Belgium
Internal and Surface Damage after Electrochemical Hydrogen Charging for Ultra Low Carbon Steel with Various Degrees of Recrystallization
Jul 2016
Publication
An ultra low carbon (ULC) steel was subjected to electrochemical hydrogen charging to provoke hydrogen induced damage in the material. The damage characteristics were analyzed for recrystallized partially recrystallized and cold deformed material. The goal of the study is to understand the effect of cold deformation on the hydrogen induced cracking behavior of a material which is subjected to cathodic hydrogen charging. Additionally charging conditions i.e. charging time and current density were varied in order to identify correlations between on the one hand crack initiation and propagation and on the other hand the charging conditions. The obtained hydrogen induced cracks were studied by optical microscopy scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Hydrogen induced cracks were observed to propagate transgranularly independently of the state of the material. Deformed samples were considerably more sensitive to hydrogen induced cracking which implies the important role of dislocations in hydrogen induced damage mechanisms.
Hydrogen Production: State of Technology
May 2020
Publication
Presently hydrogen is for ~50% produced by steam reforming of natural gas – a process leading to significant emissions of greenhouse gas (GHG). About 30% is produced from oil/naphtha reforming and from refinery/chemical industry off-gases. The remaining capacity is covered for 18% from coal gasification 3.9% from water electrolysis and 0.1% from other sources. In the foreseen future hydrogen economy green hydrogen production methods will need to supply hydrogen to be used directly as fuel or to generate synthetic fuels to produce ammonia and other fertilizers (viz. urea) to upgrade heavy oils (like oil sands) and to produce other chemicals. There are several ways to produce H2 each with limitations and potential such as steam reforming electrolysis thermal and thermo-chemical water splitting dark and photonic fermentation; gasification and catalytic decomposition of methanol. The paper reviews the fundamentals and potential of these alternative process routes. Both thermo-chemical water splitting and fermentation are marked as having a long term but high "green" potential.
Life Cycle Performance of Hydrogen Production via Agro-Industrial Residue Gasification—A Small Scale Power Plant Study
Mar 2018
Publication
This study evaluates the environmental profile of a real biomass-based hydrogen production small-scale (1 MWth) system composed of catalytic candle indirectly heated steam gasifier coupled with zinc oxide (ZnO) guard bed water gas shift (WGS) and pressure swing absorber (PSA) reactors. Environmental performance from cradle-to-gate was investigated by life cycle assessment (LCA) methodology. Biomass production shows high influence over all impact categories. In the syngas production process the main impacts observed are global warming potential (GWP) and acidification potential (AP). Flue gas emission from gasifier burner has the largest proportion of total GWP. The residual off gas use in internal combustion engine (ICE) leads to important environmental savings for all categories. Hydrogen renewability score is computed as 90% due to over 100% decline in non-renewable energy demand. Sensitivity analysis shows that increase in hydrogen production efficiency does not necessarily result in decrease in environmental impacts. In addition economic allocation of environmental charges increases all impact categories especially AP and photochemical oxidation (POFP).
Validation of Selected Optical Methods for Assessing Polyethylene (PE) Liners Used in High Pressure Vessels for Hydrogen Storage
Jun 2021
Publication
A polyethylene (PE) liner is the basic element in high-pressure type 4 composite vessels designed for hydrogen or compressed natural gas (CNG) storage systems. Liner defects may result in the elimination of the whole vessel from use which is very expensive both at the manufacturing and exploitation stage. The goal is therefore the development of efficient non-destructive testing (NDT) methods to test a liner immediately after its manufacturing before applying a composite reinforcement. It should be noted that the current regulations codes and standards (RC&S) do not specify liner testing methods after manufacturing. It was considered especially important to find a way of locating and assessing the size of air bubbles and inclusions and the field of deformations in liner walls. It was also expected that these methods would be easily applicable to mass-produced liners. The paper proposes the use of three optical methods namely visual inspection digital image correlation (DIC) and optical fiber sensing based on Bragg gratings (FBG). Deformation measurements are validated with finite element analysis (FEA). The tested object was a prototype of a hydrogen liner for high-pressure storage (700 bar). The mentioned optical methods were used to identify defects and measure deformations.
Strategies for Joint Procurement of Fuel Cell Buses
Jun 2018
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has supported a range of initiatives in recent years designed to develop hydrogen fuel cell buses to a point where they can fulfil their promise as a mainstream zero emission vehicle for public transport.<br/>Within this study 90 different European cities and regions have been supported in understanding the business case of fuel cell bus deployment and across these locations. The study analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe. It also outlines possible solutions for further deployment of FC buses beyond the subsidised phase.<br/>In the light of the experience of the joint tender process in the UK and in Germany the study highlights best practices for ordering fuel cell buses. Other innovative instruments explored in other countries for the orders of large quantities of fuel cells buses are presented: Special Purpose Vehicles and centralised purchase office. Finally the study deeply analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2016 Final Report
Jun 2017
Publication
The Fuel Cell and Hydrogen 2 Joint Undertaking (FCH 2 JU) organised the sixth edition of its Programme Review Days (PRD). 100 projects allocated in 6 panels covering cross-cutting energy and transport in research and demonstration activities have been the basis of the FCH JU's annual review of its research and innovation programme.
A Portfolio of Power-Trains for Europe- A Fact Based Analysis
Nov 2010
Publication
This report is prepared by thirty of the largest global car manufacturers oil and gas companies utilities equipment manufacturers NGOs governmental and clean energy organisations with the collaboration of the Fuel Cells and Hydrogen Joint Undertaking.<br/>The analysis compares the economics sustainability and performance of the vehicles and infrastructures needed to reach the 80% decarbonisation goal set by the<br/>European Union and is an unprecedented effort from industry and other stakeholders to analyse the role of the various new car-types in meeting this objective on the basis of proprietary industrial data.
Hydrogen Roadmap Europe: A Sustainable Pathway for the European Energy Transition
Feb 2019
Publication
Hydrogen is an essential element in the energy transition and can account for 24% of final energy demand and 5.4m jobs by 2050 says the new study by the FCH JU “Hydrogen Roadmap Europe: A sustainable pathway for the European Energy Transition“. Developed with input from 17 leading European industrial actors the study lays out a pathway for the large-scale deployment of hydrogen and fuel cells until 2050 and quantifies the associated socio-economic impacts.<br/>The report makes the case that hydrogen is required to address the challenges ahead. At scale decarbonisation of key segments such as the gas grid transport (particularly as relates to heavy duty vehicles) industrial processes that use high-grade heat and hydrogen as chemical feedstock require the use of hydrogen in large quantities.<br/>In addition the electrification of the economy and the large scale integration of intermittent renewable energy sources require large scale energy storage enabling seasonal storage and the efficient transport of clean energy across regions at low cost. Hydrogen is the only at scale technology capable of addressing all of these challenges.<br/>Importantly there will be important socio-economic and environmental benefits associated with this deployment such as an EUR 820B per year market and a total of 560Mt CO2 abated. The report lays out a roadmap for the ramp-up of market deployment across applications setting specific milestones between now and 2050. It also calls for a coordinated approach from policy makers industry and investors in order to achieve the 2-degree scenario.
Fire Tests Carried Out in FCH JU FIRECOMP Project, Recommendations and Application to Safety of Gas Storage Systems
Sep 2017
Publication
In the event of a fire composite pressure vessels behave very differently from metallic ones: the material is degraded potentially leading to a burst without significant pressure increase. Hence such objects are when necessary protected from fire by using thermally-activated devices (TPRD) and standards require testing cylinder and TPRD together. The pre-normative research project FireComp aimed at understanding better the conditions which may lead to burst through testing and simulation and proposed an alternative way of assessing the fire performance of composite cylinders. This approach is currently used by Air Liquide for the safety of composite bundles carrying large amounts of hydrogen gas.
Understanding the Interaction between a Steel Microstructure and Hydrogen
Apr 2018
Publication
The present work provides an overview of the work on the interaction between hydrogen (H) and the steel’s microstructure. Different techniques are used to evaluate the H-induced damage phenomena. The impact of H charging on multiphase high-strength steels i.e. high-strength low-alloy (HSLA) transformation-induced plasticity (TRIP) and dual phase (DP) is first studied. The highest hydrogen embrittlement resistance is obtained for HSLA steel due to the presence of Ti- and Nb-based precipitates. Generic Fe-C lab-cast alloys consisting of a single phase i.e. ferrite bainite pearlite or martensite and with carbon contents of approximately 0 0.2 and 0.4 wt % are further considered to simplify the microstructure. Finally the addition of carbides is investigated in lab-cast Fe-C-X alloys by adding a ternary carbide forming element to the Fe-C alloys. To understand the H/material interaction a comparison of the available H trapping sites the H pick-up level and the H diffusivity with the H-induced mechanical degradation or H-induced cracking is correlated with a thorough microstructural analysis.
European Hydrogen Safety Panel (EHSP)
Sep 2019
Publication
Inaki Azkarate,
Marco Carcassi,
Francesco Dolci,
Alberto Garcia-Hombrados,
Stuart J. Hawksworth,
Thomas Jordan,
Georg W. Mair,
Daniele Melideo,
Vladimir V. Molkov,
Pietro Moretto,
Ernst Arndt Reinecke,
Pratap Sathiah,
Ulrich Schmidtchen,
Trygve Skjold,
Etienne Studer,
Tom Van Esbroeck,
Elena Vyazmina,
Jennifer Xiaoling Wen,
Jianjun Xiao and
Joachim Grüne
The FCH 2 JU launched the European Hydrogen Safety Panel (EHSP) initiative in 2017. The mission of the EHSP is to assist the FCH 2 JU both at programme and at project level in assuring that hydrogen safety is adequately managed and to promote and disseminate H2 safety culture within and outside of the FCH 2 JU programme. The EHSP is composed of a multidisciplinary pool of safety experts grouped in ad-hoc working groups (task forces) according to the tasks to be performed and to expertise. The scope and activities of the EHSP are structured around four main areas:
TF.1. Support at project level The EHSP task under this category includes the development of measures to avoid any accident by integrating safety learnings expertise and planning into FCH 2 JU funded projects and by ensuring that all projects address and incorporate the state-of-the-art in hydrogen safety appropriately. To this end a Safety guidance document for hydrogen and fuel cell projects will be produced.
TF.2. Support at programme level Activities under this category include answering questions related to hydrogen safety in an independent coordinated and consolidated way via hotline-support or if necessary via physical presence of safety representative at the FCH 2 JU. It could also include a short introduction to hydrogen safety and the provision of specific guidelines for the handling storage and use of hydrogen in the public domain. As a start a clear strategy on this should be developed and therefore related M ulti-annual work plan 2018-2020.
TF.3. Data collection and assessment The EHSP tasks include the analysis of existing events already introduced in the European Hydrogen Safety Reference Database (HIAD) and of new information from relevant mishaps incidents or accidents. The EHSP should therefore derive lessons learned and provide together with the involved parties further general recommendations to all stakeholders based on these data. For 2018 the following deliverables should be produced: methodology to collect inputs from projects and to provide lessons learned and guidelines assessment and lessons learned from HIAD and a report on research progress in the field of hydrogen safety.
TF.4. Public outreach Framed within the context of the intended broad information exchange the EHSP tasks under this category include the development of a regularly updated webpage hosted on the FCH 2 JU website.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2012 Final Report
Mar 2013
Publication
Initiated in 2011 the 2012 programme review edition covered 71‘live’ projects from the 2008 2009 and 2010 calls for proposals together with some projects from the 2011 call. Total funding for these projects stands at close to € 450 million 50% of which comes from FCH JU financial contributions and 50% of which comes from industry and research in-kind contributions.
Assessing the Environmental Impacts of Wind-based Hydrogen Production in the Netherlands Using Ex-ante LCA and Scenarios Analysis
Mar 2021
Publication
Two electrolysis technologies fed with renewable energy sources are promising for the production of CO2-free hydrogen and enabling the transition to a hydrogen society: Alkaline Electrolyte (AE) and Polymer Electrolyte Membrane (PEM). However limited information exists on the potential environmental impacts of these promising sustainable innovations when operating on a large-scale. To fill this gap the performance of AE and PEM systems is compared using ex-ante Life Cycle Assessment (LCA) technology analysis and exploratory scenarios for which a refined methodology has been developed to study the effects of implementing large-scale sustainable hydrogen production systems. Ex-ante LCA allows modelling the environmental impacts of hydrogen production exploratory scenario analysis allows modelling possible upscaling effects at potential future states of hydrogen production and use in vehicles in the Netherlands in 2050. A bridging tool for mapping the technological field has been created enabling the combination of quantitative LCAs with qualitative scenarios. This tool also enables diversity for exploring multiple sets of visions. The main results from the paper show with an exception for the “ozone depletion” impact category (1) that large-scale AE and PEM systems have similar environmental impacts with variations lower than 7% in all impact categories (2) that the contribution of the electrolyser is limited to 10% of all impact categories results and (3) that the origin of the electricity is the largest contributor to the environmental impact contributing to more than 90% in all impact categories even when renewable energy sources are used. It is concluded that the methodology was applied successfully and provides a solid basis for an ex-ante assessment framework that can be applied to emerging technological systems.
Evaluation of Blistered and Cold Deformed ULC Steel with Melt Extraction and Thermal Desorption Spectroscopy
Dec 2019
Publication
Hydrogen characterization techniques like melt extraction and thermal desorption spectroscopy (TDS) are useful tools in order to evaluate and understand the interaction between hydrogen and metals. These two techniques are used here on cold deformed ultra-low carbon (ULC) steel with and without hydrogen induced damage. The material is charged electrochemically in order to induce varying amounts of hydrogen and variable degrees of hydrogen induced damage. The aim of this work is to evaluate to which extent the hydrogen induced damage would manifest itself in melt extraction and TDS measurements.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2011 Final Report
Apr 2012
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has the ambitious objective to place Europe at the forefront of the development commercialization and deployment of fuel cells and hydrogen technologies as of 2015. About €470 million over a six year period have been granted by the European Union to achieve this and private funds are being attracted to support the same ambition as part of the global European effort embedded in the multi-annual implementation plan MAIP (2008-2013).
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2013 Final Report
Mar 2014
Publication
The 2013 Programme Review is the third annual review of the FCH JU portfolio of projects. This edition covers over 100 projects funded through annual calls for proposals from 2008 to 2012.<br/>The Programme Review serves to evaluate the achievements of the portfolio of FCH JU-funded projects against FCH JU strategic objectives in terms of advancing technological progress addressing horizontal activities and promoting cooperation with other projects both within the FCH JU portfolio as well as externally.<br/>The 2013 Review confirms that the portfolio of projects supported within energy and transport pillars and within its cross-cutting activities is a solid one aligned with the FCH JU strategic objectives. Industry and research collaboration is strong with SMEs making up 30% of total participants. The continued expansion of demonstration activities in both pillars answers to a greater emphasis on addressing the commercialisation challenge which is bolstered by activities in basic and breakthrough research.
Value Added of the Hydrogen and Fuel Cell Sector in Europe
Mar 2019
Publication
Fuel cells and hydrogen (FCH) could bring significant environmental benefits across the energy system if deployed widely: low carbon and highly efficient energy conversions with zero air quality emissions. The socio-economic benefits to Europe could also be substantial through employment in development manufacturing installation and service sectors and through technology export. Major corporations are stressing the economic and environmental value of FCH technologies and the importance of including them in both transport and stationary energy systems globally while national governments and independent agencies are supporting their role in the energy systems transition.
Recognising the potential economic and industrial benefits from a strong FCH supply chain in Europe and the opportunities for initiatives to support new energy supply chains the FCH 2 JU commissioned a study to evaluate for the first time the value added that the fuel cell and hydrogen sector can bring to Europe by 2030.
The outputs of the study are divided into three reports:
The Value Chain study complements the Hydrogen Roadmap for Europe recently published by the FCH 2 JU. This lays out a pathway for the large-scale deployment of hydrogen and fuel cells to 2050 in order to achieve a 2-degree climate scenario. This study also quantified socio-economic and environmental benefits but with important differences in scope between the two studies. The Hydrogen Roadmap for Europe looked at the wider picture quantifying the scale of FCH roll-out needed to meet the 2-degree scenario objectives. It assessed the socio-economic impacts of a sector of that scale looking top-down at the entire FCH value chain. The Value Chain study presented here is a narrower and more detailed bottom-up assessment of the value-added in manufacturing activities and the immediate ecosystem of suppliers that this is likely to create.
Recognising the potential economic and industrial benefits from a strong FCH supply chain in Europe and the opportunities for initiatives to support new energy supply chains the FCH 2 JU commissioned a study to evaluate for the first time the value added that the fuel cell and hydrogen sector can bring to Europe by 2030.
The outputs of the study are divided into three reports:
- A ‘Summary’ report that provides a synthetic overview of the study conclusions;
- a ‘Findings’ report that presents the approach and findings of the study;
- and an ‘Evidence’ report that provides the detailed background information and analysis that supports the findings and recommendations.
The Value Chain study complements the Hydrogen Roadmap for Europe recently published by the FCH 2 JU. This lays out a pathway for the large-scale deployment of hydrogen and fuel cells to 2050 in order to achieve a 2-degree climate scenario. This study also quantified socio-economic and environmental benefits but with important differences in scope between the two studies. The Hydrogen Roadmap for Europe looked at the wider picture quantifying the scale of FCH roll-out needed to meet the 2-degree scenario objectives. It assessed the socio-economic impacts of a sector of that scale looking top-down at the entire FCH value chain. The Value Chain study presented here is a narrower and more detailed bottom-up assessment of the value-added in manufacturing activities and the immediate ecosystem of suppliers that this is likely to create.
Study on Early Business Cases for H2 In Energy Storage and More Broadly Power to H2 Applications
Jun 2017
Publication
Hydrogen is widely recognised as a promising option for storing large quantities of renewable electricity over longer periods. For that reason in an energy future where renewables are a dominant power source opportunities for Power to- Hydrogen in the long-term appear to be generally acknowledged. The key challenge today is to identify concrete short-term investment opportunities based on sound economics and robust business cases. The focus of this study is to identify these early business cases and to assess their potential replicability within the EU from now until 2025. An essential part and innovative approach of this study is the detailed analysis of the power sector including its transmission grid constraints.
A Roadmap for Financing Hydrogen Refueling Networks – Creating Prerequisites for H2-based Mobility
Sep 2014
Publication
Fuel cell electric vehicles (FCEVs) are zero tailpipe emission vehicles. Their large-scale deployment is expected to play a major role in the de-carbonization of transportation in the European Union (EU) and is therefore an important policy element at EU and Member State level.<br/>For FCEVs to be introduced to the market a network of hydrogen refuelling stations (HRS) first has to exist. From a technological point of view FCEVs are ready for serial production already: Hyundaiand Toyota plan to introduce FCEVs into key markets from 2015 and Daimler Ford and Nissan plan to launch mass-market FCEVs in 2017.<br/>At the moment raising funds for building the hydrogen refuelling infrastructure appears to be challenging.<br/>This study explores options for financing the HRS rollout which facilitate the involvement of private lenders and investors. It presents a number of different financing options involving public-sector bank loans funding from private-sector strategic equity investors commercial bank loans private equity and funding from infrastructure investors. The options outline the various requirements forn accessing these sources of funding with regard to project structure incentives and risk mitigation. The financing options were developed on the basis of discussions with stakeholders in the HRS rollout from industry and with financiers.<br/>This study was prepared by Roland Berger in close contact with European Investment banks and a series of private banks.<br/>This study explores in details the business cases for HRS in Germany and UK. The conclusion can be easily extrapolate to other countries.
Study on the Use of Fuel Cells and Hydrogen in the Railway Environment
Jun 2019
Publication
This study outlines a pathway for commercialisation of stationary fuel cells in distributed generation across Europe. It has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) a public-private partnership between the European Commission the fuel cell and hydrogen industry and a number of research bodies and associations. The FCH JU supports research technology development and demonstration activities in the field of fuel cell and hydrogen technologies in Europe. The study explores how stationary fuel cells can benefit users how they can be brought to the market what hurdles still exist and how their diffusion may foster Europe's transition into a new energy age.
No more items...