Belgium
Hydrogen Safety Aspects Related to High Pressure - PEM Water Electrolysis
Sep 2007
Publication
Polymer electrolyte membrane (PEM) water electrolysis has demonstrated its potentialities in terms of cell efficiency (energy consumption ≈ 4.0-4.2 kW/Nm3 H2) and gas purity (> 99.99% H2). Current research activities are aimed at increasing operating pressure up to several hundred bars for direct storage of hydrogen in pressurized vessels. Compared to atmospheric pressure electrolysis high-pressure operation yields additional problems especially with regard to safety considerations. In particular the rate of gases (H2 and O2) cross-permeation across the membrane and their water solubility both increase with pressure. As a result gas purity is affected in both anodic and cathodic circuits and this can lead to the formation of explosive gas mixtures. To prevent such risks two different solutions reported in this communication have been investigated. First the chemical modification of the solid polymer electrolyte in order to reduce cross-permeation phenomena. Second the use of catalytic H2/O2 recombiners to maintain H2 levels in O2 and O2 levels in H2 at values compatible with safety requirements.
Fuel Cells and Hydrogen Technologies in Europe: Financial and Technology Outlook on the European Sector Ambition 2014-2020
Nov 2011
Publication
Sustainable secure and competitive energy supply and transport services are at the heart of the EU2020 strategy towards a low carbon and inclusive economy geared towards a reduction of 80% of CO2 emissions by 2050. This objective has been endorsed by the European Institutions and Member States. It is widely recognised that a technological shift and the deployment of new clean technologies are critical for a successful transition to such a new sustainable economy. Furthermore in addition to bringing a healthier environment and securing energy supply innovation will provide huge opportunities for the European economy. However this paradigm shift will not be purely driven by the market. A strong and determined commitment of public institutions and the private sector together are necessary to support the European political ambition. The period 2014-2020 will be critical to ensure that the necessary investments are realized to support the EU2020 vision. In terms of hydrogen and fuel cell technologies significant investments are required for (a) transportation for scaling up the car fleet and building up of refuelling infrastructure needs (b) hydrogen production technologies to integrate renewable intermittent power sources to the electrical grid (wind and solar) (c) stationary fuel cell applications with large demonstration projects in several European cities and (d) identified early markets (material handling vehicles back-up power systems) to allow for volume developments and decrease of system-costs.<br/>This Report summarizes the sector’s financial ambition to reach Europe’s objectives in 2020.
European Hydrogen Safety Training Platform for First Responders- Hyresponse Project
Sep 2013
Publication
The paper presents HyResponse project i.e. a European Hydrogen Safety Training Platform that targets to train First responders to acquire professional knowledge and skills to contribute to FCH permitting process as approving authority. The threefold training program is described: educational training operational-level training on mock-up real scale transport and hydrogen stationary installations and innovative virtual training exercises reproducing entire accident scenarios. The paper highlights how the three pilot sessions for European First Responders in a face to face mode will be organized to get a feedback on the training program. The expected outputs are also presented i.e. the Emergency Response Guide and a public website including teaching material and online interactive virtual training.
Commercialisation of Energy Storage
Mar 2015
Publication
This report was created to ensure a deeper understanding of the role and commercial viability of energy storage in enabling increasing levels of intermittent renewable power generation. It was specifically written to inform thought leaders and decision-makers about the potential contribution of storage in order to integrate renewable energy sources (RES) and about the actions required to ensure that storage is allowed to compete with the other flexibility options on a level playing field.<br/>The share of RES in the European electric power generation mix is expected to grow considerably constituting a significant contribution to the European Commission’s challenging targets to reduce greenhouse gas emissions. The share of RES production in electricity demand should reach about 36% by 2020 45-60% by 2030 and over 80% in 2050.<br/>In some scenarios up to 65% of EU power generation will be covered by solar photovoltaics (PV) as well as on- and offshore wind (variable renewable energy (VRE) sources) whose production is subject to both seasonal as well as hourly weather variability. This is a situation the power system has not coped with before. System flexibility needs which have historically been driven by variable demand patterns will increasingly be driven by supply variability as VRE penetration increases to very high levels (50% and more).<br/>Significant amounts of excess renewable energy (on the order of TWh) will start to emerge in countries across the EU with surpluses characterized by periods of high power output (GW) far in excess of demand. These periods will alternate with times when solar PV and wind are only generating at a fraction of their capacity and non-renewable generation capacity will be required.<br/>In addition the large intermittent power flows will put strain on the transmission and distribution network and make it more challenging to ensure that the electricity supply matches demand at all times.<br/>New systems and tools are required to ensure that this renewable energy is integrated into the power system effectively. There are four main options for providing the required flexibility to the power system: dispatchable generation transmission and distribution expansion demand side management and energy storage. All of these options have limitations and costs and none of them can solve the RES integration challenge alone. This report focuses on the question to what extent current and new storage technologies can contribute to integrate renewables in the long run and play additional roles in the short term.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2017 Final Report
Dec 2018
Publication
The Programme Review Report ensures that the FCH JU programme is aligned with its strategy and objectives. This year the programme review was performed following a new procedure: it was carried out by the European Commission’s in-house science service the Joint Research Committee (JRC). The 2017 review pays particular attention to the added value effectiveness and efficiency of FCH JU activities. The review is structured around six panels under three pillars: transport energy and cross-cutting projects summarising the FCH JU Project Portfolio
Hydrogen Europe Podcast: Hydrogen, The First Element: Why Renewable Hydrogen? Why Now?
Mar 2022
Publication
In the first episode of Hydrogen Europe's podcast "Hydrogen the first element" our CEO Jorgo Chatzimarkakis discusses with NEL's CEO and President of Hydrogen Europe Jon Andre Løkke. Starting off on how Jon joined the hydrogen sector the two CEOs investigate the historical moment renewable hydrogen is currently living.
Hydrogen Council Report- Decarbonization Pathways
Jan 2021
Publication
This report shows that low-carbon hydrogen supply at scale is economically and environmentally feasible and will have significant societal benefits if the right localised approach and best-practices for production are used. The report also demonstrates that there is not one single hydrogen production pathway to achieve low lifecycle greenhouse gas (GHG) emissions but rather the need for a fact-based approach that leverages regional resources and includes a combination of different production pathways. This will achieve both emission and cost reductions ultimately helping to decarbonize the energy system and limit global warming.
In 2020 more than 15 countries launched major hydrogen plans and policies and industry players announced new projects of more than 35GW until 2030. As this hydrogen momentum accelerates it is increasingly clear that decision makers must put the focus on decarbonization to ensure hydrogen can fulfil its potential as a key solution in the global clean energy transition making a significant contribution to net zero emissions. To support this effort the two-part Hydrogen Council report provides new data based on an assessment of the GHG emissions generated through different hydrogen supply pathways and the lifecycle GHG emissions for different hydrogen applications (see report part 1 – A Life-cycle Assessment). In addition the report explores 3 hypothetical hydrogen supply scenarios to measure the feasibility and impact of deploying renewable and low-carbon hydrogen at scale (report part 2 – Potential Supply Scenarios).
The report outlines that there are many ways of producing hydrogen and although GHG emissions vary widely very high CO2 savings can be achieved across a broad range of different hydrogen production pathways and end-uses. For example while “green” hydrogen produced through water electrolysis with renewable power achieves the lowest emissions “blue” hydrogen produced from natural gas with high CO2 capture rate and storage can also achieve low emissions if best technologies are used and best practices are followed. Across eight illustrative pathways explored in the report analysis shows that if hydrogen is used significant GHG emission reductions can be made: as much as 60-90% or more compared to conventional fossil alternatives. The study also looked into the gross water demand of hydrogen supply pathways. Water electrolysis has a very low specific water demand of 9 kg per kg of hydrogen compared to cooling of thermal power plants (hundreds of kg/kg) or biomass cultivation (hundreds to thousands of kg/kg).
Furthermore low-carbon hydrogen supply at scale is fully achievable. Having investigated two hypothetical boundary scenarios (a “green-only” and a “blue-only” scenario) to assess the feasibility and impact of decarbonized hydrogen supply the report found that both scenarios are feasible: they are not limited by the world’s renewables potential or carbon sequestration (CCS) capacities and they do not exceed the speed at which industry can scale. In the Hydrogen Council’s “Scaling up” study a demand of 21800 TWh hydrogen has been identified for the year 2050. To achieve this a compound annual growth rate of 30-35% would be needed for electrolysers and CCS. This deployment rate is in line with the growth of the offshore wind and solar PV industry over the last decade.
Hydrogen Council data released in January 2020 showed that a wide range of hydrogen applications can become competitive by 2030 driven also by falling costs of renewable and low-carbon hydrogen[1]. The new study indicates that a combination of “green” and “blue” production pathways would lead to hydrogen cost reductions relative to either boundary scenario. By making use of the near-term cost advantage of “blue” while also scaling up “green” hydrogen as the most cost-efficient option in many regions in the medium and long-term the combined approach lowers average hydrogen costs between now and 2050 relative to either boundary scenario.
Part 1 – A Life-cycle Assessment
You can download the full reports from the Hydrogen Council website
Hydrogen Council Report- Decarbonization Pathways Part 1: Life Cycle Assessment here
Hydrogen Council Report-Decarbonization Pathways Part 2: Supply Scenarios here
An executive summary of the whole project can be found here
In 2020 more than 15 countries launched major hydrogen plans and policies and industry players announced new projects of more than 35GW until 2030. As this hydrogen momentum accelerates it is increasingly clear that decision makers must put the focus on decarbonization to ensure hydrogen can fulfil its potential as a key solution in the global clean energy transition making a significant contribution to net zero emissions. To support this effort the two-part Hydrogen Council report provides new data based on an assessment of the GHG emissions generated through different hydrogen supply pathways and the lifecycle GHG emissions for different hydrogen applications (see report part 1 – A Life-cycle Assessment). In addition the report explores 3 hypothetical hydrogen supply scenarios to measure the feasibility and impact of deploying renewable and low-carbon hydrogen at scale (report part 2 – Potential Supply Scenarios).
The report outlines that there are many ways of producing hydrogen and although GHG emissions vary widely very high CO2 savings can be achieved across a broad range of different hydrogen production pathways and end-uses. For example while “green” hydrogen produced through water electrolysis with renewable power achieves the lowest emissions “blue” hydrogen produced from natural gas with high CO2 capture rate and storage can also achieve low emissions if best technologies are used and best practices are followed. Across eight illustrative pathways explored in the report analysis shows that if hydrogen is used significant GHG emission reductions can be made: as much as 60-90% or more compared to conventional fossil alternatives. The study also looked into the gross water demand of hydrogen supply pathways. Water electrolysis has a very low specific water demand of 9 kg per kg of hydrogen compared to cooling of thermal power plants (hundreds of kg/kg) or biomass cultivation (hundreds to thousands of kg/kg).
Furthermore low-carbon hydrogen supply at scale is fully achievable. Having investigated two hypothetical boundary scenarios (a “green-only” and a “blue-only” scenario) to assess the feasibility and impact of decarbonized hydrogen supply the report found that both scenarios are feasible: they are not limited by the world’s renewables potential or carbon sequestration (CCS) capacities and they do not exceed the speed at which industry can scale. In the Hydrogen Council’s “Scaling up” study a demand of 21800 TWh hydrogen has been identified for the year 2050. To achieve this a compound annual growth rate of 30-35% would be needed for electrolysers and CCS. This deployment rate is in line with the growth of the offshore wind and solar PV industry over the last decade.
Hydrogen Council data released in January 2020 showed that a wide range of hydrogen applications can become competitive by 2030 driven also by falling costs of renewable and low-carbon hydrogen[1]. The new study indicates that a combination of “green” and “blue” production pathways would lead to hydrogen cost reductions relative to either boundary scenario. By making use of the near-term cost advantage of “blue” while also scaling up “green” hydrogen as the most cost-efficient option in many regions in the medium and long-term the combined approach lowers average hydrogen costs between now and 2050 relative to either boundary scenario.
Part 1 – A Life-cycle Assessment
- The life-cycle assessment (LCA) analysis in this study addresses every aspect of the supply chain from primary energy extraction to end use. Eight primary-energy-to-hydrogen value chains have been selected for illustrative purposes.
- Across the hydrogen pathways and applications depicted very high to high GHG emission reduction can be demonstrated using green (solar wind) and blue hydrogen.
- In the LCA study renewables + electrolysis shows strongest GHG reduction of the different hydrogen supply pathways assessed in this study with a best-case blue hydrogen pathway also coming into the same order of magnitude.
- Currently the vast majority of hydrogen is produced by fossil pathways. To achieve a ten-fold build-out of hydrogen supply by 2050 as envisaged by the Hydrogen Council in its ‘Scaling Up’ report (2017) the existing use of hydrogen – and all its many potential new roles – need to be met by decarbonized sources.
- Three hypothetical supply scenarios with decarbonized hydrogen sources are considered in the study: 1) a “green-only” renewables-based world; 2) a “blue-only” world relying on carbon sequestration; and 3) a combined scenario that uses a region-specific combination of green and blue hydrogen based on the expected regional cost development of each source.
- The study finds that a decarbonized hydrogen supply is possible regardless of the production pathway: while both the green and blue boundary scenario would be highly ambitious regarding the required speed of scale-up they do not exceed the world’s resources on either renewable energy or carbon sequestration capabilities.
- A combination of production pathways would result in the least-cost global supply over the entire period of scale-up. It does so by making best use of the near-term cost advantage of “blue” in some regions while simultaneously achieving a scale-up in electrolysis.
- In reality the decarbonized supply scenario will combine a range of different renewable and low-carbon hydrogen production pathways that are optimally suited to local conditions political and societal preferences and regulations as well as industrial and cost developments for different technologies.
You can download the full reports from the Hydrogen Council website
Hydrogen Council Report- Decarbonization Pathways Part 1: Life Cycle Assessment here
Hydrogen Council Report-Decarbonization Pathways Part 2: Supply Scenarios here
An executive summary of the whole project can be found here
A Hydrogen Strategy for a Climate-neutral Europe
Jul 2020
Publication
In an integrated energy system hydrogen can support the decarbonisation of industry transport power generation and buildings across Europe. The EU Hydrogen Strategy addresses how to transform this potential into reality through investments regulation market creation and research and innovation.
Hydrogen can power sectors that are not suitable for electrification and provide storage to balance variable renewable energy flows but this can only be achieved with coordinated action between the public and private sector at EU level. The priority is to develop renewable hydrogen produced using mainly wind and solar energy. However in the short and medium term other forms of low-carbon hydrogen are needed to rapidly reduce emissions and support the development of a viable market.
This gradual transition will require a phased approach:
Hydrogen can power sectors that are not suitable for electrification and provide storage to balance variable renewable energy flows but this can only be achieved with coordinated action between the public and private sector at EU level. The priority is to develop renewable hydrogen produced using mainly wind and solar energy. However in the short and medium term other forms of low-carbon hydrogen are needed to rapidly reduce emissions and support the development of a viable market.
This gradual transition will require a phased approach:
- From 2020 to 2024 we will support the installation of at least 6 gigawatts of renewable hydrogen electrolysers in the EU and the production of up to one million tonnes of renewable hydrogen.
- From 2025 to 2030 hydrogen needs to become an intrinsic part of our integrated energy system with at least 40 gigawatts of renewable hydrogen electrolysers and the production of up to ten million tonnes of renewable hydrogen in the EU.
- From 2030 to 2050 renewable hydrogen technologies should reach maturity and be deployed at large scale across all hard-to-decarbonise sectors.
- To help deliver on this Strategy the Commission is launched the European Clean Hydrogen Alliance with industry leaders civil society national and regional ministers and the European Investment Bank. The Alliance will build up an investment pipeline for scaled-up production and will support demand for clean hydrogen in the EU.
The Impact of Climate Targets on Future Steel Production – An Analysis Based on a Global Energy System Model
Apr 2020
Publication
This paper addresses how a global climate target may influence iron and steel production technology deployment and scrap use. A global energy system model ETSAP-TIAM was used and a Scrap Availability Assessment Model (SAAM) was developed to analyse the relation between steel demand recycling and the availability of scrap and their implications for steel production technology choices. Steel production using recycled materials has a continuous growth and is likely to be a major route for steel production in the long run. However as the global average of in-use steel stock increases up to the current average stock of the industrialised economies global steel demand keeps growing and stagnates only after 2050. Due to high steel demand levels and scarcity of scrap more than 50% of the steel production in 2050 will still have to come from virgin materials. Hydrogen-based steel production could become a major technology option for production from virgin materials particularly in a scenario where Carbon Capture and Storage (CCS) is not available. Imposing a binding climate target will shift the crude steel price to approximately 500 USD per tonne in the year 2050 provided that CCS is available. However the increased prices are induced by CO2 prices rather than inflated production costs. It is concluded that a global climate target is not likely to influence the use of scrap whereas it shall have an impact on the price of scrap. Finally the results indicate that energy efficiency improvements of current processes will only be sufficient to meet the climate target in combination with CCS. New innovative techniques with lower climate impact will be vital for mitigating climate change.
Property Optimization in As-Quenched Martensitic Steel by Molybdenum and Niobium Alloying
Apr 2018
Publication
Niobium microalloying is the backbone of modern low-carbon high strength low alloy (HSLA) steel metallurgy providing a favorable combination of strength and toughness by pronounced microstructural refinement. Molybdenum alloying is established in medium-carbon quenching and tempering of steel by delivering high hardenability and good tempering resistance. Recent developments of ultra-high strength steel grades such as fully martensitic steel can be optimized by using beneficial metallurgical effects of niobium and molybdenum. The paper details the metallurgical principles of both elements in such steel and the achievable improvement of properties. Particularly the underlying mechanisms of improving toughness and reducing the sensitivity towards hydrogen embrittlement by a suitable combination of molybdenum and niobium alloying will be discussed.
Market Segmentation of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The main goal of the project is to enable the wide adoption of H2NG (hydrogen in natural gas) blends by closing knowledge gaps regarding technical impacts on residential and commercial gas appliances. The project consortium will identify and recommend appropriate codes and standards that should be adapted to answer the needs and develop a strategy for addressing the challenges for new and existing appliances.<br/>This deliverable on market segmentation is part of work package 2 and provides a quantitative segmentation of the gas appliance market in terms of appliance population numbers. It therefore prepares the project partners to perform the subsequent selection of the most representative product types to be tested in the laboratories of the THyGA partners.<br/>The classification is developed to categorise appliances installed in the field based on available statistics calculation methods and estimations. As a result appliance populations are provided for each technology segment that draw a representative picture of the installed end-use appliances within the European Union in 2020.
Investigation of the Hydrogen Embrittlement Susceptibility of T24 Boiler Tubing in the Context of Stress Corrosion Cracking of its Welds
Dec 2018
Publication
For the membrane and spiral walls of the new USC boilers the advanced T24 material was developed. In 2010 however extensive T24 tube weld cracking during the commissioning phase of several newly built boilers was observed. As the dominant root cause Hydrogen Induced - Stress Corrosion Cracking was reported. An investigation into the interaction of the T24 material with hydrogen was launched in order to compare its hydrogen embrittlement susceptibility with that of the T12 steel commonly used for older boiler evaporators. Both base materials and simulated Heat Affected Zone (HAZ) microstructures were tested. Total and diffusible hydrogen in the materials after electrochemical charging were measured. Thermo Desorption Spectrometry was used to gain insights into the trapping behaviour and the apparent diffusion coefficient at room temperature was determined. Based on the hardness and the diffusible hydrogen pick-up capacity of the materials it was concluded that T12 is less susceptible to hydrogen embrittlement than T24 as base material as well as in the HAZ condition and that the HAZ of T24 is more susceptible to hydrogen embrittlement than the base material both in the as welded and in the Post Weld Heat Treated (PWHT) condition. However based on the results of this investigation it could not be determined if the T24 HAZ is less susceptible to hydrogen embrittlement after PWHT.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Fuel Cells and Hydrogen Observatory Hydrogen Molecule Market Report
Sep 2021
Publication
The purpose of the hydrogen molecule market analysis is to track changes in the structure of hydrogen supply and demand in Europe. This report is mainly focused on presenting the current landscape - that will allow for future year-on-year comparisons in order to assess the progress Europe is making with regards to deployment of clean hydrogen production capacities as well as development of demand for clean hydrogen from emerging new hydrogen applications in the mobility sector or in industry. The following report summarizes the hydrogen molecule market landscape and contains data about hydrogen production and consumption in the EEA countries (EU countries together with Switzerland Norway Iceland and Liechtenstein). Hydrogen production capacity is presented by country and by technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data available at the end of 2019. Hydrogen market (on both the demand and supply side) is dominated by ammonia and refining industries with three countries (DE NL PL) responsible for almost half hydrogen consumption. Today hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are insignificant with blue hydrogen capacities at below 1% and green hydrogen production capacity below 0.1% of total.
Fuel Cells and Hydrogen Observatory Technology and Market Report
Sep 2021
Publication
The information in this report covers the period January 2019 – December 2019. The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. This includes statistical information on the size of the global fuel cell market including number and capacity of fuel cell systems shipped in a calendar year. For this first edition data to the end of 2019 is presented where possible alongside analysis of key sector developments. Fuel cell system shipments for each calendar year are presented both as numbers of units and total system megawatts. The data are further divided and subdivided by: • Application: Total system shipments are divided into Transport Stationary and Portable applications • Fuel cell type: Numbers are provided for each of the different fuel cell chemistry types • Region of integration: Region where the final manufacturer – usually the system integrator – integrates the fuel cell into the final product • Region of deployment: Region where the final product was shipped to for deployment The data is sourced directly from industry players as well as other relevant sources including press releases associations and other industry bodies.
Fuel Cells and Hydrogen Observatory Standards Report
Sep 2021
Publication
Purpose: The Standards module of the FCHO presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized in order to enhance ease of access and usability. The development of sector-relevant standards facilitates and enhances economies of scale interoperability comparability safety and many other issues. Scope: The database presents European and International standards. Standards from the following standards developing organizations are included: CEN CENELEC ISO IEC OIML. The report spans January 2019 – December 2019. Key Findings: The development of sector relevant standards on an international level continued to grow in 2019 on European level many standards are still in the process of being drafted. The recently established CEN-CLC JTC 6 (Hydrogen in energy systems) has not published standards yet but is working on drafting standards on for example Guarantees of Origin.
Hydrogen for Net Zero - A Critical Cost-competitive Energy Vector
Nov 2021
Publication
The report “Hydrogen for Net Zero” presents an ambitious yet realistic deployment scenario until 2030 and 2050 to achieve Net Zero emissions considering the uses of hydrogen in industry power mobility and buildings. The scenario is described in terms of hydrogen demand supply infrastructure abatement potential and investments required and then compared with current momentum and investments in the industry to identify the investment gaps across value chains and geographies.
The report is based on the technoeconomic data of cost and performance of hydrogen technologies provided by Hydrogen Council members and McKinsey & Company as well as the Hydrogen Council investment tracker which covers all large-scale investments into hydrogen globally.
Link to their website
The report is based on the technoeconomic data of cost and performance of hydrogen technologies provided by Hydrogen Council members and McKinsey & Company as well as the Hydrogen Council investment tracker which covers all large-scale investments into hydrogen globally.
Link to their website
A Perspective on Hydrogen Investment, Deployment and Cost Competitiveness
Feb 2021
Publication
Deployment and investments in hydrogen have accelerated rapidly in response to government commitments to deep decarbonisation establishing hydrogen as a key component in the energy transition.
To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The report offers a comprehensive perspective on market deployment around the world investment momentum as well as implications on cost competitiveness of hydrogen solutions.
The document can be downloaded from their website
To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The report offers a comprehensive perspective on market deployment around the world investment momentum as well as implications on cost competitiveness of hydrogen solutions.
The document can be downloaded from their website
Calibrating a Ductile Damage Model for Two Pipeline Steels: Method and Challenges
Dec 2020
Publication
This work is part of a project that aims to develop a micromechanics based damage law taking into account hydrogen assisted degradation. A 'vintage' API 5L X56N and a 'modern' API 5L X70M pipeline steel have been selected for this purpose. The paper focuses on an experimental calibration of ductile damage properties of the well known complete Gurson model for the two steels in absence of hydrogen. A basic microstructural characterization is provided showing a banded ferrite-pearlite microstructure for both steels. Charpy impact tests showed splits at the fracture surface for the X70 steel. Double-notched round bar tensile tests are performed aiming to provide the appropriate input for damage model calibration. The double-notched nature of the specimens allows to examine the material state at maximum load in the unfailed notch and the final material state in the failed notch. Different notch radii are used capturing a broad range of positive stress triaxialities. The notches are optically monitored for transverse necking in two perpendicular directions (transverse to rolling and through thickness) to reveal any anisotropy in plastic deformation and/or damage. It is explained how the occurrence of splits at the segregation zone and anisotropy complicate the calibration procedure. Calibration is done for each steel and acceptable results are obtained. However the occurrence of splits did not allow to evaluate the damage model for the highest levels of tested stress triaxiality.
Fuel Cells and Hydrogen Observatory 2019 EU and National Policies Report
Sep 2021
Publication
The policy module of the FCHO presents an overview of EU and national policies across various hydrogen and fuel cell related sectors. It provides a snapshot of the current state of hydrogen legislation and policy. Scope: While FCHO covers 38 entities around the world due to the completeness of the data at the moment of writing this report covers 29 entities. The report reflects data collected January 2019 – December 2019. Key Findings: Hydrogen policies are relatively commonplace among European countries but with large differences between member states. EU hydrogen leaders do not lag behind global outliers such as South Korea or Japan.
No more items...