Belgium
Hydrogen Safety Aspects Related to High Pressure - PEM Water Electrolysis
Sep 2007
Publication
Polymer electrolyte membrane (PEM) water electrolysis has demonstrated its potentialities in terms of cell efficiency (energy consumption ≈ 4.0-4.2 kW/Nm3 H2) and gas purity (> 99.99% H2). Current research activities are aimed at increasing operating pressure up to several hundred bars for direct storage of hydrogen in pressurized vessels. Compared to atmospheric pressure electrolysis high-pressure operation yields additional problems especially with regard to safety considerations. In particular the rate of gases (H2 and O2) cross-permeation across the membrane and their water solubility both increase with pressure. As a result gas purity is affected in both anodic and cathodic circuits and this can lead to the formation of explosive gas mixtures. To prevent such risks two different solutions reported in this communication have been investigated. First the chemical modification of the solid polymer electrolyte in order to reduce cross-permeation phenomena. Second the use of catalytic H2/O2 recombiners to maintain H2 levels in O2 and O2 levels in H2 at values compatible with safety requirements.
Fuel Cells and Hydrogen Technologies in Europe: Financial and Technology Outlook on the European Sector Ambition 2014-2020
Nov 2011
Publication
Sustainable secure and competitive energy supply and transport services are at the heart of the EU2020 strategy towards a low carbon and inclusive economy geared towards a reduction of 80% of CO2 emissions by 2050. This objective has been endorsed by the European Institutions and Member States. It is widely recognised that a technological shift and the deployment of new clean technologies are critical for a successful transition to such a new sustainable economy. Furthermore in addition to bringing a healthier environment and securing energy supply innovation will provide huge opportunities for the European economy. However this paradigm shift will not be purely driven by the market. A strong and determined commitment of public institutions and the private sector together are necessary to support the European political ambition. The period 2014-2020 will be critical to ensure that the necessary investments are realized to support the EU2020 vision. In terms of hydrogen and fuel cell technologies significant investments are required for (a) transportation for scaling up the car fleet and building up of refuelling infrastructure needs (b) hydrogen production technologies to integrate renewable intermittent power sources to the electrical grid (wind and solar) (c) stationary fuel cell applications with large demonstration projects in several European cities and (d) identified early markets (material handling vehicles back-up power systems) to allow for volume developments and decrease of system-costs.<br/>This Report summarizes the sector’s financial ambition to reach Europe’s objectives in 2020.
European Hydrogen Safety Training Platform for First Responders- Hyresponse Project
Sep 2013
Publication
The paper presents HyResponse project i.e. a European Hydrogen Safety Training Platform that targets to train First responders to acquire professional knowledge and skills to contribute to FCH permitting process as approving authority. The threefold training program is described: educational training operational-level training on mock-up real scale transport and hydrogen stationary installations and innovative virtual training exercises reproducing entire accident scenarios. The paper highlights how the three pilot sessions for European First Responders in a face to face mode will be organized to get a feedback on the training program. The expected outputs are also presented i.e. the Emergency Response Guide and a public website including teaching material and online interactive virtual training.
Commercialisation of Energy Storage
Mar 2015
Publication
This report was created to ensure a deeper understanding of the role and commercial viability of energy storage in enabling increasing levels of intermittent renewable power generation. It was specifically written to inform thought leaders and decision-makers about the potential contribution of storage in order to integrate renewable energy sources (RES) and about the actions required to ensure that storage is allowed to compete with the other flexibility options on a level playing field.<br/>The share of RES in the European electric power generation mix is expected to grow considerably constituting a significant contribution to the European Commission’s challenging targets to reduce greenhouse gas emissions. The share of RES production in electricity demand should reach about 36% by 2020 45-60% by 2030 and over 80% in 2050.<br/>In some scenarios up to 65% of EU power generation will be covered by solar photovoltaics (PV) as well as on- and offshore wind (variable renewable energy (VRE) sources) whose production is subject to both seasonal as well as hourly weather variability. This is a situation the power system has not coped with before. System flexibility needs which have historically been driven by variable demand patterns will increasingly be driven by supply variability as VRE penetration increases to very high levels (50% and more).<br/>Significant amounts of excess renewable energy (on the order of TWh) will start to emerge in countries across the EU with surpluses characterized by periods of high power output (GW) far in excess of demand. These periods will alternate with times when solar PV and wind are only generating at a fraction of their capacity and non-renewable generation capacity will be required.<br/>In addition the large intermittent power flows will put strain on the transmission and distribution network and make it more challenging to ensure that the electricity supply matches demand at all times.<br/>New systems and tools are required to ensure that this renewable energy is integrated into the power system effectively. There are four main options for providing the required flexibility to the power system: dispatchable generation transmission and distribution expansion demand side management and energy storage. All of these options have limitations and costs and none of them can solve the RES integration challenge alone. This report focuses on the question to what extent current and new storage technologies can contribute to integrate renewables in the long run and play additional roles in the short term.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2017 Final Report
Dec 2018
Publication
The Programme Review Report ensures that the FCH JU programme is aligned with its strategy and objectives. This year the programme review was performed following a new procedure: it was carried out by the European Commission’s in-house science service the Joint Research Committee (JRC). The 2017 review pays particular attention to the added value effectiveness and efficiency of FCH JU activities. The review is structured around six panels under three pillars: transport energy and cross-cutting projects summarising the FCH JU Project Portfolio
Hydrogen Europe Podcast: Hydrogen, The First Element: Why Renewable Hydrogen? Why Now?
Mar 2022
Publication
In the first episode of Hydrogen Europe's podcast "Hydrogen the first element" our CEO Jorgo Chatzimarkakis discusses with NEL's CEO and President of Hydrogen Europe Jon Andre Løkke. Starting off on how Jon joined the hydrogen sector the two CEOs investigate the historical moment renewable hydrogen is currently living.
Hydrogen Council Report- Decarbonization Pathways
Jan 2021
Publication
This report shows that low-carbon hydrogen supply at scale is economically and environmentally feasible and will have significant societal benefits if the right localised approach and best-practices for production are used. The report also demonstrates that there is not one single hydrogen production pathway to achieve low lifecycle greenhouse gas (GHG) emissions but rather the need for a fact-based approach that leverages regional resources and includes a combination of different production pathways. This will achieve both emission and cost reductions ultimately helping to decarbonize the energy system and limit global warming.
In 2020 more than 15 countries launched major hydrogen plans and policies and industry players announced new projects of more than 35GW until 2030. As this hydrogen momentum accelerates it is increasingly clear that decision makers must put the focus on decarbonization to ensure hydrogen can fulfil its potential as a key solution in the global clean energy transition making a significant contribution to net zero emissions. To support this effort the two-part Hydrogen Council report provides new data based on an assessment of the GHG emissions generated through different hydrogen supply pathways and the lifecycle GHG emissions for different hydrogen applications (see report part 1 – A Life-cycle Assessment). In addition the report explores 3 hypothetical hydrogen supply scenarios to measure the feasibility and impact of deploying renewable and low-carbon hydrogen at scale (report part 2 – Potential Supply Scenarios).
The report outlines that there are many ways of producing hydrogen and although GHG emissions vary widely very high CO2 savings can be achieved across a broad range of different hydrogen production pathways and end-uses. For example while “green” hydrogen produced through water electrolysis with renewable power achieves the lowest emissions “blue” hydrogen produced from natural gas with high CO2 capture rate and storage can also achieve low emissions if best technologies are used and best practices are followed. Across eight illustrative pathways explored in the report analysis shows that if hydrogen is used significant GHG emission reductions can be made: as much as 60-90% or more compared to conventional fossil alternatives. The study also looked into the gross water demand of hydrogen supply pathways. Water electrolysis has a very low specific water demand of 9 kg per kg of hydrogen compared to cooling of thermal power plants (hundreds of kg/kg) or biomass cultivation (hundreds to thousands of kg/kg).
Furthermore low-carbon hydrogen supply at scale is fully achievable. Having investigated two hypothetical boundary scenarios (a “green-only” and a “blue-only” scenario) to assess the feasibility and impact of decarbonized hydrogen supply the report found that both scenarios are feasible: they are not limited by the world’s renewables potential or carbon sequestration (CCS) capacities and they do not exceed the speed at which industry can scale. In the Hydrogen Council’s “Scaling up” study a demand of 21800 TWh hydrogen has been identified for the year 2050. To achieve this a compound annual growth rate of 30-35% would be needed for electrolysers and CCS. This deployment rate is in line with the growth of the offshore wind and solar PV industry over the last decade.
Hydrogen Council data released in January 2020 showed that a wide range of hydrogen applications can become competitive by 2030 driven also by falling costs of renewable and low-carbon hydrogen[1]. The new study indicates that a combination of “green” and “blue” production pathways would lead to hydrogen cost reductions relative to either boundary scenario. By making use of the near-term cost advantage of “blue” while also scaling up “green” hydrogen as the most cost-efficient option in many regions in the medium and long-term the combined approach lowers average hydrogen costs between now and 2050 relative to either boundary scenario.
Part 1 – A Life-cycle Assessment
You can download the full reports from the Hydrogen Council website
Hydrogen Council Report- Decarbonization Pathways Part 1: Life Cycle Assessment here
Hydrogen Council Report-Decarbonization Pathways Part 2: Supply Scenarios here
An executive summary of the whole project can be found here
In 2020 more than 15 countries launched major hydrogen plans and policies and industry players announced new projects of more than 35GW until 2030. As this hydrogen momentum accelerates it is increasingly clear that decision makers must put the focus on decarbonization to ensure hydrogen can fulfil its potential as a key solution in the global clean energy transition making a significant contribution to net zero emissions. To support this effort the two-part Hydrogen Council report provides new data based on an assessment of the GHG emissions generated through different hydrogen supply pathways and the lifecycle GHG emissions for different hydrogen applications (see report part 1 – A Life-cycle Assessment). In addition the report explores 3 hypothetical hydrogen supply scenarios to measure the feasibility and impact of deploying renewable and low-carbon hydrogen at scale (report part 2 – Potential Supply Scenarios).
The report outlines that there are many ways of producing hydrogen and although GHG emissions vary widely very high CO2 savings can be achieved across a broad range of different hydrogen production pathways and end-uses. For example while “green” hydrogen produced through water electrolysis with renewable power achieves the lowest emissions “blue” hydrogen produced from natural gas with high CO2 capture rate and storage can also achieve low emissions if best technologies are used and best practices are followed. Across eight illustrative pathways explored in the report analysis shows that if hydrogen is used significant GHG emission reductions can be made: as much as 60-90% or more compared to conventional fossil alternatives. The study also looked into the gross water demand of hydrogen supply pathways. Water electrolysis has a very low specific water demand of 9 kg per kg of hydrogen compared to cooling of thermal power plants (hundreds of kg/kg) or biomass cultivation (hundreds to thousands of kg/kg).
Furthermore low-carbon hydrogen supply at scale is fully achievable. Having investigated two hypothetical boundary scenarios (a “green-only” and a “blue-only” scenario) to assess the feasibility and impact of decarbonized hydrogen supply the report found that both scenarios are feasible: they are not limited by the world’s renewables potential or carbon sequestration (CCS) capacities and they do not exceed the speed at which industry can scale. In the Hydrogen Council’s “Scaling up” study a demand of 21800 TWh hydrogen has been identified for the year 2050. To achieve this a compound annual growth rate of 30-35% would be needed for electrolysers and CCS. This deployment rate is in line with the growth of the offshore wind and solar PV industry over the last decade.
Hydrogen Council data released in January 2020 showed that a wide range of hydrogen applications can become competitive by 2030 driven also by falling costs of renewable and low-carbon hydrogen[1]. The new study indicates that a combination of “green” and “blue” production pathways would lead to hydrogen cost reductions relative to either boundary scenario. By making use of the near-term cost advantage of “blue” while also scaling up “green” hydrogen as the most cost-efficient option in many regions in the medium and long-term the combined approach lowers average hydrogen costs between now and 2050 relative to either boundary scenario.
Part 1 – A Life-cycle Assessment
- The life-cycle assessment (LCA) analysis in this study addresses every aspect of the supply chain from primary energy extraction to end use. Eight primary-energy-to-hydrogen value chains have been selected for illustrative purposes.
- Across the hydrogen pathways and applications depicted very high to high GHG emission reduction can be demonstrated using green (solar wind) and blue hydrogen.
- In the LCA study renewables + electrolysis shows strongest GHG reduction of the different hydrogen supply pathways assessed in this study with a best-case blue hydrogen pathway also coming into the same order of magnitude.
- Currently the vast majority of hydrogen is produced by fossil pathways. To achieve a ten-fold build-out of hydrogen supply by 2050 as envisaged by the Hydrogen Council in its ‘Scaling Up’ report (2017) the existing use of hydrogen – and all its many potential new roles – need to be met by decarbonized sources.
- Three hypothetical supply scenarios with decarbonized hydrogen sources are considered in the study: 1) a “green-only” renewables-based world; 2) a “blue-only” world relying on carbon sequestration; and 3) a combined scenario that uses a region-specific combination of green and blue hydrogen based on the expected regional cost development of each source.
- The study finds that a decarbonized hydrogen supply is possible regardless of the production pathway: while both the green and blue boundary scenario would be highly ambitious regarding the required speed of scale-up they do not exceed the world’s resources on either renewable energy or carbon sequestration capabilities.
- A combination of production pathways would result in the least-cost global supply over the entire period of scale-up. It does so by making best use of the near-term cost advantage of “blue” in some regions while simultaneously achieving a scale-up in electrolysis.
- In reality the decarbonized supply scenario will combine a range of different renewable and low-carbon hydrogen production pathways that are optimally suited to local conditions political and societal preferences and regulations as well as industrial and cost developments for different technologies.
You can download the full reports from the Hydrogen Council website
Hydrogen Council Report- Decarbonization Pathways Part 1: Life Cycle Assessment here
Hydrogen Council Report-Decarbonization Pathways Part 2: Supply Scenarios here
An executive summary of the whole project can be found here
A Hydrogen Strategy for a Climate-neutral Europe
Jul 2020
Publication
In an integrated energy system hydrogen can support the decarbonisation of industry transport power generation and buildings across Europe. The EU Hydrogen Strategy addresses how to transform this potential into reality through investments regulation market creation and research and innovation.
Hydrogen can power sectors that are not suitable for electrification and provide storage to balance variable renewable energy flows but this can only be achieved with coordinated action between the public and private sector at EU level. The priority is to develop renewable hydrogen produced using mainly wind and solar energy. However in the short and medium term other forms of low-carbon hydrogen are needed to rapidly reduce emissions and support the development of a viable market.
This gradual transition will require a phased approach:
Hydrogen can power sectors that are not suitable for electrification and provide storage to balance variable renewable energy flows but this can only be achieved with coordinated action between the public and private sector at EU level. The priority is to develop renewable hydrogen produced using mainly wind and solar energy. However in the short and medium term other forms of low-carbon hydrogen are needed to rapidly reduce emissions and support the development of a viable market.
This gradual transition will require a phased approach:
- From 2020 to 2024 we will support the installation of at least 6 gigawatts of renewable hydrogen electrolysers in the EU and the production of up to one million tonnes of renewable hydrogen.
- From 2025 to 2030 hydrogen needs to become an intrinsic part of our integrated energy system with at least 40 gigawatts of renewable hydrogen electrolysers and the production of up to ten million tonnes of renewable hydrogen in the EU.
- From 2030 to 2050 renewable hydrogen technologies should reach maturity and be deployed at large scale across all hard-to-decarbonise sectors.
- To help deliver on this Strategy the Commission is launched the European Clean Hydrogen Alliance with industry leaders civil society national and regional ministers and the European Investment Bank. The Alliance will build up an investment pipeline for scaled-up production and will support demand for clean hydrogen in the EU.
The Impact of Climate Targets on Future Steel Production – An Analysis Based on a Global Energy System Model
Apr 2020
Publication
This paper addresses how a global climate target may influence iron and steel production technology deployment and scrap use. A global energy system model ETSAP-TIAM was used and a Scrap Availability Assessment Model (SAAM) was developed to analyse the relation between steel demand recycling and the availability of scrap and their implications for steel production technology choices. Steel production using recycled materials has a continuous growth and is likely to be a major route for steel production in the long run. However as the global average of in-use steel stock increases up to the current average stock of the industrialised economies global steel demand keeps growing and stagnates only after 2050. Due to high steel demand levels and scarcity of scrap more than 50% of the steel production in 2050 will still have to come from virgin materials. Hydrogen-based steel production could become a major technology option for production from virgin materials particularly in a scenario where Carbon Capture and Storage (CCS) is not available. Imposing a binding climate target will shift the crude steel price to approximately 500 USD per tonne in the year 2050 provided that CCS is available. However the increased prices are induced by CO2 prices rather than inflated production costs. It is concluded that a global climate target is not likely to influence the use of scrap whereas it shall have an impact on the price of scrap. Finally the results indicate that energy efficiency improvements of current processes will only be sufficient to meet the climate target in combination with CCS. New innovative techniques with lower climate impact will be vital for mitigating climate change.
Property Optimization in As-Quenched Martensitic Steel by Molybdenum and Niobium Alloying
Apr 2018
Publication
Niobium microalloying is the backbone of modern low-carbon high strength low alloy (HSLA) steel metallurgy providing a favorable combination of strength and toughness by pronounced microstructural refinement. Molybdenum alloying is established in medium-carbon quenching and tempering of steel by delivering high hardenability and good tempering resistance. Recent developments of ultra-high strength steel grades such as fully martensitic steel can be optimized by using beneficial metallurgical effects of niobium and molybdenum. The paper details the metallurgical principles of both elements in such steel and the achievable improvement of properties. Particularly the underlying mechanisms of improving toughness and reducing the sensitivity towards hydrogen embrittlement by a suitable combination of molybdenum and niobium alloying will be discussed.
Market Segmentation of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The main goal of the project is to enable the wide adoption of H2NG (hydrogen in natural gas) blends by closing knowledge gaps regarding technical impacts on residential and commercial gas appliances. The project consortium will identify and recommend appropriate codes and standards that should be adapted to answer the needs and develop a strategy for addressing the challenges for new and existing appliances.<br/>This deliverable on market segmentation is part of work package 2 and provides a quantitative segmentation of the gas appliance market in terms of appliance population numbers. It therefore prepares the project partners to perform the subsequent selection of the most representative product types to be tested in the laboratories of the THyGA partners.<br/>The classification is developed to categorise appliances installed in the field based on available statistics calculation methods and estimations. As a result appliance populations are provided for each technology segment that draw a representative picture of the installed end-use appliances within the European Union in 2020.
Investigation of the Hydrogen Embrittlement Susceptibility of T24 Boiler Tubing in the Context of Stress Corrosion Cracking of its Welds
Dec 2018
Publication
For the membrane and spiral walls of the new USC boilers the advanced T24 material was developed. In 2010 however extensive T24 tube weld cracking during the commissioning phase of several newly built boilers was observed. As the dominant root cause Hydrogen Induced - Stress Corrosion Cracking was reported. An investigation into the interaction of the T24 material with hydrogen was launched in order to compare its hydrogen embrittlement susceptibility with that of the T12 steel commonly used for older boiler evaporators. Both base materials and simulated Heat Affected Zone (HAZ) microstructures were tested. Total and diffusible hydrogen in the materials after electrochemical charging were measured. Thermo Desorption Spectrometry was used to gain insights into the trapping behaviour and the apparent diffusion coefficient at room temperature was determined. Based on the hardness and the diffusible hydrogen pick-up capacity of the materials it was concluded that T12 is less susceptible to hydrogen embrittlement than T24 as base material as well as in the HAZ condition and that the HAZ of T24 is more susceptible to hydrogen embrittlement than the base material both in the as welded and in the Post Weld Heat Treated (PWHT) condition. However based on the results of this investigation it could not be determined if the T24 HAZ is less susceptible to hydrogen embrittlement after PWHT.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Fuel Cells and Hydrogen Observatory Hydrogen Molecule Market Report
Sep 2021
Publication
The purpose of the hydrogen molecule market analysis is to track changes in the structure of hydrogen supply and demand in Europe. This report is mainly focused on presenting the current landscape - that will allow for future year-on-year comparisons in order to assess the progress Europe is making with regards to deployment of clean hydrogen production capacities as well as development of demand for clean hydrogen from emerging new hydrogen applications in the mobility sector or in industry. The following report summarizes the hydrogen molecule market landscape and contains data about hydrogen production and consumption in the EEA countries (EU countries together with Switzerland Norway Iceland and Liechtenstein). Hydrogen production capacity is presented by country and by technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data available at the end of 2019. Hydrogen market (on both the demand and supply side) is dominated by ammonia and refining industries with three countries (DE NL PL) responsible for almost half hydrogen consumption. Today hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are insignificant with blue hydrogen capacities at below 1% and green hydrogen production capacity below 0.1% of total.
Fuel Cells and Hydrogen Observatory Technology and Market Report
Sep 2021
Publication
The information in this report covers the period January 2019 – December 2019. The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. This includes statistical information on the size of the global fuel cell market including number and capacity of fuel cell systems shipped in a calendar year. For this first edition data to the end of 2019 is presented where possible alongside analysis of key sector developments. Fuel cell system shipments for each calendar year are presented both as numbers of units and total system megawatts. The data are further divided and subdivided by: • Application: Total system shipments are divided into Transport Stationary and Portable applications • Fuel cell type: Numbers are provided for each of the different fuel cell chemistry types • Region of integration: Region where the final manufacturer – usually the system integrator – integrates the fuel cell into the final product • Region of deployment: Region where the final product was shipped to for deployment The data is sourced directly from industry players as well as other relevant sources including press releases associations and other industry bodies.
Fuel Cells and Hydrogen Observatory Standards Report
Sep 2021
Publication
Purpose: The Standards module of the FCHO presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized in order to enhance ease of access and usability. The development of sector-relevant standards facilitates and enhances economies of scale interoperability comparability safety and many other issues. Scope: The database presents European and International standards. Standards from the following standards developing organizations are included: CEN CENELEC ISO IEC OIML. The report spans January 2019 – December 2019. Key Findings: The development of sector relevant standards on an international level continued to grow in 2019 on European level many standards are still in the process of being drafted. The recently established CEN-CLC JTC 6 (Hydrogen in energy systems) has not published standards yet but is working on drafting standards on for example Guarantees of Origin.
Hydrogen for Net Zero - A Critical Cost-competitive Energy Vector
Nov 2021
Publication
The report “Hydrogen for Net Zero” presents an ambitious yet realistic deployment scenario until 2030 and 2050 to achieve Net Zero emissions considering the uses of hydrogen in industry power mobility and buildings. The scenario is described in terms of hydrogen demand supply infrastructure abatement potential and investments required and then compared with current momentum and investments in the industry to identify the investment gaps across value chains and geographies.
The report is based on the technoeconomic data of cost and performance of hydrogen technologies provided by Hydrogen Council members and McKinsey & Company as well as the Hydrogen Council investment tracker which covers all large-scale investments into hydrogen globally.
Link to their website
The report is based on the technoeconomic data of cost and performance of hydrogen technologies provided by Hydrogen Council members and McKinsey & Company as well as the Hydrogen Council investment tracker which covers all large-scale investments into hydrogen globally.
Link to their website
A Perspective on Hydrogen Investment, Deployment and Cost Competitiveness
Feb 2021
Publication
Deployment and investments in hydrogen have accelerated rapidly in response to government commitments to deep decarbonisation establishing hydrogen as a key component in the energy transition.
To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The report offers a comprehensive perspective on market deployment around the world investment momentum as well as implications on cost competitiveness of hydrogen solutions.
The document can be downloaded from their website
To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The report offers a comprehensive perspective on market deployment around the world investment momentum as well as implications on cost competitiveness of hydrogen solutions.
The document can be downloaded from their website
Calibrating a Ductile Damage Model for Two Pipeline Steels: Method and Challenges
Dec 2020
Publication
This work is part of a project that aims to develop a micromechanics based damage law taking into account hydrogen assisted degradation. A 'vintage' API 5L X56N and a 'modern' API 5L X70M pipeline steel have been selected for this purpose. The paper focuses on an experimental calibration of ductile damage properties of the well known complete Gurson model for the two steels in absence of hydrogen. A basic microstructural characterization is provided showing a banded ferrite-pearlite microstructure for both steels. Charpy impact tests showed splits at the fracture surface for the X70 steel. Double-notched round bar tensile tests are performed aiming to provide the appropriate input for damage model calibration. The double-notched nature of the specimens allows to examine the material state at maximum load in the unfailed notch and the final material state in the failed notch. Different notch radii are used capturing a broad range of positive stress triaxialities. The notches are optically monitored for transverse necking in two perpendicular directions (transverse to rolling and through thickness) to reveal any anisotropy in plastic deformation and/or damage. It is explained how the occurrence of splits at the segregation zone and anisotropy complicate the calibration procedure. Calibration is done for each steel and acceptable results are obtained. However the occurrence of splits did not allow to evaluate the damage model for the highest levels of tested stress triaxiality.
Fuel Cells and Hydrogen Observatory 2019 EU and National Policies Report
Sep 2021
Publication
The policy module of the FCHO presents an overview of EU and national policies across various hydrogen and fuel cell related sectors. It provides a snapshot of the current state of hydrogen legislation and policy. Scope: While FCHO covers 38 entities around the world due to the completeness of the data at the moment of writing this report covers 29 entities. The report reflects data collected January 2019 – December 2019. Key Findings: Hydrogen policies are relatively commonplace among European countries but with large differences between member states. EU hydrogen leaders do not lag behind global outliers such as South Korea or Japan.
Internal and Surface Damage after Electrochemical Hydrogen Charging for Ultra Low Carbon Steel with Various Degrees of Recrystallization
Jul 2016
Publication
An ultra low carbon (ULC) steel was subjected to electrochemical hydrogen charging to provoke hydrogen induced damage in the material. The damage characteristics were analyzed for recrystallized partially recrystallized and cold deformed material. The goal of the study is to understand the effect of cold deformation on the hydrogen induced cracking behavior of a material which is subjected to cathodic hydrogen charging. Additionally charging conditions i.e. charging time and current density were varied in order to identify correlations between on the one hand crack initiation and propagation and on the other hand the charging conditions. The obtained hydrogen induced cracks were studied by optical microscopy scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Hydrogen induced cracks were observed to propagate transgranularly independently of the state of the material. Deformed samples were considerably more sensitive to hydrogen induced cracking which implies the important role of dislocations in hydrogen induced damage mechanisms.
Hydrogen Production: State of Technology
May 2020
Publication
Presently hydrogen is for ~50% produced by steam reforming of natural gas – a process leading to significant emissions of greenhouse gas (GHG). About 30% is produced from oil/naphtha reforming and from refinery/chemical industry off-gases. The remaining capacity is covered for 18% from coal gasification 3.9% from water electrolysis and 0.1% from other sources. In the foreseen future hydrogen economy green hydrogen production methods will need to supply hydrogen to be used directly as fuel or to generate synthetic fuels to produce ammonia and other fertilizers (viz. urea) to upgrade heavy oils (like oil sands) and to produce other chemicals. There are several ways to produce H2 each with limitations and potential such as steam reforming electrolysis thermal and thermo-chemical water splitting dark and photonic fermentation; gasification and catalytic decomposition of methanol. The paper reviews the fundamentals and potential of these alternative process routes. Both thermo-chemical water splitting and fermentation are marked as having a long term but high "green" potential.
Life Cycle Performance of Hydrogen Production via Agro-Industrial Residue Gasification—A Small Scale Power Plant Study
Mar 2018
Publication
This study evaluates the environmental profile of a real biomass-based hydrogen production small-scale (1 MWth) system composed of catalytic candle indirectly heated steam gasifier coupled with zinc oxide (ZnO) guard bed water gas shift (WGS) and pressure swing absorber (PSA) reactors. Environmental performance from cradle-to-gate was investigated by life cycle assessment (LCA) methodology. Biomass production shows high influence over all impact categories. In the syngas production process the main impacts observed are global warming potential (GWP) and acidification potential (AP). Flue gas emission from gasifier burner has the largest proportion of total GWP. The residual off gas use in internal combustion engine (ICE) leads to important environmental savings for all categories. Hydrogen renewability score is computed as 90% due to over 100% decline in non-renewable energy demand. Sensitivity analysis shows that increase in hydrogen production efficiency does not necessarily result in decrease in environmental impacts. In addition economic allocation of environmental charges increases all impact categories especially AP and photochemical oxidation (POFP).
Validation of Selected Optical Methods for Assessing Polyethylene (PE) Liners Used in High Pressure Vessels for Hydrogen Storage
Jun 2021
Publication
A polyethylene (PE) liner is the basic element in high-pressure type 4 composite vessels designed for hydrogen or compressed natural gas (CNG) storage systems. Liner defects may result in the elimination of the whole vessel from use which is very expensive both at the manufacturing and exploitation stage. The goal is therefore the development of efficient non-destructive testing (NDT) methods to test a liner immediately after its manufacturing before applying a composite reinforcement. It should be noted that the current regulations codes and standards (RC&S) do not specify liner testing methods after manufacturing. It was considered especially important to find a way of locating and assessing the size of air bubbles and inclusions and the field of deformations in liner walls. It was also expected that these methods would be easily applicable to mass-produced liners. The paper proposes the use of three optical methods namely visual inspection digital image correlation (DIC) and optical fiber sensing based on Bragg gratings (FBG). Deformation measurements are validated with finite element analysis (FEA). The tested object was a prototype of a hydrogen liner for high-pressure storage (700 bar). The mentioned optical methods were used to identify defects and measure deformations.
Strategies for Joint Procurement of Fuel Cell Buses
Jun 2018
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has supported a range of initiatives in recent years designed to develop hydrogen fuel cell buses to a point where they can fulfil their promise as a mainstream zero emission vehicle for public transport.<br/>Within this study 90 different European cities and regions have been supported in understanding the business case of fuel cell bus deployment and across these locations. The study analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe. It also outlines possible solutions for further deployment of FC buses beyond the subsidised phase.<br/>In the light of the experience of the joint tender process in the UK and in Germany the study highlights best practices for ordering fuel cell buses. Other innovative instruments explored in other countries for the orders of large quantities of fuel cells buses are presented: Special Purpose Vehicles and centralised purchase office. Finally the study deeply analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2016 Final Report
Jun 2017
Publication
The Fuel Cell and Hydrogen 2 Joint Undertaking (FCH 2 JU) organised the sixth edition of its Programme Review Days (PRD). 100 projects allocated in 6 panels covering cross-cutting energy and transport in research and demonstration activities have been the basis of the FCH JU's annual review of its research and innovation programme.
A Portfolio of Power-Trains for Europe- A Fact Based Analysis
Nov 2010
Publication
This report is prepared by thirty of the largest global car manufacturers oil and gas companies utilities equipment manufacturers NGOs governmental and clean energy organisations with the collaboration of the Fuel Cells and Hydrogen Joint Undertaking.<br/>The analysis compares the economics sustainability and performance of the vehicles and infrastructures needed to reach the 80% decarbonisation goal set by the<br/>European Union and is an unprecedented effort from industry and other stakeholders to analyse the role of the various new car-types in meeting this objective on the basis of proprietary industrial data.
Hydrogen Roadmap Europe: A Sustainable Pathway for the European Energy Transition
Feb 2019
Publication
Hydrogen is an essential element in the energy transition and can account for 24% of final energy demand and 5.4m jobs by 2050 says the new study by the FCH JU “Hydrogen Roadmap Europe: A sustainable pathway for the European Energy Transition“. Developed with input from 17 leading European industrial actors the study lays out a pathway for the large-scale deployment of hydrogen and fuel cells until 2050 and quantifies the associated socio-economic impacts.<br/>The report makes the case that hydrogen is required to address the challenges ahead. At scale decarbonisation of key segments such as the gas grid transport (particularly as relates to heavy duty vehicles) industrial processes that use high-grade heat and hydrogen as chemical feedstock require the use of hydrogen in large quantities.<br/>In addition the electrification of the economy and the large scale integration of intermittent renewable energy sources require large scale energy storage enabling seasonal storage and the efficient transport of clean energy across regions at low cost. Hydrogen is the only at scale technology capable of addressing all of these challenges.<br/>Importantly there will be important socio-economic and environmental benefits associated with this deployment such as an EUR 820B per year market and a total of 560Mt CO2 abated. The report lays out a roadmap for the ramp-up of market deployment across applications setting specific milestones between now and 2050. It also calls for a coordinated approach from policy makers industry and investors in order to achieve the 2-degree scenario.
Fire Tests Carried Out in FCH JU FIRECOMP Project, Recommendations and Application to Safety of Gas Storage Systems
Sep 2017
Publication
In the event of a fire composite pressure vessels behave very differently from metallic ones: the material is degraded potentially leading to a burst without significant pressure increase. Hence such objects are when necessary protected from fire by using thermally-activated devices (TPRD) and standards require testing cylinder and TPRD together. The pre-normative research project FireComp aimed at understanding better the conditions which may lead to burst through testing and simulation and proposed an alternative way of assessing the fire performance of composite cylinders. This approach is currently used by Air Liquide for the safety of composite bundles carrying large amounts of hydrogen gas.
Understanding the Interaction between a Steel Microstructure and Hydrogen
Apr 2018
Publication
The present work provides an overview of the work on the interaction between hydrogen (H) and the steel’s microstructure. Different techniques are used to evaluate the H-induced damage phenomena. The impact of H charging on multiphase high-strength steels i.e. high-strength low-alloy (HSLA) transformation-induced plasticity (TRIP) and dual phase (DP) is first studied. The highest hydrogen embrittlement resistance is obtained for HSLA steel due to the presence of Ti- and Nb-based precipitates. Generic Fe-C lab-cast alloys consisting of a single phase i.e. ferrite bainite pearlite or martensite and with carbon contents of approximately 0 0.2 and 0.4 wt % are further considered to simplify the microstructure. Finally the addition of carbides is investigated in lab-cast Fe-C-X alloys by adding a ternary carbide forming element to the Fe-C alloys. To understand the H/material interaction a comparison of the available H trapping sites the H pick-up level and the H diffusivity with the H-induced mechanical degradation or H-induced cracking is correlated with a thorough microstructural analysis.
European Hydrogen Safety Panel (EHSP)
Sep 2019
Publication
Inaki Azkarate,
Marco Carcassi,
Francesco Dolci,
Alberto Garcia-Hombrados,
Stuart J. Hawksworth,
Thomas Jordan,
Georg W. Mair,
Daniele Melideo,
Vladimir V. Molkov,
Pietro Moretto,
Ernst Arndt Reinecke,
Pratap Sathiah,
Ulrich Schmidtchen,
Trygve Skjold,
Etienne Studer,
Tom Van Esbroeck,
Elena Vyazmina,
Jennifer Xiaoling Wen,
Jianjun Xiao and
Joachim Grüne
The FCH 2 JU launched the European Hydrogen Safety Panel (EHSP) initiative in 2017. The mission of the EHSP is to assist the FCH 2 JU both at programme and at project level in assuring that hydrogen safety is adequately managed and to promote and disseminate H2 safety culture within and outside of the FCH 2 JU programme. The EHSP is composed of a multidisciplinary pool of safety experts grouped in ad-hoc working groups (task forces) according to the tasks to be performed and to expertise. The scope and activities of the EHSP are structured around four main areas:
TF.1. Support at project level The EHSP task under this category includes the development of measures to avoid any accident by integrating safety learnings expertise and planning into FCH 2 JU funded projects and by ensuring that all projects address and incorporate the state-of-the-art in hydrogen safety appropriately. To this end a Safety guidance document for hydrogen and fuel cell projects will be produced.
TF.2. Support at programme level Activities under this category include answering questions related to hydrogen safety in an independent coordinated and consolidated way via hotline-support or if necessary via physical presence of safety representative at the FCH 2 JU. It could also include a short introduction to hydrogen safety and the provision of specific guidelines for the handling storage and use of hydrogen in the public domain. As a start a clear strategy on this should be developed and therefore related M ulti-annual work plan 2018-2020.
TF.3. Data collection and assessment The EHSP tasks include the analysis of existing events already introduced in the European Hydrogen Safety Reference Database (HIAD) and of new information from relevant mishaps incidents or accidents. The EHSP should therefore derive lessons learned and provide together with the involved parties further general recommendations to all stakeholders based on these data. For 2018 the following deliverables should be produced: methodology to collect inputs from projects and to provide lessons learned and guidelines assessment and lessons learned from HIAD and a report on research progress in the field of hydrogen safety.
TF.4. Public outreach Framed within the context of the intended broad information exchange the EHSP tasks under this category include the development of a regularly updated webpage hosted on the FCH 2 JU website.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2012 Final Report
Mar 2013
Publication
Initiated in 2011 the 2012 programme review edition covered 71‘live’ projects from the 2008 2009 and 2010 calls for proposals together with some projects from the 2011 call. Total funding for these projects stands at close to € 450 million 50% of which comes from FCH JU financial contributions and 50% of which comes from industry and research in-kind contributions.
Assessing the Environmental Impacts of Wind-based Hydrogen Production in the Netherlands Using Ex-ante LCA and Scenarios Analysis
Mar 2021
Publication
Two electrolysis technologies fed with renewable energy sources are promising for the production of CO2-free hydrogen and enabling the transition to a hydrogen society: Alkaline Electrolyte (AE) and Polymer Electrolyte Membrane (PEM). However limited information exists on the potential environmental impacts of these promising sustainable innovations when operating on a large-scale. To fill this gap the performance of AE and PEM systems is compared using ex-ante Life Cycle Assessment (LCA) technology analysis and exploratory scenarios for which a refined methodology has been developed to study the effects of implementing large-scale sustainable hydrogen production systems. Ex-ante LCA allows modelling the environmental impacts of hydrogen production exploratory scenario analysis allows modelling possible upscaling effects at potential future states of hydrogen production and use in vehicles in the Netherlands in 2050. A bridging tool for mapping the technological field has been created enabling the combination of quantitative LCAs with qualitative scenarios. This tool also enables diversity for exploring multiple sets of visions. The main results from the paper show with an exception for the “ozone depletion” impact category (1) that large-scale AE and PEM systems have similar environmental impacts with variations lower than 7% in all impact categories (2) that the contribution of the electrolyser is limited to 10% of all impact categories results and (3) that the origin of the electricity is the largest contributor to the environmental impact contributing to more than 90% in all impact categories even when renewable energy sources are used. It is concluded that the methodology was applied successfully and provides a solid basis for an ex-ante assessment framework that can be applied to emerging technological systems.
Evaluation of Blistered and Cold Deformed ULC Steel with Melt Extraction and Thermal Desorption Spectroscopy
Dec 2019
Publication
Hydrogen characterization techniques like melt extraction and thermal desorption spectroscopy (TDS) are useful tools in order to evaluate and understand the interaction between hydrogen and metals. These two techniques are used here on cold deformed ultra-low carbon (ULC) steel with and without hydrogen induced damage. The material is charged electrochemically in order to induce varying amounts of hydrogen and variable degrees of hydrogen induced damage. The aim of this work is to evaluate to which extent the hydrogen induced damage would manifest itself in melt extraction and TDS measurements.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2011 Final Report
Apr 2012
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has the ambitious objective to place Europe at the forefront of the development commercialization and deployment of fuel cells and hydrogen technologies as of 2015. About €470 million over a six year period have been granted by the European Union to achieve this and private funds are being attracted to support the same ambition as part of the global European effort embedded in the multi-annual implementation plan MAIP (2008-2013).
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2013 Final Report
Mar 2014
Publication
The 2013 Programme Review is the third annual review of the FCH JU portfolio of projects. This edition covers over 100 projects funded through annual calls for proposals from 2008 to 2012.<br/>The Programme Review serves to evaluate the achievements of the portfolio of FCH JU-funded projects against FCH JU strategic objectives in terms of advancing technological progress addressing horizontal activities and promoting cooperation with other projects both within the FCH JU portfolio as well as externally.<br/>The 2013 Review confirms that the portfolio of projects supported within energy and transport pillars and within its cross-cutting activities is a solid one aligned with the FCH JU strategic objectives. Industry and research collaboration is strong with SMEs making up 30% of total participants. The continued expansion of demonstration activities in both pillars answers to a greater emphasis on addressing the commercialisation challenge which is bolstered by activities in basic and breakthrough research.
Value Added of the Hydrogen and Fuel Cell Sector in Europe
Mar 2019
Publication
Fuel cells and hydrogen (FCH) could bring significant environmental benefits across the energy system if deployed widely: low carbon and highly efficient energy conversions with zero air quality emissions. The socio-economic benefits to Europe could also be substantial through employment in development manufacturing installation and service sectors and through technology export. Major corporations are stressing the economic and environmental value of FCH technologies and the importance of including them in both transport and stationary energy systems globally while national governments and independent agencies are supporting their role in the energy systems transition.
Recognising the potential economic and industrial benefits from a strong FCH supply chain in Europe and the opportunities for initiatives to support new energy supply chains the FCH 2 JU commissioned a study to evaluate for the first time the value added that the fuel cell and hydrogen sector can bring to Europe by 2030.
The outputs of the study are divided into three reports:
The Value Chain study complements the Hydrogen Roadmap for Europe recently published by the FCH 2 JU. This lays out a pathway for the large-scale deployment of hydrogen and fuel cells to 2050 in order to achieve a 2-degree climate scenario. This study also quantified socio-economic and environmental benefits but with important differences in scope between the two studies. The Hydrogen Roadmap for Europe looked at the wider picture quantifying the scale of FCH roll-out needed to meet the 2-degree scenario objectives. It assessed the socio-economic impacts of a sector of that scale looking top-down at the entire FCH value chain. The Value Chain study presented here is a narrower and more detailed bottom-up assessment of the value-added in manufacturing activities and the immediate ecosystem of suppliers that this is likely to create.
Recognising the potential economic and industrial benefits from a strong FCH supply chain in Europe and the opportunities for initiatives to support new energy supply chains the FCH 2 JU commissioned a study to evaluate for the first time the value added that the fuel cell and hydrogen sector can bring to Europe by 2030.
The outputs of the study are divided into three reports:
- A ‘Summary’ report that provides a synthetic overview of the study conclusions;
- a ‘Findings’ report that presents the approach and findings of the study;
- and an ‘Evidence’ report that provides the detailed background information and analysis that supports the findings and recommendations.
The Value Chain study complements the Hydrogen Roadmap for Europe recently published by the FCH 2 JU. This lays out a pathway for the large-scale deployment of hydrogen and fuel cells to 2050 in order to achieve a 2-degree climate scenario. This study also quantified socio-economic and environmental benefits but with important differences in scope between the two studies. The Hydrogen Roadmap for Europe looked at the wider picture quantifying the scale of FCH roll-out needed to meet the 2-degree scenario objectives. It assessed the socio-economic impacts of a sector of that scale looking top-down at the entire FCH value chain. The Value Chain study presented here is a narrower and more detailed bottom-up assessment of the value-added in manufacturing activities and the immediate ecosystem of suppliers that this is likely to create.
Study on Early Business Cases for H2 In Energy Storage and More Broadly Power to H2 Applications
Jun 2017
Publication
Hydrogen is widely recognised as a promising option for storing large quantities of renewable electricity over longer periods. For that reason in an energy future where renewables are a dominant power source opportunities for Power to- Hydrogen in the long-term appear to be generally acknowledged. The key challenge today is to identify concrete short-term investment opportunities based on sound economics and robust business cases. The focus of this study is to identify these early business cases and to assess their potential replicability within the EU from now until 2025. An essential part and innovative approach of this study is the detailed analysis of the power sector including its transmission grid constraints.
A Roadmap for Financing Hydrogen Refueling Networks – Creating Prerequisites for H2-based Mobility
Sep 2014
Publication
Fuel cell electric vehicles (FCEVs) are zero tailpipe emission vehicles. Their large-scale deployment is expected to play a major role in the de-carbonization of transportation in the European Union (EU) and is therefore an important policy element at EU and Member State level.<br/>For FCEVs to be introduced to the market a network of hydrogen refuelling stations (HRS) first has to exist. From a technological point of view FCEVs are ready for serial production already: Hyundaiand Toyota plan to introduce FCEVs into key markets from 2015 and Daimler Ford and Nissan plan to launch mass-market FCEVs in 2017.<br/>At the moment raising funds for building the hydrogen refuelling infrastructure appears to be challenging.<br/>This study explores options for financing the HRS rollout which facilitate the involvement of private lenders and investors. It presents a number of different financing options involving public-sector bank loans funding from private-sector strategic equity investors commercial bank loans private equity and funding from infrastructure investors. The options outline the various requirements forn accessing these sources of funding with regard to project structure incentives and risk mitigation. The financing options were developed on the basis of discussions with stakeholders in the HRS rollout from industry and with financiers.<br/>This study was prepared by Roland Berger in close contact with European Investment banks and a series of private banks.<br/>This study explores in details the business cases for HRS in Germany and UK. The conclusion can be easily extrapolate to other countries.
Study on the Use of Fuel Cells and Hydrogen in the Railway Environment
Jun 2019
Publication
This study outlines a pathway for commercialisation of stationary fuel cells in distributed generation across Europe. It has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) a public-private partnership between the European Commission the fuel cell and hydrogen industry and a number of research bodies and associations. The FCH JU supports research technology development and demonstration activities in the field of fuel cell and hydrogen technologies in Europe. The study explores how stationary fuel cells can benefit users how they can be brought to the market what hurdles still exist and how their diffusion may foster Europe's transition into a new energy age.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2014 Final Report
Apr 2015
Publication
The 2014 Review is the fourth review of the FCH JU project portfolio. The reviews began in 2011 following a recommendation arising from the interim evaluation of the FCH JU which identified the need to ensure that the FCH JU project portfolio as a whole fulfilled the objectives of the Multi-Annual Implementation or Work Plan.
Hydrogen Act Towards the creation of the European Hydrogen Economy
Apr 2021
Publication
It is time that hydrogen moves from an afterthought to a central pillar of the energy system and its key role in delivering climate neutrality means it merits a dedicated framework. It becomes paramount to allow hydrogen to express its full potential as the other leg of the energy mobility and industry transitions. The proposed “Hydrogen Act” is not a single piece of legislation it is intended to be a vision for an umbrella framework aimed at harmonising and integrating all separate hydrogen-related actions and legislations. It focuses on infrastructure and market aspects describing three phases of development: the kick-start phase the ramp-up phase and the market-growth phase.
A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions
Dec 2022
Publication
Long-haul heavy-duty vehicles including trucks and coaches contribute to a substantial portion of the modern-day European carbon footprint and pose a major challenge in emissions reduction due to their energy-intensive usage. Depending on the hydrogen fuel source the use of fuel cell electric vehicles (FCEV) for long-haul applications has shown significant potential in reducing road freight CO2 emissions until the possible maturity of future long-distance battery-electric mobility. Fuel cell heavy-duty (HD) propulsion presents some specific characteristics advantages and operating constraints along with the notable possibility of gains in powertrain efficiency and usability through improved system design and intelligent onboard energy and thermal management. This paper provides an overview of the FCEV powertrain topology suited for long-haul HD applications their operating limitations cooling requirements waste heat recovery techniques state-of-the-art in powertrain control energy and thermal management strategies and over-the-air route data based predictive powertrain management including V2X connectivity. A case study simulation analysis of an HD 40-tonne FCEV truck is also presented focusing on the comparison of powertrain losses and energy expenditures in different subsystems while running on VECTO Regional delivery and Long-haul cycles. The importance of hydrogen fuel production pathways onboard storage approaches refuelling and safety standards and fleet management is also discussed. Through a comprehensive review of the H2 fuel cell powertrain technology intelligent energy management thermal management requirements and strategies and challenges in hydrogen production storage and refuelling this article aims at helping stakeholders in the promotion and integration of H2 FCEV technology towards road freight decarbonisation.
Powering a climate-neutral economy: An EU Strategy for Energy System Integration
Jul 2020
Publication
To become climate-neutral by 2050 Europe needs to transform its energy system which accounts for 75% of the EU's greenhouse gas emissions. The EU strategies for energy system integration and hydrogen adopted today will pave the way towards a more efficient and interconnected energy sector driven by the twin goals of a cleaner planet and a stronger economy.<br/><br/>The two strategies present a new clean energy investment agenda in line with the Commission's Next Generation EU recovery package and the European Green Deal. The planned investments have the potential to stimulate the economic recovery from the coronavirus crisis. They create European jobs and boost our leadership and competitiveness in strategic industries which are crucial to Europe's resilience.
Hydrogen: Enabling A Zero-Emission Society
Nov 2021
Publication
Discover the colours of hydrogen debunk the myths around hydrogen and learn the facts and key moments in history for hydrogen as well as innovative technologies ground-breaking projects state-of-the-art research development and cooperation by members of Hydrogen Europe
Acorn: Developing Full-chain Industrial Carbon Capture and Storage in a Resource- and Infrastructure-rich Hydrocarbon Province
Jun 2019
Publication
Juan Alcalde,
Niklas Heinemann,
Leslie Mabon,
Richard H. Worden,
Heleen de Coninck,
Hazel Robertson,
Marko Maver,
Saeed Ghanbari,
Floris Swennenhuis,
Indira Mann,
Tiana Walker,
Sam Gomersal,
Clare E. Bond,
Michael J. Allen,
Stuart Haszeldine,
Alan James,
Eric J. Mackay,
Peter A. Brownsort,
Daniel R. Faulkner and
Steve Murphy
Research to date has identified cost and lack of support from stakeholders as two key barriers to the development of a carbon dioxide capture and storage (CCS) industry that is capable of effectively mitigating climate change. This paper responds to these challenges through systematic evaluation of the research and development process for the Acorn CCS project a project designed to develop a scalable full-chain CCS project on the north-east coast of the UK. Through assessment of Acorn's publicly-available outputs we identify strategies which may help to enhance the viability of early-stage CCS projects. Initial capital costs can be minimised by infrastructure re-use particularly pipelines and by re-use of data describing the subsurface acquired during oil and gas exploration activity. Also development of the project in separate stages of activity (e.g. different phases of infrastructure re-use and investment into new infrastructure) enables cost reduction for future build-out phases. Additionally engagement of regional-level policy makers may help to build stakeholder support by situating CCS within regional decarbonisation narratives. We argue that these insights may be translated to general objectives for any CCS project sharing similar characteristics such as legacy infrastructure industrial clusters and an involved stakeholder-base that is engaged with the fossil fuel industry.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2019 Final Report
Nov 2020
Publication
The 2019 Programme Review Report presents the findings of a review into activities supported by the FCH 2 JU under the EU’s Seventh Framework Programme and Horizon 2020 by the European Commission’s Joint Research Centre (JRC ). It pays particular attention to the added value effectiveness and techno-economic efficiency of FCH 2 JU projects assigned to six review panels under two main pillars:<br/>Transport and Energy (TRANSPORT: a.trials and deployment of fuel cell applications and b.the next generation of products) (ENERGY: a.trials and deployment of fuel cell applications b.next generation of products and c.hydrogen for sectoral integration)<br/>Support for market uptake (cross-cutting activities such as standards and consumer awareness)<br/>This report covers all 81 projects that were ongoing for any time between April and October 2018 and assesses the strengths and accomplishments of each panel and areas that would benefit from further attention.
Trends in Investments, Jobs and Turnover in the Fuel Cells and Hydrogen Sector
Mar 2013
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) commissioned this report to a consultancy to get a better understanding of the past and future evolution of the European Fuel Cell and Hydrogen (FC&H) sector and the role that public support has in that evolution.
The results of this report are based on three data sources:
The results of this report are based on three data sources:
- Survey results: A survey was sent out to 458 companies that are liaised to the FCH JU. 154 people responded. (see list in annex)
- Desk research: A wide range of industry reports was consulted to supplement and cross check the results of the survey. However given the still nascent state of the industry the information gathered with this exercise was limited.
- Interviews: Key stakeholders in the European FC&H sector were interviewed to get the qualitative story behind the results from the survey and the desk research. These stakeholders varied from fuel cell manufacturers to government officials from energy companies to automotive OEMs
Hydrogen Refuelling Stations in the Netherlands: An Intercomparison of Quantitative Risk Assessments Used for Permitting
May 2018
Publication
As of 2003 15 hydrogen refuelling stations (HRSs) have been deployed in the Netherlands. To become established the HRS has to go through a permitting procedure. An important document of the permitting dossier is the quantitative risk assessment (QRA) as it assesses the risks of the HRS associated to people and buildings in the vicinity of the HRS. In the Netherlands a generic prescribed approach exists on how to perform a QRA however specific guidelines for HRSs do not exist. An intercomparison among the QRAs of permitted HRSs has revealed significant inconsistencies on various aspects of the QRA: namely the inclusion of HRS sub-systems and components the HRS sub-system and component considerations as predefined components the application of failure scenarios the determination of failure frequencies the application of input parameters the consideration of preventive and mitigation measures as well as information provided regarding the HRS surroundings and the societal risk. It is therefore recommended to develop specific QRA guidelines for HRSs.
Fuel Cell and Hydrogen Technology- Europe's Journey to a Greener World
Nov 2017
Publication
On the occasion of its 10th Stakeholder forum the FCH JU published a unique and exclusive book. This book sets out the story behind both the FCH JU and fuel cell and hydrogen technology in Europe. It reviews the events leading to its creation and examines the achievements that have allowed Europe to take a leading role in fuel cell and hydrogen excellence. It also looks at what this investment in fuel cell technology will mean for the EU in the coming years
Challenges in the Use of Hydrogen for Maritime Applications
Jan 2021
Publication
Maritime shipping is a key factor that enables the global economy however the pressure it exerts on the environment is increasing rapidly. In order to reduce the emissions of harmful greenhouse gasses the search is on for alternative fuels for the maritime shipping industry. In this work the usefulness of hydrogen and hydrogen carriers is being investigated as a fuel for sea going ships. Due to the low volumetric energy density of hydrogen under standard conditions the need for efficient storage of this fuel is high. Key processes in the use of hydrogen are discussed starting with the production of hydrogen from fossil and renewable sources. The focus of this review is different storage methods and in this work we discuss the storage of hydrogen at high pressure in liquefied form at cryogenic temperatures and bound to liquid or solid-state carriers. In this work a theoretical introduction to different hydrogen storage methods precedes an analysis of the energy-efficiency and practical storage density of the carriers. In the final section the major challenges and hurdles for the development of hydrogen storage for the maritime industry are discussed. The most likely challenges will be the development of a new bunkering infrastructure and suitable monitoring of the safety to ensure safe operation of these hydrogen carriers on board the ship.
Integration of Chemical Looping Combustion for Cost-effective CO2 Capture from State-of-the-art Natural Gas Combined Cycles
May 2020
Publication
Chemical looping combustion (CLC) is a promising method for power production with integrated CO2 capture with almost no direct energy penalty. When integrated into a natural gas combined cycle (NGCC) plant however CLC imposes a large indirect energy penalty because the maximum achievable reactor temperature is far below the firing temperature of state-of-the-art gas turbines. This study presents a techno-economic assessment of a CLC plant that circumvents this limitation via an added combustor after the CLC reactors. Without the added combustor the energy penalty amounts to 11.4%-points causing a high CO2 avoidance cost of $117.3/ton which is more expensive than a conventional NGCC plant with post-combustion capture ($93.8/ton) with an energy penalty of 8.1%-points. This conventional CLC plant would also require a custom gas turbine. With an added combustor fired by natural gas a standard gas turbine can be deployed and CO2 avoidance costs are reduced to $60.3/ton mainly due to a reduction in the energy penalty to only 1.4%-points. However due to the added natural gas combustion after the CLC reactor CO2 avoidance is only 52.4%. Achieving high CO2 avoidance requires firing with clean hydrogen instead increasing the CO2 avoidance cost to $96.3/ton when a hydrogen cost of $15.5/GJ is assumed. Advanced heat integration could reduce the CO2 avoidance cost to $90.3/ton by lowering the energy penalty to only 0.6%-points. An attractive alternative is therefore to construct the plant for added firing with natural gas and retrofit the added combustor for hydrogen firing when CO2 prices reach very high levels.
Production of H2-rich Syngas from Excavated Landfill Waste through Steam Co-gasification with Biochar
Jun 2020
Publication
Gasification of excavated landfill waste is one of the promising options to improve the added-value chain during remediation of problematic old landfill sites. Steam gasification is considered as a favorable route to convert landfill waste into H2-rich syngas. Co-gasification of such a poor quality landfill waste with biochar or biomass would be beneficial to enhance the H2 concentration in the syngas as well as to improve the gasification performance. In this work steam co-gasification of landfill waste with biochar or biomass was carried out in a lab-scale reactor. The effect of the fuel blending ratio was investigated by varying the auxiliary fuel content in the range of 15e35 wt%. Moreover co-gasification tests were carried out at temperatures between 800 and 1000°C. The results indicate that adding either biomass or biochar enhances the H2 yield where the latter accounts for the syngas with the highest H2 concentration. At 800°C the addition of 35 wt% biochar can enhance the H2 concentration from 38 to 54 vol% and lowering the tar yield from 0.050 to 0.014 g/g-fuel-daf. No apparent synergetic effect was observed in the case of biomass co-gasification which might cause by the high Si content of landfill waste. In contrast the H2 production increases non-linearly with the biochar share in the fuel which indicates that a significant synergetic effect occurs during co-gasification due to the reforming of tar over biochar. Increasing the temperature of biochar co-gasification from 800 to 1000°C elevates the H2 concentration but decreases the H2/CO ratio and increases the tar yield. Furthermore the addition of biochar also enhances the gasification efficiency as indicated by increased values of the energy yield ratio.
Study on Hydrogen from Renewable Resources in the EU
Feb 2016
Publication
Hydrogen can be produced from a broad range of renewable energy sources acting as a unique energy hub providing low or zero emission energy to all energy consuming sectors. Technically and efficiently producing hydrogen from renewable sources is a key enabler for these developments.<br/>Traditionally hydrogen has been produced from fossil sources by steam methane reforming of natural gas. At present the technology of choice to produce renewable ‘green’ hydrogen is water electrolysis using renewable electricity. The FCH JU has been supporting research and development of electrolyser technology and application projects aiming to increase the energy efficiency of electrolytic hydrogen production from renewable sources and to reduce costs.<br/>This study complements these activities by focusing on renewable hydrogen generation other than electrolysis. In this report these alternative hydrogen generation technologies are described characterized by their technical capabilities maturity and economic performance and assessed for their future potential.<br/>A methodology has been devised to first identify and structure a set of relevant green hydrogen pathways (eleven pathways depicted in the figure below) analyse them at a level of detail allowing a selection of those technologies which fit into and promise early commercialization in the framework of FCH 2 JU’s funding program.<br/>These originally proposed eleven pathways use solar thermal energy sunlight or biomass as major energy input.
HIAD – Hydrogen Incident and Accident Database
Sep 2011
Publication
The Hydrogen Incident and Accident Database (HIAD) is being developed as a repository of systematic data describing in detail hydrogen-related undesired events (incidents or accidents). It is an open web-based information system serving various purposes such as a data source for lessons learnt risk communication and partly risk assessment. The paper describes the features of the three HIAD modules – the Data Entry Module (DEM) the Data Retrieval Module (DRM) and the Data Analysis Module (DAM) – and the potential impact the database may have on hydrogen safety. The importance of data quality assurance process is also addressed.
The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminium Alloy
Oct 2017
Publication
This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process until the average thickness of the specimens was reduced by 7% and 15% respectively. A study of the structure microhardness and tensile properties of the hydrogen charged aluminium specimens with and without cold rolling indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2015 Final Report
Apr 2016
Publication
The 2015 Programme Review Report refers to the fifth review of the FCH JU project portfolio and covers 100 projects funded through annual calls for proposals from 2009 to 2013.<br/>The reviews began in 2011 following a recommendation arising from the interim evaluation of the FCH JU which identified the need to ensure that the overall project portfolio fulfilled the objectives of the FCH JU Multi-Annual Implementation and Work Plans.
Report on Socio-economic Impact of the FCH -JU Activities
Feb 2016
Publication
The FCH JU has with its industry and research partners worked since 2008 to develop and demonstrate FCH technologies along with development of the various business and environmental cases. It has involved a programme of increasingly ambitious demonstrations projects a consistent approach to research and development actions and a long term policy commitment. Developing the business and environmental cases for FCH technologies has created an increasingly compelling vision appealing to a range of stakeholders: to FCH technology businesses themselves assured by the long term commitment of the FCH JU to end users in terms of cost and operational performance potential and as critically to increasing numbers of policy and decision makers attracted by the substantial socio-economic benefits.
FCH JU – Key to Sustainable Energy and Transport
Jan 2019
Publication
This brochure offers an overview of the main applications of fuel cell and hydrogen technologies and how they work and provides insights into our programme and our accomplishments.
Urban Buses: Alternative Powertrains for Europe: A Fact-based Analysis of the Role of Diesel Hybrid, Hydrogen Fuel Cell, Trolley and Battery Electric Powertrains
Dec 2012
Publication
A coalition of 40 industrial companies and government organizations financially supported by the FCH JU elaborated a technology neutral and fact-based comparative study on eight different powertrain technologies for urban buses in Europe from 2012 to 2030.<br/>According to the results of the study only fully electric powertrain buses (based on hydrogen batteries or trolley system) have the potential to achieve zero local emissions by drastically reducing well-to-wheel emissions.<br/>Following the positive comparative result for fuel cell hydrogen urban buses the FCH JU will launch a follow-up study that more specifically defines real uptake scenarios for market entry scheduled to starting before summer 2013.
Fuel Cell Electric Buses: Potential for Sustainable Public Transport in Europe
Oct 2015
Publication
This report provides an outlook for jointly achieving a commercialisation pathway.<br/>Building on the findings of the 2012 FCH JU technology study on alternative powertrains for urban buses this report provides an assessment of the commercialisation pathway from an operational perspective. It reflects the actual situation in which operators deploy large scale demonstration projects in the next years from a rather conservative angle and argues why it makes sense to deploy FC buses now. The insights are based on first-hand data and assessments of the coalition members from the hydrogen and fuel cell industry as well as local governments and public transport operators in Europe.
Debunking the Myths of Hydrogen Production and Water Consumption
Dec 2020
Publication
In our factsheet where we debunk 3 myths around hydrogen production and water consumption: electrolysis uses vast amounts of water; electrolysis uses freshwater resources only and electrolysis is bound to create water stress in water-scarce regions.
Alloy Optimization for Reducing Delayed Fracture Sensitivity of 2000 MPa Press Hardening Steel
Jun 2020
Publication
Press hardening steel (PHS) is widely applied in current automotive body design. The trend of using PHS grades with strengths above 1500 MPa raises concerns about sensitivity to hydrogen embrittlement. This study investigates the hydrogen delayed fracture sensitivity of steel alloy 32MnB5 with a 2000 MPa tensile strength and that of several alloy variants involving molybdenum and niobium. It is shown that the delayed cracking resistance can be largely enhanced by using a combination of these alloying elements. The observed improvement appears to mainly originate from the obstruction of hydrogen-induced damage incubation mechanisms by the solutes as well as the precipitates of these alloying elements.
How EU Legislation Can Drive an Uptake of Sustainable Advanced Fuels in Aviation
Jul 2020
Publication
The report calls for a focus on new advanced alternative fuels in particular synthetic kerosene (efuels) which have the capacity to substantially reduce emissions and be scaled up to meet the fuel demands of the sector.
For aviation to reach zero emissions sustainable advanced fuels are needed to replace fossil kerosene currently used by the sector. The European Green Deal (EGD) includes a legislative proposal which would bring about a long overdue development and uptake of such fuels for the sector that legislative proposal is now being developed under the EU’s ReFuelEU initiative. However this initiative will only succeed if its support is limited to those fuels which can truly deliver emission reductions and which can be scaled up sustainably to meet the demand from the aviation sector. The paper recommends how such objectives can be achieved.
The ReFuelEU proposal should focus on these fuels with an ambitious programme combining mandates with financial support so that Europe's aviation sector is put on a pathway to net zero emissions.
Link to document download on Transport & Environment Website
For aviation to reach zero emissions sustainable advanced fuels are needed to replace fossil kerosene currently used by the sector. The European Green Deal (EGD) includes a legislative proposal which would bring about a long overdue development and uptake of such fuels for the sector that legislative proposal is now being developed under the EU’s ReFuelEU initiative. However this initiative will only succeed if its support is limited to those fuels which can truly deliver emission reductions and which can be scaled up sustainably to meet the demand from the aviation sector. The paper recommends how such objectives can be achieved.
The ReFuelEU proposal should focus on these fuels with an ambitious programme combining mandates with financial support so that Europe's aviation sector is put on a pathway to net zero emissions.
Link to document download on Transport & Environment Website
Comparison of Hydrogen and Battery Electric Trucks
Jul 2020
Publication
Only emissions-free vehicles which include battery electric (BEVs) and hydrogen fuel cell trucks (FCEVs) can provide for a credible long-term pathway towards the full decarbonisation of the road freight sector. This document lays out the methodology and assumptions which were used to calculate the total cost of ownership (TCO) of the two vehicle technologies for regional delivery and long-haul truck applications. It also discusses other criteria such as refuelling and recharging times as well as potential payload losses.
Link to Document Download on Transport & Environment website
Link to Document Download on Transport & Environment website
The Hydrogen Trapping Ability of TiC and V4C3 by Thermal Desorption Spectroscopy and Permeation Experiments
Dec 2018
Publication
Hydrogen (H) presence in metals is detrimental as unpredictable failure might occur. Recent developments in material’s design indicated that microstructural features such as precipitates play an essential role in potentially increasing the resistance against H induced failure. This work evaluates the H trapping characteristics for TiC and V4C3 by thermal desorption spectroscopy and permeation experiments. Two microstructural conditions are compared: as quenched vs. quenched and tempered in which the carbides are introduced. The tempered induced precipitates are able to deeply trap a significant amount of H which decreases the H diffusivity in the materials and removes some of the detrimental H from the microstructure. For microstructural design purposes it is important to know the position of H. Here H is demonstrated to be trapped at the carbide/matrix interface by modifying the tempering treatment.
Efficient Hydrogen Storage in Defective Graphene and its Mechanical Stability: A Combined Density Functional Theory and Molecular Dynamics Simulation Study
Dec 2020
Publication
A combined density functional theory and molecular dynamics approach is employed to study modifications of graphene at atomistic level for better H2 storage. The study reveals H2 desorption from hydrogenated defective graphene structure V222 to be exothermic. H2 adsorption and desorption processes are found to be more reversible for V222 as compared to pristine graphene. Our study shows that V222 undergoes brittle fracture under tensile loading similar to the case of pristine graphene. The tensile strength of V222 shows slight reduction with respect to their pristine counterpart which is attributed to the transition of sp2 to sp3-like hybridization. The study also shows that the V222 structure is mechanically more stable than the defective graphene structure without chemically adsorbed hydrogen atoms. The current fundamental study thus reveals the efficient recovery mechanism of adsorbed hydrogen from V222 and paves the way for the engineering of structural defects in graphene for H2 storage.
The Role of Electrofuels under Uncertainties for the Belgian Energy Transition
Jul 2021
Publication
Wind and solar energies present a time and space disparity that generally leads to a mismatch between the demand and the supply. To harvest their maximum potentials one of the main challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels such as hydrogen methane and methanol. They offer three main advantages: compatibility with existing distribution networks or technologies of conversion economical storage solution for high capacity and ability to couple sectors (i.e. electricity to transport to heat or to industry). However the level of contribution of electric-energy carriers is unknown. To assess their role in the future we used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in 2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to minimise its costs and emissions. Such a model relies on many parameters (e.g. price of natural gas efficiency of heat pump) to represent as closely as possible the future energy system. However these parameters can be highly uncertain especially for long-term planning. Consequently this work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order to highlight the influence of the parameters on the total cost of the system. The outcome of this analysis points out that compared to the deterministic cost-optimum situation the system cost accounting for uncertainties becomes higher (+17%) and twice more uncertain at carbon neutrality and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the costs) due to their importance in the energy system and their high uncertainties their higher price and uncertainty.
Golden Hydrogen
Nov 2022
Publication
Hydrogen is a colorless compound to which symbolic colors are attributed to classify it according to the resources used in production production processes such as electrolysis and energy vectors such as solar radiation. Green hydrogen is produced mainly by electrolysis of water using renewable electricity from an electricity grid powered by wind geothermal solar or hydroelectric power plants. For grid-powered electrolyzers the tendency is to go larger to reach the gigawatt-scale. An evolution in the opposite direction is the integration of the photophysics of sunlight harvesting and the electrochemistry of water molecule splitting in solar hydrogen generator units with each unit working at kilowatt-scale or less. Solar hydrogen generators are intrinsically modular needing multiplication of units to reach gigawatt-scale. To differentiate these two fundamentally different technologies the term ‘golden hydrogen’ is proposed referring to hydrogen produced by modular solar hydrogen generators. Decentralized modular production of golden hydrogen is complementary to centralized energy-intensive green hydrogen production. The differentiation between green hydrogen and golden hydrogen will facilitate the introduction of the additionality principle in clean hydrogen policy.
THyGA - Overview of Relevant Existing Certification Experience and On-going Standardization Activities in the EU and Elsewhere Related to Gas Appliances Using H2NG
Oct 2021
Publication
This 2nd deliverable from WP4 gives an overview of relevant existing certification experience on-going standardization activities and field trials in the European Union and other countries regarding gas appliances using H2NG. It gives a picture of the today’s situation as many of the identified initiatives are ongoing and progressing continuously.
Statistics, Lessons Learnt and Recommendations from the Analysis of the Hydrogen Incidents and Accidents Database (HIAD 2.0)
Sep 2021
Publication
The Hydrogen Incidents and Accidents Database (HIAD) is an international open communication platform collecting systematic data on hydrogen-related undesired incidents which was initially developed in the frame of HySafe an EC co-funded Network of Excellence in the 6th Frame Work Programme by the Joint Research Centre of the European Commission (EC-JRC). It was updated by JRC as HIAD 2.01 in 2016 with the support of the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU). Since the launch of the European Hydrogen Safety Panel2 (EHSP) initiative in 2017 by FCH 2 JU the EHSP has worked closely with JRC to upload additional/new incidents to HIAD 2.0 and analyze them to gather statistics lessons learnt and recommendations through Task Force 3. The first report to summarise the findings of the analysis was published by FCH 2 JU in September 2019. Since the publication of the first report the EHSP and JRC have continuously worked together to enlarge HIAD 2.0 by adding newly occurred incidents as well as quality historic incidents which were not previously uploaded to HIAD 2.0. This has facilitated the number of validated incidents in HIAD 2.0 to increase from 272 in 2018 to 593 in March 2021. This number is also dynamic and continues to increase as new incidents are being continuously added by both EHSP and JRC; and validated by JRC. The overall quality of the published incidents has also been improved whenever possible. For example additional information has been added to some existing incidents. Since mid-2020 EHSP Task Force TF3 has further analysed the 485 events which were in the database as of July 2020. For completeness of the statistics these include the events considered in our first report3 as well as the newly added/validated events since then. In this process the EHSP has also re-visited the lessons learnt in the first report to harmonise the approaches of analysis and improve the overall analysis. The analysis has comprehensively covered statistics lessons learnt and recommendations. The increased number of incidents has also made it viable to extract statistics from the available incidents at the time of the analysis including previously available incidents. It should be noted that some incidents reported is of low quality therefore it was not included in the statistical analysis.
Supporting Hydrogen Technologies Deployment in EU Regions and Member States: The Smart Specialisation Platform on Energy (S3PEnergy)
May 2018
Publication
In order to maximise European national and regional research and innovation potential the European Union is investing in these fields through different funding mechanisms such as the ESIF or H2020 programme. This investment plan is part of the European 2020 strategy where the concept of Smart Specialisation is also included.<br/>Smart Specialisation is an innovation policy concept designed to promote the efficient and effective use of public investment in regional innovation in order to achieve economic growth. The Smart Specialisation Platform was created to support this concept by assisting regions and Member States in developing implementing and reviewing their research and innovation Smart Specialisation strategies.<br/>The Smart Specialisation Platform comprises several thematic platforms. The thematic Smart Specialisation Platform on energy (S3PEnergy) is a joint initiative of three European Commission services: DG REGIO DG ENER and the Joint Research Centre (JRC). The main objective of the S3PEnergy is to support the optimal and effective uptake of the Cohesion Policy funds for energy and to better align energy innovation activities at national local and regional level through the identification of the technologies and innovative solutions that support in the most cost-effective way the EU energy policy priorities.<br/>In the particular case of hydrogen technologies the activities of the platform are mainly focused on supporting the new Fuel Cells and Hydrogen Joint Undertaking (FCH JU) initiative involving regions and cities. To date more than 80 European cities and regions have committed to participate in this initiative through the signature of a Memorandum of Understanding and more participants are expected to join. S3PEnergy is helping in the identification of potential combination of H2020 funding (provided through FCH JU) and ESIF.<br/>To identify potential synergies among these two funding sources a mapping of the different ESIF opportunities has been performed. In order to map these opportunities Operational Programmes (OPs) and research and innovation strategies for Smart Specialisation (RIS3) of the different European regions and Member States were analysed. The results of this mapping and analysis are presented in this paper."
Safety Planning for Hydrogen and Fuel Cell Projects
Jul 2019
Publication
The document provides information on safety planning monitoring and reporting for the concerned hydrogen and fuel cell projects and programmes in Europe. It does not replace or contradict existing regulations which prevails under all circumstances. Neither is it meant to conflict with relevant international or national standards or to replace existing company safety policies codes and procedures. Instead this guidance document aims to assist in identifying minimum safety requirements hazards and associated risks and in generating a quality safety plan that will serve as an assisting guide for the inherently safer conduct of all work related to the development and operation of hydrogen and fuel cell systems and infrastructure. A safety plan should be revisited periodically as part of an overall effort to pay continuous and priority attention to the associated safety aspects and to account for all modifications of the considered system and its operations. Potential hazards failure mechanisms and related incidents associated with any work process or system should always be identified analysed reported (recorded in relevant knowledge databases e.g. HIAD 2.0 or HELLEN handbooks papers etc.) and eliminated or mitigated as part of sound safety planning and comprehensive hydrogen safety engineering which extends beyond the recommendations of this document. All relevant objects or aspects that may be adversely affected by a failure should be considered including low frequency high consequences events. So the general protection objective is to exclude or at least minimise potential hazards and associated risks to prevent impacts on the following:
- People. Hazards that pose a risk of injury or loss of life to people must be identified and eliminated or mitigated. A complete safety assessment considers not only those personnel who are directly involved in the work but also others who are at risk due to these hazards.
- Property. Damage to or loss of equipment or facilities must be prevented or minimised. Damage to equipment can be both the cause of incidents and the result of incidents. An equipment failure can result in collateral damage to nearby equipment and property which can then trigger additional equipment failures or even lead to additional hazards and risks e.g. through the domino effect. Effective safety planning monitoring and reporting considers and minimises serious risk of equipment and property damage.
- Environment. Damage to the environment must be prevented. Any aspect of a natural or the built environment which can be harmed due to a hydrogen system or infrastructure failure should be identified and analysed. A qualification of the failure modes resulting in environmental damage must be considered.
Boosting the H2 Production Efficiency via Photocatalytic Organic Reforming: The Role of Additional Hole Scavenging System
Nov 2021
Publication
The simultaneous photocatalytic H2 evolution with environmental remediation over semiconducting metal oxides is a fascinating process for sustainable fuel production. However most of the previously reported photocatalytic reforming showed nonstoichiometric amounts of the evolved H2 when organic substrates were used. To explain the reasons for this phenomenon a careful analysis of the products and intermediates in gas and aqueous phases upon the photocatalytic hydrogen evolution from oxalic acid using Pt/TiO2 was performed. A quadrupole mass spectrometer (QMS) was used for the continuous flow monitoring of the evolved gases while high performance ion chromatography (HPIC) isotopic labeling and electron paramagnetic resonance (EPR) were employed to understand the reactions in the solution. The entire consumption of oxalic acid led to a ~30% lower H2 amount than theoretically expected. Due to the contribution of the photoKolbe reaction mechanism a tiny amount of formic acid was produced then disappeared shortly after the complete consumption of oxalic acid. Nevertheless a much lower concentration of formic acid was generated compared to the nonstoichiometric difference between the formed H2 and the consumed oxalic acid. Isotopic labeling measurements showed that the evolved H2 HD and/or D2 matched those of the solvent; however using D2O decreased the reaction rate. Interestingly the presence of KI as an additional hole scavenger with oxalic acid had a considerable impact on the reaction mechanism and thus the hydrogen yield as indicated by the QMS and the EPR measurements. The added KI promoted H2 evolution to reach the theoretically predictable amount and inhibited the formation of intermediates without affecting the oxalic acid degradation rate. The proposed mechanism by which KI boosts the photocatalytic performance is of great importance in enhancing the overall energy efficiency for hydrogen production via photocatalytic organic reforming.
Safety Planning and Management in EU Hydrogen and Fuel Cells Projects - Guidance Document
Sep 2021
Publication
The document provides information on safety planning implementation and reporting for projects involving hydrogen and/or fuel cell technologies. It does not intend to replace or contradict existing regulations which prevail under all circumstances. Neither is it meant to conflict with relevant international or national standards or to replace existing company safety policies codes and procedures. Instead this guidance document aims to assist projects and project partners in identifying hazards and associated risks in prevention and/or mitigation of them through a proper safety plan in implementing the safety plan and reporting safety related events. This shall help in safely delivering the project and ultimately producing inherently safer systems processes and infrastructure.
Stochastic Low-order Modelling of Hydrogen Autoignition in a Turbulent Non-premixed Flow
Jul 2022
Publication
Autoignition risk in initially non-premixed flowing systems such as premixing ducts must be assessed to help the development of low-NOx systems and hydrogen combustors. Such situations may involve randomly fluctuating inlet conditions that are challenging to model in conventional mixture-fraction-based approaches. A Computational Fluid Dynamics (CFD)-based surrogate modelling strategy is presented here for fast and accurate predictions of the stochastic autoignition behaviour of a hydrogen flow in a hot air turbulent co-flow. The variability of three input parameters i.e. inlet fuel and air temperatures and average wall temperature is first sampled via a space-filling design. For each sampled set of conditions the CFD modelling of the flame is performed via the Incompletely Stirred Reactor Network (ISRN) approach which solves the reacting flow governing equations in post-processing on top of a Large Eddy Simulation (LES) of the inert hydrogen plume. An accurate surrogate model namely a Gaussian Process is then trained on the ISRN simulations of the burner and the final quantification of the variability of autoignition locations is achieved by querying the surrogate model via Monte Carlo sampling of the random input quantities. The results are in agreement with the observed statistics of the autoignition locations. The methodology adopted in this work can be used effectively to quantify the impact of fluctuations and assist the design of practical combustion systems. © 2022 The Authors. Published by Elsevier Inc. on behalf of The Combustion Institute.
The European Hydrogen Market Landscape
Nov 2023
Publication
This report aims to summarise the status of the European hydrogen market landscape. It is based on the information available at the European Hydrogen Observatory (EHO) platform the leading source of data and information on hydrogen in Europe (EU27 EFTA and the UK) providing a full overview of the hydrogen market and the deployment of clean hydrogen technologies. As of the end of 2022 a total of 476 operational hydrogen production facilities across Europe boasting a cumulative hydrogen production capacity of approximately 11.30 Mt were identified. Notably the largest share of this capacity is contributed by key European countries including Germany the Netherlands Poland Italy and France which collectively account for 56% of the total hydrogen capacity. The hydrogen consumption in Europe has been estimated at approximately 8.23 Mt reflecting an average capacity utilisation rate of 73%. It's worth highlighting that conventional hydrogen production methods encompassing reforming by-product production from ethylene and styrene and by-product electrolysis collectively yield 11.28 Mt of hydrogen capacity. These conventional processes are distributed across 376 production facilities constituting 99.9% of the total production capacity in 2022. Throughout the year 2022 there were no newly commissioned hydrogen production facilities that integrated carbon capture technology into their operations. Additionally a notable presence of water electrolysis-based hydrogen production projects in Europe was identified. There was a total of 97 water electrolysis projects with 67 of them having a minimum capacity of 0.5 MW resulting in a cumulative production capacity of 174.28 MW. Furthermore 46 such projects were found to be under construction and are anticipated to contribute an additional 1199.07 MW of water electrolysis capacity upon becoming operational with the estimated timeframe ranging from January 2023 to 2025. A significant 87% of the total hydrogen production capacity in Europe is dedicated to onsite captive consumption indicating that it is primarily produced and used within the facility. The remaining 13% of capacity is specifically allocated for external distribution and sale characterizing what's known as merchant consumption. Despite the prevailing dominance of captive hydrogen production within Europe it's noteworthy that thousands of metric tonnes of hydrogen are already being traded and distributed across the continent. These transfers often occur through dedicated hydrogen pipelines or transportation via trucks. In 2022 an example of this growing trend was the hydrogen export from Belgium to the Netherlands which emerged as the single most significant hydrogen flow between European countries constituting a substantial 75% of all hydrogen traded in Europe. Belgium earned distinction as Europe's leading hydrogen exporter with 78% of the hydrogen that flowed between European countries originating 6 from its facilities. Conversely the Netherlands played a pivotal role as Europe's primary hydrogen importer accounting for an impressive 76% of the hydrogen imported into the continent. The rise of the clean hydrogen market in Europe coupled with the European Union's ambition to import 10 Mt of renewable hydrogen from non-EU sources by 2030 is expected to drive an increase in hydrogen flows both exports and imports among European countries. In 2022 the total demand for hydrogen in Europe was estimated to be 8.19 Mt. The biggest share of hydrogen demand comes from refineries which were responsible for 57% of total hydrogen use (4.6 Mt) followed by the ammonia industry with 24% (2.0 Mt). Together these two sectors consumed 81% of the total hydrogen consumption in Europe. Clean hydrogen demand while currently making up less than 0.1% of the overall hydrogen demand is notably driven by the mobility sector. Forecasts project an impressive growth trajectory in total hydrogen demand for Europe over the coming decades. Projections show a remarkable 127% surge from 2030 to 2040 followed by a substantial 63% increase from 2040 to 2050. Considering the current hydrogen demand there is a projected 51% increase until 2030. Throughout the three decades under examination the industrial sector is anticipated to maintain its predominant position consistently demonstrating the highest demand for hydrogen. However this conclusion refers to average values and variations that may exist. The total number of Hydrogen Fuel Cell Electric Vehicles (FCEV) registrations in Europe in 2022 was estimated at 1537 units. In comparison to the previous year the number of registrations increased by 31%. This surge in registrations has had a pronounced impact on the overall FCEV fleet's evolution in Europe which increased from 4050 units to 5570 (+38%). Notably passenger cars dominated the landscape constituting 86% of the total FCEV fleet. Exploring the latest advancements in hydrogen infrastructure across Europe in 2022 the hydrogen distribution network comprised spanning a total length of 1569 km. Within Europe the largest networks are situated in Belgium and Germany at 600 km and 400 km respectively. Of particular importance is the cross-border network of France Belgium and the Netherlands spanning a total of 964 km. To keep pace with the rising number of Fuel Cell Electric Vehicles (FCEVs) on European roads and promote their wider integration it is key to ensure sufficient accessibility to refuelling infrastructure. Consequently many countries are endorsing the establishment of hydrogen refuelling stations (HRS) so that they are publicly accessible on a nationwide scale. More recharging and refuelling stations for alternative fuels will be deployed in the coming years across Europe enabling the transport sector to significantly reduce its carbon footprint following the adoption of the alternative fuel infrastructure regulation (AFIR). Part of the regulation's main target is that hydrogen refuelling stations serving both cars and lorries must be deployed from 7 2030 onwards in all urban nodes and every 200 km along the TEN-T core network. Since 2015 the total number of operational and publicly accessible HRS in Europe has grown at an accelerated pace from 38 to 178 by the summer of 2023. Germany takes the lead having the largest share at approximately 54% of the total number of HRS with 96 stations currently operational. The majority of the HRS (89%) are equipped with 700 bar car dispensers. In 2022 the levelized production costs of hydrogen generated through Steam Methane Reforming (SMR) in Europe averaged approximately 6.23 €/kg H2. When incorporating a carbon capture system the average cost of hydrogen production via SMR in Europe increased to 6.38 €/kg H2. Additionally the production costs of hydrogen in Europe for 2022 utilizing grid electricity averaged 9.85 €/kg H2. Hydrogen production costs through electrolysis with a direct connection to a renewable energy source had an average estimated cost of 6.86 €/kg. As of May 2023 Europe's operational water electrolyser manufacturing capacity stands at 3.11 GW/year with an additional 2.64 GW planned by the end of 2023. Alkaline technologies make up 53% of the total capacity. Looking ahead to 2025 ongoing projects are expected to raise the total capacity to 7.65 GW/year. Fuel cell deployment in Europe has showed an increasing trend over the past decade. The total number of shipped fuel cells were forecasted on around 11200 units in 2021 and a total capacity of 190 MW. The most significant increase in capacity occurred between 2018 and the forecast of 2021 (+148.8 MW).
Odorisation of Natural Gas/Hydrogen Mixure and Pure Hydrogen
Dec 2023
Publication
MARCOGAZ has prepared this document to provide comprehensive information on the odorisation of hydrogen and natural gas (H2-NG) mixtures as well as pure hydrogen. The primary goal is to assist in determining the crucial data to be taken into account when odorising gases containing hydrogen.
The document is structured into two main sections with the initial part focusing on the theoretical interactions between hydrogen and odorants. Subsequent sections delve into the existing data related to this subject. The conclusions section offers additional considerations on the topic.
The report can be found on their website.
The document is structured into two main sections with the initial part focusing on the theoretical interactions between hydrogen and odorants. Subsequent sections delve into the existing data related to this subject. The conclusions section offers additional considerations on the topic.
The report can be found on their website.
Few-atom Cluster Model Systems for a Hydrogen Economy
Apr 2020
Publication
To increase the share of renewable zero-emission energy sources such as wind and solar power in our energy supply the problem of their intermittency needs to be addressed. One way to do so is by buffering excess renewable energy via the production of hydrogen which can be stored for later use after re-electrification. Such a clean renewable energy cycle based on hydrogen is commonly referred to as the hydrogen economy. This review deals with cluster model systems of the three main components of the hydrogen economy i.e. hydrogen generation hydrogen storage and hydrogen re-electrification and their basic physical principles. We then present examples of contemporary research on few atom clusters both in the gas phase and deposited to show that by studying these clusters as simplified models a mechanistic understanding of the underlying physical and chemical processes can be obtained. Such an understanding will inspire and enable the design of novel materials needed for advancing the hydrogen economy.
Assessment and Lessons Learnt from HIAD 2.0 – Hydrogen Incidents and Accidents Database
Sep 2019
Publication
The Hydrogen Incidents and Accidents Database (HIAD) is an international open communication platform collecting systematic data on hydrogen-related undesired events (incidents or accidents). It was initially developed in the frame of the project HySafe an EC co-funded NoE of the 6th Frame Work Programme by the Joint Research Centre of the European Commission (EC-JRC) and populated by many HySafe partners. After the end of the project the database has been maintained and populated by JRC with publicly available events.<br/>Starting from June 2016 JRC has been developing a new version of the database (HIAD 2.01). With the support of the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) the structure of the database and the web-interface have been redefined and simplified resulting in a streamlined user interface compared to the previous version of HIAD. The new version is mainly focused to facilitate the sharing of lessons learnt and other relevant information related to hydrogen technology; the database is publicly released and the events are anonymized. The database currently contains over 250 events. It aims to contribute to improve the safety awareness fostering the users to benefit from the experiences of others as well as to share information from their own experiences.<br/>The FCH 2 JU launched the European Hydrogen Safety Panel (EHSP2) initiative in 2017. The mission of the EHSP is to assist the FCH 2 JU at both programme and project level in assuring that hydrogen safety is adequately managed and to promote and disseminate hydrogen safety culture within and outside of the FCH 2 JU programme. Composed of a multidisciplinary pool of experts – 16 experts in 2018 - the EHSP is grouped in small ad-hoc working groups (task forces) according to the tasks to be performed and the expertise required. In 2018 Task Force 3 (TF3) of the ESHP has encompassed the analysis of safety data and events contained in HIAD 2.0 operated by JRC and supported by the FCH 2 JU. In close collaboration with JRC the EHSP members have systematically reviewed more than 250 events.<br/>This report summarizes the lessons learnt stemmed from this assessment. The report is self-explanatory and hence includes brief introduction about HIAD 2.0 the assessment carried out by the EHSP and the results stemmed from the joint assessment to enable new readers without prior knowledge of HIAD 2.0 to understand the rationale of the overall exercise and the lessons learnt from this effort. Some materials have also been lifted from the joint paper between JRC and EHSP which will also be presented at the International Conference on Hydrogen Safety (ICHS 2019) to provide some general and specific information about HIAD 2.0.
Fuel Cells and Hydrogen Observatory Report: Technology and Market
Mar 2022
Publication
The information in this report covers the period January 2021 – December 2021. The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. This includes statistical information on the size of the global fuel cell market including number and capacity of fuel cell systems shipped in a calendar year. For this edition data to the end of 2021 is presented where possible alongside analysis of key sector developments. Fuel cell system shipments for each calendar year are presented both as numbers of units and total system megawatts. The data are further divided and subdivided by: Application: Total system shipments are divided into Transport Stationary and Portable applications Fuel cell type: Numbers are provided for each of the different fuel cell chemistry types Region of integration: Region where the final manufacturer – usually the system integrator – integrates the fuel cell into the final product Region of deployment: Region where the final product was shipped to for deployment The data is sourced directly from industry players as well as other relevant sources including press releases associations and other industry bodies. This year the report also includes data relating to electrolysers commissioned within Europe. Information is presented on the number of hydrogen refuelling stations (HRS) deployed since 2014 with detailed information on HRS in operation including pressure capacity etc. In parallel the observatory provides data on the registered fuel cell electric vehicles (FCEVs) on European roads providing an indication of the speed of adoption of hydrogen in the transport sector. This annual report is an enrichment analysis of the data available on the FCHO providing global context and insights on trends observed year-over-year. Electrolyser systems commissioned for each calendar year within Europe are presented as both the number of units and the total system power rating in megawatts (MW). The data is further divided by: Number of Electrolyser Units Commissioned: The number of units brought online each year in Europe from 2000 until 2021. Application: Total systems commissioned are divided in Transport Fuel Industry Feedstock Steel Making Industrial Heat Power Generation Export Grid Injection and Sector Coupling. Electrolyser Type: Number for each of the different electrolyser types commissioned are provided. Region of deployment: Region where the electrolyser was commissioned. All sections in the Technology & Market module are updated following an annual data collection and validation cycle and the annual report is published the following Spring.
The European Hydrogen Policy Landscape
Apr 2024
Publication
This report aims to summarise the status of the European hydrogen policies and standards landscape. It is based on the information available at the European Hydrogen Observatory (EHO) platform the leading source of data and information on hydrogen in Europe (EU27 EFTA and the UK) providing an overview of the European and national policies legislations strategies and codes and standards which impact the deployment of hydrogen technologies and infrastructures. The EHO database covers a total of 29 EU policies and legislations that directly or indirectly affect the development and deployment of hydrogen technologies. To achieve its net zero ambitions the EU started with cross-cutting strategies such as the EU Green Deal and the EU Hydrogen Strategy setting forward roadmaps and targets that are to be achieved in the near future. As a next step the EU has developed legislations such as those bundled in the Fit for 55 package to meet the targets they have put forward. The implemented legislations including funding vehicles and initiatives have an impact on the whole value chain of hydrogen including production transport storage and distribution and end-uses. At national level as of July 2023 63% of the European countries have successfully published their national strategies in the hydrogen sector while 6% of the countries are currently in the draft stage. Several European countries have strategically incorporated quantitative indicators within their national strategies outlining their targets and estimates across the hydrogen value chain. This deliberate approach reflects a commitment to providing clear and measurable goals within their hydrogen strategies. A target often used in the national strategies is on electrolyser capacity as an effort to enhance the domestic renewable hydrogen production. Germany took the lead with an ambitious goal of achieving 10 GW by 2030 followed by France (6.5 GW) and Denmark (4 - 6 GW). Other targets that some of the countries use in their strategies are on the number of hydrogen refuelling stations fuel cell electric vehicles and total (renewable) hydrogen demand. A few countries also have targets on renewable hydrogen uptake in industry and hydrogen injection limit in the transmission grid. To monitor the policies and legislation that are adopted on a national level across the hydrogen value chain a survey was launched with national experts which was validated by Hydrogen Europe. In total 28 European countries have participated to the survey. On production the survey revealed that 61% of country specialists report that their country provides support for capital expenditure (CAPEX) in the development of renewable or low-carbon hydrogen production plants. Moreover 7 countries also provide support for operational expenditure (OPEX). Furthermore 8 countries have instituted official 6 permitting guidelines for hydrogen production projects while 5 countries have enacted a legal act or established an agency serving as a single point of contact for hydrogen project developers. For transmission only two countries reported to provide support schemes for hydrogen injection. Several countries have policies in place that clearly define the hydrogen limit in their transmission grid for now and in the future ranging from 0.02% up to 15% while a few countries define within their policies the operation of hydrogen storage facilities. On end-use the majority of countries totalling 71% reported to have implemented support schemes aimed at promoting the adoption of hydrogen in the mobility sector. Purchase subsidies stand out as the predominant form of support for fuel cell electric vehicles (FCEVs) with implementation observed in 17 countries. In the context of support schemes for stationary fuel applications for heating or power generation only two countries have adopted such measures. A slightly larger group of four countries do provide support for the deployment of residential and commercial heating systems utilizing hydrogen. For hydrogen end-use in industry a total of 9 countries reported to provide support schemes with a major focus on ammonia production (8) and the chemicals industry (7). On the topic of technology manufacturing 7 countries have reported to have support schemes of which grants emerge as the mainly used method (4). Exploring the latest advancements into European codes and standards relevant to the deployment of hydrogen technologies and infrastructures a total of 11 standards have been revised and developed between January 2022 and September 2023. This includes standards covering the following areas: 6 for fuel cell technologies 2 for gas cylinders 2 for road vehicles and 1 for hydrogen refuelling. Moreover 5 standards were published since September 2023 which will be added to the EHO database in its next update. This includes ISO/TS 19870:2023 which sets a methodology for determining the greenhouse gas emissions associated with the production conditioning and transport of hydrogen to consumption gate. This landmark standard which was unveiled at COP28 aims to act as a foundation for harmonization safety interoperability and sustainability across the hydrogen value chain.
Study on Hydrogen in Ports and Industrial Coastal Areas - Report 1
Jan 2023
Publication
The study feeds into the work of the Global Hydrogen Ports Coalition launched at the latest Clean Energy Ministerial (CEM12). This important international initiative brings together ports from around the world to work together on hydrogen technologies. The planned study will be a comprehensive assessment of the hydrogen demand in ports and industrial coastal areas enabling the creation of a 'European Hydrogen Ports Roadmap'. It will also feature clear economic forecasts based on a variety of business models for the transition to renewable hydrogen in ports while presenting new case studies and project concepts. “The objective is to provide new directions for research and innovation guidance for regulation codes and standards and proposals on policy and regulation. The forthcoming study will also help create impetus for stakeholders to come together and take a long term perspective on the hydrogen transition in ports. Finally the study will be a centralized resource It will form a Europe wide hydrogen ports ' when combined with roadmaps and other materials created by individual ports.
2021 Hydrogen Supply and Demand
Sep 2021
Publication
Purpose: The purpose of the hydrogen supply and demand data stream is to track changes in the structure of hydrogen supply capacity and demand in Europe. This report is mainly focused on presenting the current landscape that will allow for future year-on-year comparisons to assess the progress Europe is making with regards to deployment of clean hydrogen production capacity as well as development of demand for clean hydrogen from emerging new hydrogen applications in industry or mobility sectors. Scope: The following report contains data about hydrogen production capacity and consumption in EU countries together with Switzerland Norway Iceland and the United Kingdom. Hydrogen production capacity is presented by country and by production technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data reflecting end of 2019. Key Findings: The current hydrogen market (on both the demand and supply side) is dominated by ammonia and refining industries with three countries (DE NL PL) responsible for almost half of hydrogen consumption. Hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are currently insignificant with hydrogen produced from natural gas coupled with carbon capture at 0.5% and hydrogen produced from water electrolysis at 0.14% of total production capacity.
Market Uptake and Impact of Key Green Aviation Technologies
Jan 2023
Publication
Steer was appointed by the Directorate-General of Research and Innovation (DG RTD) to undertake an overview of key green aviation technologies and conditions for their market uptake. Steer is being supported in delivery by the Institute of Air Transport and Airport Research of the German Aerospace Centre DLR. The study was undertaken in the context of the Clean Aviation Partnership’s Strategic Research and Innovation Agenda (SRIA) for the period 2030-2050. The objective of the project is to identify the prerequisites for the market entry of climate-neutral aviation technologies as well as the flanking measures required for this to be successful. The scope of the study is hydrogen and electrically powered aircraft in the regional and short/medium range categories taking a holistic view on the technological development and keeping the economic context in mind. The outcome of the study will serve as guidance for the Commission and other actors with regard to further policy or industry initiatives such as in the context of Horizon Europe or the Alliance Zero Emission Aviation.
Hydrogen, the First Element Podcast - Episode 4: Reskill to Repower - Preparing the Hydrogen Workforce
Dec 2022
Publication
During her State of the Union Address the President of the European Commission Ursula Von der Leyen defined 2023 as the "European Year of Skills" highlighting the urgency to overcome the shortage of skilled workforce in Europe a challenge that affects the hydrogen sector as well. The rapid development of the European Hydrogen Value Chain over the coming years is expected to generate approximately 1 million highly skilled jobs by 2030 and up to 5.4 million by 2050. In the fourth episode titled "Reskill to Repower: Preparing the Hydrogen workforce" our Chief Technology & Market Officer Stephen Jackson discusses with Massimo Valsania VP of Engineering at EthosEnergy and Co-chair of Hydrogen Europe Skills Working Group. Starting off with Massimo's professional background and his current role in our association the two speakers discussed the skills needed in the hydrogen economy and the policies that should be put in place to attract new generations.
2021 Standards Report
Jul 2021
Publication
Purpose: The standards module of the FCHO presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized per application enhancing ease of access and findability. The development of sector-relevant standards facilitate and enhance economies of scale interoperability comparability safety and many other issues. https://www.fchobservatory.eu/observatory/Policy-and-RCS/Standards Scope: This report presents the developments in European and international standards for the year 2020.Standards from the following standards developing organizations are included: CEN CENELEC ISO IEC OIML. Key Findings: The development of sector relevant standards on an international level continued to grow in 2020; on a European level many standards are still in the process of being drafted. In 2020 12 new standards have been published mainly on the subject of fuel cell technologies. The recently established committee CEN-CLC JTC 6 (Hydrogen in energy systems) has not published standards yet but is working on drafting standards on for example Guarantees of Origin. Previous Reports The first report was published in September 2020. This report is the 2nd Annual report.
Hydrogen for the De-carbonization of the Resources and Energy Intensive Industries (REIIs)
Aug 2022
Publication
This study deals with the use of hydrogen for the de-carbonization of the Resources and Energy Intensive Industries (REIIs) and gives a specific insight of the situation of the steel-making industry. The growing use of hydrogen in our economy is synonym for an equal increase in electricity consumption. This results from the fact that the current most promising technologies of H2 production is water electrolysis. For this purpose the EU hydrogen strategy foresees a progressive ramp up of H2 production capacities. But bottlenecks (especially regarding energy needed for electrolysers) may occur. Capacities should reach 40 GW (around 10 Mt/y) by the end of 2030. The steel-making industry relies heavily on H2 to decarbonise its process (through direct iron ore reduction). Our study analyses the conditions under which this new process will be able to compete with both European and offshore existing carbonised assets (i.e. blast furnaces). It emphasises the need for integrated and consistent policies from carbon prices to the carbon border adjustment mechanism through carbon contracts for differences but also highlightsthat a better regulation of electricity prices should not be neglected.
Energy and Economic Costs of Chemical Storage
May 2020
Publication
The necessity of neutralizing the increase of the temperature of the atmosphere by the reduction of greenhouse gas emissions in particular carbon dioxide (CO2) as well as replacing fossil fuels leads to a necessary energy transition that is already happening. This energy transition requires the deployment of renewable energies that will replace gradually the fossil fuels. As the renewable energy share increases energy storage will become key to avoid curtailment or polluting back-up systems. This paper considers a chemical storage process based on the use of electricity to produce hydrogen by electrolysis of water. The obtained hydrogen (H2) can then be stored directly or further converted into methane (CH4 from methanation if CO2 is available e.g. from a carbon capture facility) methanol (CH3OH again if CO2 is available) and/or ammonia (NH3 by an electrochemical process). These different fuels can be stored in liquid or gaseous forms and therefore with different energy densities depending on their physical and chemical nature. This work aims at evaluating the energy and the economic costs of the production storage and transport of these different fuels derived from renewable electricity sources. This applied study on chemical storage underlines the advantages and disadvantages of each fuel in the frame of the energy transition.
Fly the Green Deal: Europe's Vision for Sustainable Aviation
Jul 2022
Publication
Europe’s aviation sector continues its resilient and pioneering spirit as it leads the world’s transport system into its new era of great transformation. Surviving the pandemic it is adapting rapidly to satisfy the rising demand for competitive air mobility services while managing a scarcity of resources and embracing the new challenges of climate change and energy transition. Facilitated by ACARE the European Commission its Member States aviation research organisations design and manufacturing industries airlines airports and aviation energy and service providers have all joined together to envision a synchronized transformation path that will ensure that Europe can lead the world towards a climate neutral citizen centric and competitive air mobility system. “Fly the Green Deal” is Europe’s Vision for Sustainable Aviation. It describes the actions and actors necessary towards aviation’s three main strategic goals. It details three time horizons and defines as well the requirement for a proactive and synchronised implementation framework facilitated by the European Commission and EU Member States that includes both the initiating instruments (policies regulations and incentives) and a system of measuring and impact monitoring to ensure the goals are achieved.
Hydrogen-powered Aviation: A Fact-based Study of Hydrogen Technology, Economics, and Climate Impact by 2050
Jul 2020
Publication
This report assesses the potential of hydrogen (H2) propulsion to reduce aviation’s climate impact. To reduce climate impact the industry will have to introduce further levers such as radically new technology significantly scale sustainable aviation fuels (SAF) such as synthetic fuel (synfuel) temporarily rely on offsets in large quantities or rely on a combination thereof. H2 propulsion is one such technology and this report assesses its potential in aviation. Developed with input from leading companies and research institutes it projects the technological development of H2 combustion and fuel cell-powered propulsion evaluates their technical and economic feasibility compares them to synfuel and considers implications on aircraft design airport infrastructure and fuel supply chains.
Evolutions in Hydrogen and Fuel Cell Standardization: The HarmonHy Experience
Dec 2007
Publication
HarmonHy is a European Union-funded Specific Support Action aiming to make an assessment of the activities on hydrogen and fuel cell regulations codes and standards (RCS) on a worldwide level. On this basis gaps have been identified and potential conflicts between regulations codes and standards have been investigated. Types of document to be referred to include international regional and national standards EU directives UNECE regulations… Particular attention will be paid to the identification of the needs for standards as perceived by the industry as well as to actions aiming to ensure concordance between standards codes and regulations. Standards and regulations require harmonization. HarmonHy pursues the elaboration of an action plan and a roadmap for future work on harmonizing regulations codes and standards on hydrogen and fuel cells on an international level.
True Cost of Solar Hydrogen
Sep 2021
Publication
Green hydrogen will be an essential part of the future 100% sustainable energy and industry system. Up to one-third of the required solar and wind electricity would eventually be used for water electrolysis to produce hydrogen increasing the cumulative electrolyzer capacity to about 17 TWel by 2050. The key method applied in this research is a learning curve approach for the key technologies i.e. solar photovoltaics (PV) and water electrolyzers and levelized cost of hydrogen (LCOH). Sensitivities for the hydrogen demand and various input parameters are considered. Electrolyzer capital expenditure (CAPEX) for a large utility-scale system is expected to decrease from the current 400 €/kWel to 240 €/kWel by 2030 and to 80 €/kWel by 2050. With the continuing solar PV cost decrease this will lead to an LCOH decrease from the current 31–81 €/ MWhH2LHV (1.0–2.7 €/kgH2) to 20–54 €/MWhH2LHV (0.7–1.8 €/kgH2) by 2030 and 10–27 €/MWhH2LHV (0.3–0.9 €/kgH2) by 2050 depending on the location. The share of PV electricity cost in the LCOH will increase from the current 63% to 74% by 2050.
Strategies for Hydrogen-Enriched Methane Flameless Combustion in a Quasi-Industrial Furnace
Jan 2020
Publication
In this present work simulations of 20 kW furnace were carried out with hydrogenenriched methane mixtures to identify optimal geometrical configurations and operating conditions to operate in flameless combustion regime. The objective of this work is to show the advantages of flameless combustion for hydrogen-enriched fuels and the limits of current typical industrial designs for these mixtures. The performances of a semi-industrial combustion chamber equipped with a self-recuperative flameless burner are evaluated with increasing H2 concentrations. For highly H2-enriched mixtures typical burners employed for methane appear to be inadequate to reach flameless conditions. In particular for a typical coaxial injector configuration an equimolar mixture of hydrogen and methane represents the limit for hydrogen enrichment. To achieve flameless conditions different injector geometries and configuration were tested. Fuel dilution with CO2 and H2O was also investigated. Dilution slows the mixing process consequently helping the transition to flameless conditions. CO2 and H2O are typical products of hydrogen generation processes therefore their use in fuel dilution is convenient for industrial applications. Dilution thus allows the use of greater hydrogen percentages in the mixture.
Scientific Assessment in Support of the Materials Roadmap enabling Low Carbon Energy Technologies Hydrogen and Fuel Cells
Apr 2014
Publication
A group experts from European research organisations and industry have assessed the state of the art and future needs for materials' R&D for hydrogen and fuel cell technologies. The work was performed as input to the European Commission's roadmapping exercise on materials for the European Strategic Energy Technology Plan. The report summarises the results including key targets identified for medium term (2020/2030) and long term (2050) timescales.
Roadmap Towards Zero Emissions, BEVs and FCEVs
Oct 2021
Publication
A “combined world” of fuel cell electric vehicles (FCEVs) and battery electric vehicles (BEVs) will create a greener transportation sector faster and cheaper than one of the solutions alone. Hydrogen Council with analytical support from McKinsey and Company published a report that highlights the complementary roles of FCEVs and BEVs in a decarbonised transportation sector.
The analysis found that each solution has comparable systemic efficiencies and similar CO2 life cycle intensity. From the vehicle user perspective FCEVs and BEVs will provide the flexibility and convenience to meet their specific context of use and geographic location. Additionally the costs of two supporting infrastructure for FCEVs and BEVs is cheaper than one infrastructure network primarily due to the reduced peak loads and avoidance of costly upgrades on the electricity grid. The report’s messages were developed in dialogue with the Observatory Group which consisted of representatives of government agencies and academia as well as associations and companies active in sectors like regenerative electricity generation electricity grid equipment manufacturing electric vehicle charging fleet management.
The paper can be found on their website.
The analysis found that each solution has comparable systemic efficiencies and similar CO2 life cycle intensity. From the vehicle user perspective FCEVs and BEVs will provide the flexibility and convenience to meet their specific context of use and geographic location. Additionally the costs of two supporting infrastructure for FCEVs and BEVs is cheaper than one infrastructure network primarily due to the reduced peak loads and avoidance of costly upgrades on the electricity grid. The report’s messages were developed in dialogue with the Observatory Group which consisted of representatives of government agencies and academia as well as associations and companies active in sectors like regenerative electricity generation electricity grid equipment manufacturing electric vehicle charging fleet management.
The paper can be found on their website.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Expert Perceptions of Game-changing Innovations towards Net Zero
Dec 2022
Publication
Current technological improvements are yet to put the world on track to net-zero which will require the uptake of transformative low-carbon innovations to supplement mitigation efforts. However the role of such innovations is not yet fully understood; some of these ‘miracles’ are considered indispensable to Paris Agreement-compliant mitigation but their limitations availability and potential remain a source of debate. We evaluate such potentially game-changing innovations from the experts’ perspective aiming to support the design of realistic decarbonisation scenarios and better-informed net-zero policy strategies. In a worldwide survey 260 climate and energy experts assessed transformative innovations against their mitigation potential at-scale availability and/or widescale adoption and risk of delayed diffusion. Hierarchical clustering and multi-criteria decision-making revealed differences in perceptions of core technological innovations with next generation energy storage alternative building materials iron-ore electrolysis and hydrogen in steelmaking emerging as top priorities. Instead technologies highly represented in well-below-2◦C scenarios seemingly feature considerable and impactful delays hinting at the need to re-evaluate their role in future pathways. Experts’ assessments appear to converge more on the potential role of other disruptive innovations including lifestyle shifts and alternative economic models indicating the importance of scenarios including non-technological and demand-side innovations. To provide insights for expert elicitation processes we finally note caveats related to the level of representativeness among the 260 engaged experts the level of their expertise that may have varied across the examined innovations and the potential for subjective interpretation to which the employed linguistic scales may be prone to.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Renewable Heating and Cooling Pathways - Towards Full Decarbonisation by 2050
Feb 2023
Publication
With the adoption of the EU Climate Law in 2021 the EU has set itself a binding target to achieve climate neutrality by 2050 and to reduce greenhouse gas emissions by 55 percent compared to 1990 levels by 2030. To support the increased ambition the EU Commission adopted proposals for revising the key directives and regulations addressing energy efficiency renewable energies and greenhouse gas emissions in the Fit for 55 package. The heating and cooling (H&C) sector plays a key role for reaching the EU energy and climate targets. H&C accounts for about 50 percent of the final energy consumption in the EU and the sector is largely based on fossil fuels. In 2021 the share of renewable energies in H&C reached 23%.
No more items...