistory car parks show that the hydrogen escape performance is excellent. At the same time the research verifies that the flow the direction of leakage and the vehicle itself are the most critical factors affecting hydrogen distribution. The impact of the leakage location and leakage pore size is much smaller. The relevant studies also show that the risk is still controllable even if the hydrogen leakage rate is increased ten times the limit of GTR 13 to 1000 NL/min and then ignited. Multi-vehicle combustion tests of fuel cell electric vehicles showed that adjacent vehicles were not ignited by the hydrogen. This shows that as long as the appropriate measures are taken the risk of a hydrogen leak or the combustion of fuel cell electric vehicles is controllable. The introduction of relevant standards and regulations also indirectly proves this point. This paper will provide product design guidelines for R&D personnel offer the latest knowledge and guidance to the regulatory agencies and increase the public’s acceptance of fuel cell electric vehicles.
Hydrogen-rich Fuel Combustion Characteristics of a Counter Dual-swirl Combustor at Fixed Power
Nov 2021
Publication
In order to reduce the emission of carbon dioxide gas turbine power station will expect to use more clean fuels in the future especially those like hydrogen. Hydrogen-rich fuel(syngas) combustion characteristics of the novel counter dual-swirl gas turbine combustor under fixed calorific value input were studied by experiment and numerical simulation. PIV and temperature rake were used respectively to obtain the velocity and temperature distribution in the combustion chamber. The turbulence model of Reynolds stress and the kinetic model of detailed chemical syngas combustion were used simultaneously in the computational simulations. Based on the obtained results it was found that there is a reasonable agreement between the numerical results and the experimental data. The analysis shows that the flow field and temperature field of the combustor were almost unaffected by the change of hydrogen content and shows a nearly identical distribution structure under all conditions with hydrogen content below 90%; but when the H2 content reaches 90% the above characteristic plots were significantly changed. As the H2 content in the fuel increases on the center line of the combustor the jet velocity of the fuel decreased the temperature of the gas flow increased the recovery coefficient of total pressure decreased and the temperature distribution at the combustor outlet became more uniform. In addition it is also found that the syngas turbine with the same output power consumed less fuel than the gas turbine with hydrocarbon fuel. This paper provides reference for the study of hydrogen-rich syngas turbine and the application of hydrogen-rich fuel in combustor of energy system.
Low-Carbon Transition Pathway Planning of Regional Power Systems with Electricity-Hydrogen Synergy
Nov 2022
Publication
Hydrogen energy leads us in an important direction in the development of clean energy and the comprehensive utilization of hydrogen energy is crucial for the low-carbon transformation of the power sector. In this paper the demand for hydrogen energy in various fields is predicted based on the support vector regression algorithm which can be converted into an equivalent electrical load when it is all produced from water electrolysis. Then the investment costs of power generators and hydrogen energy equipment are forecast considering uncertainty. Furthermore a planning model is established with the forecast data initial installed capacity and targets for carbon emission reduction as inputs and the installed capacity as well as share of various power supply and annual carbon emissions as outputs. Taking Gansu Province of China as an example the changes of power supply structure and carbon emissions under different scenarios are analysed. It can be found that hydrogen production through water electrolysis powered by renewable energy can reduce carbon emissions but will increase the demand for renewable energy generators. Appropriate planning of hydrogen storage can reduce the overall investment cost and promote a low carbon transition of the power system
A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles
Mar 2021
Publication
Nowadays we face a series of global challenges including the growing depletion of fossil energy environmental pollution and global warming. The replacement of coal petroleum and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2 ) energy is considered the ultimate energy in the 21st century because of its diverse sources cleanliness low carbon emission flexibility and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops H2 fuel supply especially H2 quality attracts increasing attention. Compared with H2 for industrial use the H2 purity requirements for fuel cells are not high. Still the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore we analyze the causes and developing trends for the changes in these standards in detail. On the other hand according to characteristics of H2 for fuel cell vehicles standard H2 purification technologies such as pressure swing adsorption (PSA) membrane separation and metal hydride separation were analyzed and the latest research progress was reviewed.
Research on the Hydrogen Consumption of Fuel Cell Electric Vehicles Based on the Flowmeter and Short-cut Method
Sep 2022
Publication
Energy consumption is essential for evaluating the competitiveness of fuel cell electric vehicles. A critical step in energy consumption measurement is measuring hydrogen consumption including the mass method the P/T method and the flowmeter method. The flowmeter method has always been a research focus because of its simple operation low cost and solid real-time performance. Current research has shown the accuracy of the flowmeter method under specific conditions. However many factors in the real scenario will influence the test result such as unintended vibration environment temperature and onboard hydrogen capacity calibration. On the other hand the short-cut method is also researched to replace the run-out method to improve test efficiency. To evaluate whether the flowmeter method basing on the short-cut method can genuinely reflect the hydrogen consumption of an actual vehicle we research and test for New European Driving Cycle (NEDC) and China Light-Duty Vehicle Test Cycle (CLTC) using the same vehicle. The results show that the short-cut method can save at least 50% of the test time compared with the run-out method. The error of the short-cut method based on the flowmeter for the NEDC working condition is less than 0.1% and for the CLTC working conditions is 8.12%. After adding a throttle valve and a 4L buffer tank the error is reduced to 4.76% from 8.12%. The test results show that hydrogen consumption measurement based on the flowmeter and short-cut method should adopt corresponding solutions according to the scenarios.
On the Way to Utilizing Green Hydrogen as an Energy Carrier—A Case of Northern Sweden
Mar 2024
Publication
Low or even zero carbon dioxide emissions will be an essential requirement for energy supplies in the near future. Besides transport and electricity generation industry is another large carbon emitter. Hydrogen produced by renewable energy provides a flexible way of utilizing that energy. Hydrogen as an energy carrier could be stored in a large capacity compared to electricity. In Sweden hydrogen will be used to replace coal for steel production. This paper discusses how the need for electricity to produce hydrogen will affect the electricity supply and power flow in the Swedish power grid and whether it will result in increased emissions in other regions. Data of the Swedish system will be used to study the feasibility of implementing the hydrogen system from the power system viewpoint and discuss the electricity price and emission issues caused by the hydrogen production in different scenarios. This paper concludes that the Swedish power grid is feasible for accommodating the additional electricity capacity requirement of producing green hydrogen for the steel industry. The obtained results could be references for decision makers investors and power system operators.
Residual Tensile Properties of Carbon Fiber Reinforced Epoxy Resin Composites at Elevated Temperatures
Sep 2021
Publication
Carbon fiber reinforced epoxy resin composites have attracted great attention in high pressure hydrogen storage for its light weight and excellent mechanical properties. The degradation of residual mechanical properties at elevated temperature from 20 °C to 450 °C were studied experimentally. The effects of temperature on the tensile strength and failure mode of the composite specimens with stacking sequences of 0° 90° and ±45° (labeled as CF0 CF90 and CF 45) were systematically analyzed followed by the fracture surfaces examination. Results show that the tensile strength residual ratios of the three kinds of specimens decrease significantly with heating temperature increasing. In particular the decomposing temperature of the resin matrix exerts the largest effects on the degradation of tensile strength of CF0 specimen within 450 °C. While the loss of tensile strength of CF90 and CF45 specimens is dependent on the thermal softening of epoxy resin which has closely related to the glass transition temperature. Furthermore the debonding and fiber softening appeared in the CF0 specimens when the temperature reached 450 °C. For CF90 specimens the degradation of bonding strength of epoxy could be found at 150 °C and regarding CF45 specimens delamination cracking between plies occurred extensively when the temperature above 125 °C.
New Liquid Chemical Hydrogen Storage Technology
Aug 2022
Publication
The liquid chemical hydrogen storage technology has great potentials for high-density hydrogen storage and transportation at ambient temperature and pressure. However its commercial applications highly rely on the high-performance heterogeneous dehydrogenation catalysts owing to the dehydrogenation difficulty of chemical hydrogen storage materials. In recent years the chemists and materials scientists found that the supported metal nanoparticles (MNPs) can exhibit high catalytic activity selectivity and stability for the dehydrogenation of chemical hydrogen storage materials which will clear the way for the commercial application of liquid chemical hydrogen storage technology. This review has summarized the recent important research progress in the MNP-catalyzed liquid chemical hydrogen storage technology including formic acid dehydrogenation hydrazine hydrate dehydrogenation and ammonia borane dehydrogenation discussed the urgent challenges in the key field and pointed out the future research trends.
Multi-Time Scale Optimal Scheduling Model of Wind and Hydrogen Integrated Energy System Based on Carbon Trading
Jan 2023
Publication
In the context of carbon trading energy conservation and emissions reduction are the development directions of integrated energy systems. In order to meet the development requirements of energy conservation and emissions reduction in the power grid considering the different responses of the system in different time periods a wind-hydrogen integrated multi-time scale energy scheduling model was established to optimize the energy-consumption scheduling problem of the system. As the scheduling model is a multiobjective nonlinear problem the artificial fish swarm algorithm–shuffled frog leaping algorithm (AFS-SFLA) was used to solve the scheduling model to achieve system optimization. In the experimental test process the Griewank benchmark function and the Rosenbrock function were selected to test the performance of the proposed AFS-SFL algorithm. In the Griewank environment compared to the SFLA algorithm the AFS-SFL algorithm was able to find a feasible solution at an early stage and tended to converge after 110 iterations. The optimal solution was −4.83. In the test of total electric power deviation results at different time scales the maximum deviation of early dispatching was 14.58 MW and the minimum deviation was 0.56 MW. The overall deviation of real-time scheduling was the minimum and the minimum deviation was 0 and the maximum deviation was 1.89 WM. The integrated energy system adopted real-time scale dispatching with good system stability and low-energy consumption. Power system dispatching optimization belongs to the objective optimization problem. The artificial fish swarm algorithm and frog algorithm were innovatively combined to solve the dispatching model which improved the accuracy of power grid dispatching. The research content provides an effective reference for the efficient use of clean and renewable energy.
Reliability Analysis of Pyrotechnic Igniter for Hydrogen-Oxygen Rocket Engine with Low Temperature Combustion Instability Failure Mode
Mar 2022
Publication
To evaluate the functional reliability of the pyrotechnic igniter in the failure mode of unstable combustion at low temperature a reliability and reliability sensitivity analysis method based on the combination of an interior ballistic model and Kriging reliability method is proposed. Through the deterministic interior ballistic simulation the failure mode of low temperature unstable combustion of the pyrotechnic igniter is examined while the random variables are introduced to establish the ignition nonlinear implicit function of the pyrotechnic igniter. The ignition display function of the pyrotechnic igniter is established by the Kriging model which avoids the repeated calculation of true limit state function values. This study provides an efficient approach to evaluate the ignition reliability of the pyrotechnic igniter and compared with the traditional Monte Carlo method to verify the accuracy of the results. Finally reliability-based sensitivity indices are presented to quantify the significance of random parameters. It is shown that the influence of the uncertainties can be precisely described and the diameter of the nozzle plays a dominant role in ignition reliability. Additionally ignition experiments of nozzles with different diameters were performed to verify the result of sensitivity. This can further support the detailed design of the pyrotechnic igniter
Research on the Sealing Mechanism of Split-Liner High-Pressure Hydrogen Storage Cylinders
Mar 2024
Publication
Hydrogen storage is a crucial factor that limits the development of hydrogen energy. This paper proposes using a split liner for the inner structure of a hydrogen storage cylinder. A self-tightening seal is employed to address the sealing problem between the head and the barrel. The feasibility of this structure is demonstrated through hydraulic pressure experiments. The influence laws of the O-ring compression rate the distance from the straight edge section of the head to the sealing groove and the thickness of the head on the sealing performance of gas cylinders in this sealing structure are revealed using finite elements analysis. The results show that when the gas cylinder is subjected to medium internal pressure the maximum contact stress on the O-ring extrusion deformation sealing surface is greater than the medium pressure. There is sufficient contact width that is the arc length of the part where the stress on the O-ring contact surface is greater than the medium pressure so that it can form a good sealing condition. At the same time increasing the compression ratio of the O-ring and the head’s thickness will help improve the sealing performance and reducing the distance from the straight edge section of the head to the sealing groove will also improve the sealing performance.
Strategies for the Adoption of Hydrogen-Based Energy Storage Systems: An Exploratory Study in Australia
Aug 2022
Publication
A significant contribution to the reduction of carbon emissions will be enabled through the transition from a centralised fossil fuel system to a decentralised renewable electricity system. However due to the intermittent nature of renewable energy storage is required to provide a suitable response to dynamic loads and manage the excess generated electricity with utilisation during periods of low generation. This paper investigates the use of stationary hydrogen-based energy storage systems for microgrids and distributed energy resource systems. An exploratory study was conducted in Australia based on a mixed methodology. Ten Australian industry experts were interviewed to determine use cases for hydrogen-based energy storage systems’ requirements barriers methods and recommendations. This study suggests that the current cost of the electrolyser fuel cell and storage medium and the current low round-trip efficiency are the main elements inhibiting hydrogen-based energy storage systems. Limited industry and practical experience are barriers to the implementation of hydrogen storage systems. Government support could help scale hydrogen-based energy storage systems among early adopters and enablers. Furthermore collaboration and knowledge sharing could reduce risks allowing the involvement of more stakeholders. Competition and innovation could ultimately reduce the costs increasing the uptake of hydrogen storage systems.
Hydrogen Sensing Properties of UV Enhanced Pd-SnO2 Nano-Spherical Composites at Low Temperature
Sep 2021
Publication
Metal oxide semiconductor (MOS) is promising in developing hydrogen detectors. However typical MOS materials usually work between 200-500°C which not only restricts their application in flammable and explosive gases detection but also weakens sensor stability and causes high power consumption. This paper studies the sensing properties of UV enhanced Pd-SnO2 nano-spherical composites at 80-360 ℃. In the experiment Pd of different molar ratios (0.5 2.5 5.0 10.0) was doped into uniform spherical SnO2 nanoparticles by a hydrothermal synthesis method. A xenon lamp with a filter was used as the ultraviolet excitation light source to examine the response of the spherical Pd- SnO2 nanocomposite to 50-1000 ppm H2 gas. The influence of different intensities of ultraviolet light on the gas-sensing properties of composite materials compared with dark condition was analyzed. The experiments show that the conductivity of the composites can be greatly stabilized and the thermal excitation temperature can be reduced to 180 ℃ under the effect of UV enhancement. A rapid response (4.4/ 17.4 s) to 200 ppm of H2 at 330 °C can be achieved by the Pd-SnO2 nanocomposites with UV assistance. The mechanism may be attributed to light motivated electron-hole pairs due to built-in electric fields under UV light illumination which can be captured by target gases and lead to UV controlled gas sensing performance. Catalytic active sites of hydrogen are provided on the surface of the mixed material by Pd. The results in this study can be helpful in reducing the response temperature of MOS materials and improving the performance of hydrogen detectors."
Top Level Design and Evaluation of Advanced Low/zero Carbon Fuel Ships Power Technology
Oct 2022
Publication
The greenhouse effect has always been a problem troubling various country many fields have made corresponding technological improvements and regulations and the shipping industry is no exception. In the shipping field governments are actively looking for viable low-carbon/zero-carbon alternative fuels to reduce their dependence on traditional fossil fuels. This paper discusses the challenges and opportunities of replacing fuel oil with clean energies. Firstly the alternative fuels that have been proposed frequently and widely in recent years are summarized and their sources adaptive power systems and relationships among fuels are systematically summarized. Secondly when evaluating the advantages and future development trends of each energy the environmental economic and safety factors are digitally quantified. Results show that the analysis focuses on the efficiency and economics of carbon reduction. Hydrogen ammonia and nuclear energy show advantages in environmental quantification factors while LNG biofuels and alcohols show benefits in economic quantification factors considering calorific value and fuel price and LNG and alcohols received high scores in safety assessment. Finally the study predicts the evolution and development trend of ship fuels in the future and evaluates the most suitable energy for ship development in different periods.
Research on High-Pressure Hydrogen Pre-Cooling Based on CFD Technology in Fast Filling Process
Dec 2021
Publication
In the fast filling process in order to control the temperature of the vehicle-mounted storage tank not to exceed the upper limit of 85 ◦C it is an effective method to add a hydrogen pre-cooling system upstream of the hydrogenation machine. In this paper Fluent is used to simulate the heat transfer process of high-pressure hydrogen in a shell-and-tube heat exchanger and the phase change process of refrigerant R23. The accuracy of the model is proven by a comparison with the data in the references. Using this model the temperature field and gas volume fraction in the heat transfer process are obtained which is helpful to analyze the heat transfer mechanism. At the same time the influence of hydrogen inlet temperature hydrogen inlet pressure and refrigerant flow rate on the refrigeration performance was studied. The current work shows that the model can be used to determine the best working parameters in the pre-cooling process and reduce the operating cost of the hydrogen refueling station.
Investigation on the Changes of Pressure and Temperature in High Pressure Filling of Hydrogen Storage Tank
May 2022
Publication
Hydrogen as fuel has been considered as a feasible energy carry and which offers a clean and efficient alternative for transportation. During the high pressure filling the temperature in the hydrogen storage tank (HST) may rise rapidly due to the hydrogen compression. The high temperature may lead to safety problem. Thus for fast and safely refueling the hydrogen several key factors need to be considered. In the present study by the thermodynamics theories a mathematical model is established to simulate and analyze the high pressure filling process of the storage tank for the hydrogen station. In the analysis the physical parameters of normal hydrogen are introduced to make the simulation close to the actual process. By the numerical simulation for 50 MPa compressed hydrogen tank the temperature and pressure trends during filling are obtained. The simulation results for non-adiabatic filling were compared with the theoretically calculated ones for adiabatic conditions and the simulation results for non-adiabatic filling were compared with the simulation ones for adiabatic conditions. Then the influence of working pressure initial temperature mass flow rate initial pressure and inlet temperature on the temperature rise were analyzed. This study provides a theoretical research basis for high pressure hydrogen energy storage and hydrogenation technology.
Investigation of Hydrogen Leaks from Double Ferrule Fittings
Sep 2021
Publication
The use of hydrogen is expected to increase rapidly in the future. Leakage of hydrogen pipework are the main forms of safety problems in hydrogen utilization. In this paper a numerical model of hydrogen leakage and diffusion in pipe joints was established. The Schlieren + high-speed camera is used in experiments to observe the leakage of hydrogen in the pipe joints. In addition the shape and size of the scratches in the tube were statistically analyzed. Finally the leakage characteristics of double ferrule joints with scratches are experimentally analyzed. For the two scratch sizes the critical pressure values for the vortex transition are 0.2 MPa and 0.03 MPa. Through our experimental process some practical experience and suggestions are given.
Hydrogen-electricity Hybrid Energy Pipelines for Railway Transportation: Design and Economic Evaluation
Mar 2024
Publication
With the decarbonization and electrification of modern railway transportation the demand for both the highcapacity electrical energy and hydrogen fuel energy is increasingly high. A novel scheme was proposed from liquid hydrogen production by surplus wind and solar energy to liquid hydrogen-electricity hybrid energy transmission for railway transportation. The 100 MW hybrid energy transmission pipeline was designed with the 10 kA/1.5 kV superconducting DC cable for electricity and cryogenic layers for liquid hydrogen and liquid nitrogen showing strong capability in transmitting “electricity + cold energy + chemical energy” simultaneously. Economic evaluation was performed with respect to the energy equipment capacity and costs with sensitivity and profitability analysis. With the discount rate 8% the dynamic payback period of the hybrid energy pipeline was 7.1 years. Results indicated that the shortest dynamic payback period of the hybrid energy pipeline was 4.8 years with the maximum transmission distance 93 km. Overall this article shows the novel concept and design of liquid hydrogen-electricity hybrid energy pipelines and proves the technical and economic feasibilities for future bulk hybrid energy transmission for railway transportation.
The Influence of Grain Boundary and Hydrogen on the Indetation of Bi-crystal Nickel
Sep 2021
Publication
Three different types of symmetrical tilt grain boundaries Ȉ3 Ȉ11 and Ȉ27 were constructed to study the dislocation behavior under the indentation on bi-crystal nickel. After hydrogen charging the number of hydrogen atoms in the Ȉ3 sample is the smallest and gradually increases in Ȉ11 and Ȉ27 samples. The force-displacement curve of indentation shows that the deformation resistance of the Ȉ3 sample is significantly higher than that of Ȉ11 and Ȉ27 samples. With the presence of grain boundaries the deformation resistance of Ȉ11 and Ȉ27 samples is significantly improved while the deformation resistance of the Ȉ3 VDPSOH is weakened. The indentation depth during the formation of dislocations in single crystals is significantly greater than that of bi-crystals. Grain boundaries slow down the dislocation propagation speed. Compared with the bi-crystals without hydrogen the presence of hydrogen reduces the deformation resistance and accelerates the dislocation propagation.
No more items...