Safety
Assessment and Evaluation of 3rd Party Risk for Planned Hydrogen Demonstration Facility
Sep 2007
Publication
Potential risk exposure of 3rd parties i.e. people not involved in the actual operation of a plant is often a critical factor to gain authority approval and public acceptance for a development project. This is also highly relevant for development of demonstration facilities for hydrogen production and refuelling infrastructure. This paper presents and discusses results for risk exposure of 3rd parties based on risk assessment studies performed for the planned Hydrogen Technology Research Centre Hytrec in Trondheim. The methodology applied is outlined. Key assumptions and study uncertainties are identified and how these might affect the results are discussed.<br/>The purpose of Hytrec is to build a centre for research development and demonstration of hydrogen as an energy carrier. Hydrogen will be produced both by reforming of natural gas with CO2 capture and by electrolysis of water. The plant also includes a SOFC that will run on natural gas or hydrogen and produce heat and electricity for the Hytrec visitor centre. Hytrec will be located in a populated area without access control. Most of the units will be located within cabinets and modules.<br/>The authors acknowledge the Hytrec project and the Hytrec project partners Statoil Statkraft and DNV for their support and for allowing utilisation of results from the Hytrec QRA in this paper.
Compatibility of Materials with Hydrogen Particular Case- Hydrogen Assisted Stress Cracking of Titanium Alloys
Sep 2007
Publication
A review of the effect of hydrogen on materials is addressed in this paper. General aspects of the interaction of hydrogen and materials hydrogen embrittlement low temperature effects material suitability for hydrogen service and materials testing are the main subjects considered in the first part of the paper. As a particular case of the effect of hydrogen in materials the hydride formation of titanium alloys is considered. Alpha titanium alloys are considered corrosion resistant materials in a wide range of environments. However hydrogen absorption and the possible associated problems must be taken into account when considering titanium as a candidate material for high responsibility applications. The sensitivity of three different titanium alloys Ti Gr-2 Ti Gr-5 and Ti Gr-12 to the Hydrogen Assisted Stress Cracking phenomena has been studied by means of the Slow Strain Rate Technique (SSRT). The testing media has been sea water and hydrogen has been produced on the specimen surface during the test by cathodic polarization. Tested specimens have been characterized by metallography and scanning electron microscopy. Results obtained show that the microstructure of the materials particularly the β phase content plays an important role on the sensitivity of the studied alloys to the Hydrogen Assisted Stress Cracking Phenomena.
A Study of Barrier Walls for Mitigation of Unintended Releases of Hydrogen
Sep 2009
Publication
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. Depending on the leak diameter and source pressure the resulting consequence distances can be unacceptably large. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. An experimental and modeling program has been performed at Sandia National Laboratories to better characterize the effectiveness of barrier walls to reduce hazards. This paper describes the experimental and modeling program and presents results obtained for various barrier configurations. The experimental measurements include flame deflection using standard and infrared video and high-speed movies (500 fps) to study initial flame propagation from the ignition source. Measurements of the ignition overpressure wall deflection radiative heat flux and wall and gas temperature were also made at strategic locations. The modeling effort includes three-dimensional calculations of jet flame deflection by the barriers computations of the thermal radiation field around barriers predicted overpressure from ignition and the computation of the concentration field from deflected unignited hydrogen releases. The various barrier designs are evaluated in terms of their mitigation effectiveness for the associated hazards present. The results show that barrier walls are effective at deflecting jet flames in a desired direction and can help attenuate the effects of ignition overpressure and flame radiative heat flux.
Complex Hydrides as Solid Storage Materials- First Safety Tests
Sep 2007
Publication
Hydrogen technology requires efficient and safe hydrogen storage systems. For this purpose storage in solid materials such as high capacity complex hydrides is studied intensely. Independent from the actual material to be used eventually any tank design will combine nanoscale powders of highly reactive material with pressurized hydrogen gas and so far little is known about the behaviour of these mixtures in case of incidents. For a first evaluation of a complex hydride in case of a tank failure NaAlH4 (doped with Ti) was investigated in a small scale tank failure tests. 80-100 ml of the material were filled into a heat exchanger tube and sealed under argon atmosphere with a burst disk. Subsequently the NaAlH4 was partially desorbed by heating. When the powder temperature reached 130 °C and the burst disk ruptured at 9 bar hydrogen overpressure the behaviour of the expelled powder was monitored using a high speed camera an IR camera as well as sound level meters. Expulsion of the hydrogen storage material into (dry) ambient atmosphere yields a dust cloud of finely dispersed powder which does not ignite spontaneously. Similar experiments including an external source of ignition (spark / water reacting with NaAlH4) yield a flame of reacting powder. The intensity will be compared to the reaction of an equivalent amount of pure hydrogen.
Hydrogen Safety Aspects Related to High Pressure - PEM Water Electrolysis
Sep 2007
Publication
Polymer electrolyte membrane (PEM) water electrolysis has demonstrated its potentialities in terms of cell efficiency (energy consumption ≈ 4.0-4.2 kW/Nm3 H2) and gas purity (> 99.99% H2). Current research activities are aimed at increasing operating pressure up to several hundred bars for direct storage of hydrogen in pressurized vessels. Compared to atmospheric pressure electrolysis high-pressure operation yields additional problems especially with regard to safety considerations. In particular the rate of gases (H2 and O2) cross-permeation across the membrane and their water solubility both increase with pressure. As a result gas purity is affected in both anodic and cathodic circuits and this can lead to the formation of explosive gas mixtures. To prevent such risks two different solutions reported in this communication have been investigated. First the chemical modification of the solid polymer electrolyte in order to reduce cross-permeation phenomena. Second the use of catalytic H2/O2 recombiners to maintain H2 levels in O2 and O2 levels in H2 at values compatible with safety requirements.
Heat Radiation of Burning Hydrogen Air Mixtures Impurified by Organic Vapour and Particles
Sep 2007
Publication
Experiments were performed to investigate the radiative heat emission of small scale hydrogen/air explosions also impurified by minor amounts of inert particles and organic fuels. A volume of 1.5 dm3 hydrogen was injected into ambient air as free-jet and ignited. In further experiments simultaneously inert Aerosil and combustible fuels were injected into the blasting hydrogen/air gas cloud. Fuels were a spray of a solvent (Dipropyleneglycol-methylether) and dispersed particles (milk powder). The combustion was observed with a DV camcorder an IR camera and two different fast scanning spectrometers in NIR and IR range using a sampling rate of 100 spectra/s. The intensity calibrated spectra were analyzed using ICT-BaM code to evaluate emission temperature and intensity of H2O CO2 CO NO and soot emission. Using the same code combined with the experimental results total heat emission of such explosions was estimated.
Modelling of Lean Uniform and Non-Uniform Hydrogen-Air Mixture Explosions in a Closed Vessel
Sep 2009
Publication
Simulation of hydrogen-air mixture explosions in a closed large-scale vessel with uniform and nonuniform mixture compositions was performed by the group of partners within the EC funded project “Hydrogen Safety as an Energy Carrier” (HySafe). Several experiments were conducted previously by Whitehouse et al. in a 10.7 m3 vertically oriented (5.7-m high) cylindrical facility with different hydrogen-air mixture compositions. Two particular experiments were selected for simulation and comparison as a Standard Benchmark Exercise (SBEP) problem: combustion of uniform 12.8% (vol.) hydrogen-air mixture and combustion of non-uniform hydrogen-air mixture with average 12.6% (vol.) hydrogen concentration across the vessel (vertical stratification 27% vol. hydrogen at the top of the vessel 2.5% vol. hydrogen at the bottom of the vessel); both mixtures were ignited at the top of the vessel. The paper presents modelling approaches used by the partners comparison of simulation results against the experiment data and conclusions regarding the non-uniform mixture combustion modelling in real-life applications.
Large-scale Hydrogen Release in an Isothermal Confined Area
Sep 2007
Publication
INERIS has set up large-scale fully instrumented experiments to study the formation of flammable clouds resulting from a finite duration spillage of hydrogen in a quiescent room (80 m3 chamber). Concentration temperature and mass flow measurements were monitored during the release period and several hours after. Experiments were carried out for mass flow rates ranging from 02 g/s to 1 g/s. The instrumentation allowed the observation and quantification of rich hydrogen layers stratification effects. This paper presents both the experimental facility and the test results. These experimental results can be used to assess and benchmark CFD tools capabilities.
Materials Considerations in Hydrogen Production
Sep 2007
Publication
Correct selection and application of materials is essential to ensure safety and economy in production transportation and storage of hydrogen. There are several sources of materials challenges related to hydrogen. Established component producers may have limited experience in this specific field. Process developments may involve new process conditions with new demands on the materials. Further new materials will be added to the engineering toolbox to be used. The behaviour of these materials for hydrogen service may need additional documentation. Finally focus on hydrogen susceptibility and hydrogen damages alone may take away awareness of other subjects as trace elements by-products and change in raw materials which may be of as high importance for safety and quality. This overview of challenges and recommendations is made with emphasis on water electrolysis.
Predicting the Probability of Failure of Gas Pipelines Including Inspection and Repair Procedures
Sep 2007
Publication
This paper is concerned with predicting the impact on the probability of failure of adding hydrogen to the natural gas distribution network. Hydrogen has been demonstrated to change the behaviour of crack like defects which may affect the safety of pipeline or make it more expensive to operate. A tool has been developed based on a stochastic approach to assess the failure probability of the gas pipeline due to the existence of crack-lie defects including the operational aspects of the pipeline such as inspection and repair procedures. With various parameters such as crack sizes material properties internal pressure modelled as uncertainties a reliability analysis based on failure assessment diagram is performed through direct Monte Carlo simulation. Inspection and repair procedures are included in the simulation to enable realistic pipeline maintenance scenarios to be simulated. In the data preparation process the accuracy of the probabilistic definition of the uncertainties is crucial as the results are very sensitive to certain variables such as the crack depth length and crack growth rate. The failure probabilities of each defect and the whole pipeline system can be obtained during simulation. Different inspection and repair criteria are available in the Monte Carlo simulation whereby an optimal maintenance strategy can be obtained by comparing different combinations of inspection and repair procedures. The simulation provides not only data on the probability of failure but also the predicted number of repairs required over the pipeline life thus providing data suitable for economic models of the pipeline management. This tool can be also used to satisfy certain target reliability requirement. An example is presented comparing a natural gas pipeline with a pipeline containing hydrogen.
Novel Wide-area Hydrogen Sensing Technology
Sep 2007
Publication
Element One Inc. is developing novel indicators for hydrogen gas for applications as a complement to conventional electronic hydrogen sensors or as a low-cost alternative in situations where an electronic signal is not needed. The indicator consists of a thin film coating or a pigment of a transition metal oxide such as tungsten oxide or molybdenum oxide with a catalyst such as platinum or palladium. The oxide is partially reduced in the presence of hydrogen in concentrations as low as 300 parts per million and changes from transparent to a dark colour. The colour change is fast and easily seen from a distance. In air the colour change reverses quickly when the source of hydrogen gas is removed in the case of tungsten oxide or is nearly irreversible in the case of molybdenum oxide. A number of possible implementations have been successfully demonstrated in the laboratory including hydrogen indicating paints tape cautionary decals and coatings for hydrogen storage tanks. These and other implementations may find use in vehicles stationary appliances piping refuelling stations and in closed spaces such as maintenance and residential garages for hydrogen-fuelled vehicles. The partially reduced transition metal oxide becomes semi conductive and increases its electrical conductivity by several orders of magnitude when exposed to hydrogen. The integration of this electrical resistance sensor with an RFID tag may extend the ability of these sensors to record and transmit a history of the presence or absence of leaked hydrogen over long distances. Over long periods of exposure to the atmosphere the indicator’s response may slow due to catalyst degradation. Our current emphasis is on controlling this degradation. The kinetics of the visual indicators is being investigated along with their durability in collaboration with the NASA Kennedy Space Center.
Hydrogen Safety- New Challenges Based on BMW Hydrogen 7
Sep 2007
Publication
The BMW Hydrogen 7 is the world’s first premium sedan with a bi-fuelled internal combustion engine concept that has undergone the series development process. This car also displays the BMW typical driving pleasure. During development the features of the hydrogen energy source were emphasized. Engine tank system and vehicle electronics were especially developed as integral parts of the vehicle for use with hydrogen. The safety-oriented development process established additional strict hydrogen-specific standards for the Hydrogen 7. The fulfilment of these standards were demonstrated in a comprehensive experimentation and testing program which included all required tests and a large number of additional hydrogen-specific crash tests such as side impacts to the tank coupling system or rear impacts. Furthermore the behaviour of the hydrogen tank was tested under extreme conditions for instance in flames and after strong degradation of the insulation. Testing included over 1.7 million km of driving; and all tests were passed successfully proving the intrinsic safety of the vehicle and also confirming the success of the safety-oriented development process which is to be continued during future vehicle development. A safety concept for future hydrogen vehicles poses new challenges for vehicles and infrastructure. One goal is to develop a car fuelled by hydrogen only while simultaneously optimizing the safety concept. Another important goal is removal of (self-imposed) restrictions for parking in enclosed spaces such as garages. We present a vision of safety standards requirements and a program for fulfilling them.
Simulation of the Fast Filling of Hydrogen Tanks
Sep 2009
Publication
High pressure storage of hydrogen in tanks is a promising option to provide the necessary fuel for transportation purposes. The fill process of a high-pressure tank should be reasonably short but must be designed to avoid too high temperatures in the tank. The shorter the fill should be the higher the maximum temperature in the tank climbs. For safety reasons an upper temperature limit is included in the requirements for refillable hydrogen tanks (ISO 15869) which sets the limit for any fill optimization. It is crucial to understand the phenomena during a tank fill to stay within the safety margins.<br/>The paper describes the fast filling process of hydrogen tanks by simulations based on the Computational Fluid Dynamics (CFD) code CFX. The major result of the simulations is the local temperature distribution in the tank depending on the materials of liner and outer thermal insulation. Different material combinations (type III and IV) are investigated.<br/>Some measurements from literature are available and are used to validate the approach followed in CFX to simulate the fast filling of tanks. Validation has to be continued in future to further improve the predictability of the calculations for arbitrary geometries and material combinations.
Initial Assessment of the Impact of Jet Flame Hazard from Hydrogen Cars in Road Tunnels and the Implication on Hydrogen Car Design
Sep 2007
Publication
Underground or partial underground tunnels form a very important part of modern road transportation systems. As the development of hydrogen cars advancing into the markets it is unavoidable in the near future that hydrogen cars would become the users of ordinary road tunnels. This paper discusses potential fire scenarios and fire hazards of hydrogen cars in road tunnels and implications on the fire safety measures and ventilation systems in existing tunnels. The information needed for carry out risk assessment of hydrogen cars in road tunnels are discussed. hydrogen has a low ignition energy and wide flammable range suggesting that leaks have a high probability of ignition and result hydrogen flame. CFD simulations of hydrogen fires in a full scale 5m by 5m square cross-section tunnel were carried out. The effect of the ventilation on controlling the back-layering and the downstream flame are discussed.
Visualisation of Jet Fires from Hydrogen Release
Sep 2009
Publication
In order to achieve a high level of safety while using hydrogen as a vehicle fuel the possible hazards must be estimated. Especially hydrogen release tests with defined ignition represent a very important way to characterize the basics of hydrogen combustion in a potential accident. So ICT participated on a hydrogen jet release campaign at HSL (Buxton) in 2008 to deploy their measurement techniques and evaluation methods to visualize jets ignition and subsequent flames. The following paper shows the application of high speed cinematography in combination with image processing techniques the Background Oriented Schlieren (BOS) and a difference method to visualize the shape of hydrogen jet. In addition these methods were also used to observe ignition and combustion zone after defined initiation. In addition the combustion zone was recorded by a fast spectral radiometer and a highspeed-IR-camera. The IR-camera was synchronized with a rotating filter wheel to generate four different motion pictures at 100Hz each on a defined spectral range. The results of this preliminary evaluation provide some detailed information that might be used for improving model predictions.
Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Storage Systems In Garages- Part 1- Introduction, Scenarios, and Estimation of an Allowable Permeation Rate
Sep 2009
Publication
The paper presents an overview of the main results of the EC NOE HySafe activity to estimate an allowable hydrogen permeation rate for automotive legal requirements and standards. The work was undertaken as part of the HySafe internal project InsHyde.<br/>A slow long term hydrogen release such as that due to permeation from a vehicle into an inadequately ventilated enclosed structure is a potential risk associated with the use of hydrogen in automotive applications. Due to its small molecular size hydrogen permeates through the containment materials found in compressed gaseous hydrogen storage systems and is an issue that requires consideration for containers with non-metallic (polymer) liners. Permeation from compressed gaseous hydrogen storage systems is a current hydrogen safety topic relevant to regulatory and standardisation activities at both global and regional levels.<br/>Various rates have been proposed in different draft legal requirements and standards based on different scenarios and the assumption that hydrogen dispenses homogeneously. This paper focuses on the development of a methodology by HySafe Partners (CEA NCSRD. University of Ulster and Volvo Technology) to estimate an allowable upper limit for hydrogen permeation in automotive applications by investigating the behaviour of hydrogen when released at small rates with a focus on European scenario. The background to the activity is explained. reasonable scenarios are identified a methodology proposed and a maximum hydrogen permeation rate from road vehicles into enclosed structures is estimated The work is based on conclusions from the experimental and numerical investigations described by CEA NCSRD and the University of Ulster in related papers.
Ignition Limits For Combustion of Unintended Hydrogen Releases- Experimental and Theoretical Results
Sep 2009
Publication
The ignition limits of hydrogen/air mixtures in turbulent jets are necessary to establish safety distances based on ignitable hydrogen location for safety codes and standards development. Studies in turbulent natural gas jets have shown that the mean fuel concentration is insufficient to determine the flammable boundaries of the jet. Instead integration of probability density functions (PDFs) of local fuel concentration within the quiescent flammability limits termed the flammability factor (FF) was shown to provide a better representation of ignition probability (PI). Recent studies in turbulent hydrogen jets showed that the envelope of ignitable gas composition (based on the mean hydrogen concentration) did not correspond to the known flammability limits for quiescent hydrogen/air mixtures. The objective of this investigation is to validate the FF approach to the prediction of ignition in hydrogen leak scenarios. The PI within a turbulent hydrogen jet was determined using a pulsed Nd:YAG laser as the ignition source. Laser Rayleigh scattering was used to characterize the fuel concentration throughout the jet. Measurements in methane and hydrogen jets exhibit similar trends in the ignition contour which broadens radially until an axial location is reached after which the contour moves inward to the centerline. Measurements of the mean and fluctuating hydrogen concentration are used to characterize the local composition statistics conditional on whether the laser spark results in a local ignition event or complete light-up of a stable jet flame. The FF is obtained through direct integration of local PDFs. A model was developed to predict the FF using a presumed PDF with parameters obtained from experimental data and computer simulations. Intermittency effects that are important in the shear layer are incorporated in a composite PDF. By comparing the computed FF with the measured PI we have validated the flammability factor approach for application to ignition of hydrogen jets.
Experimental Characterization and Modelling of Helium Dispersion in a ¼ - Scale Two-Car Residential Garage
Sep 2009
Publication
A series of experiments are described in which helium was released at a constant rate into a 1.5 m × 1.5 m × 0.75 m enclosure designed as a ¼-scale model of a two car garage. The purpose was to provide reference data sets for testing and validating computational fluid dynamics (CFD) models and to experimentally characterize the effects of a number of variables on the mixing behaviour within an enclosure and the exchange of helium with the surroundings. Helium was used as a surrogate for hydrogen and the total volume released was scaled as the amount that would be released by a typical hydrogen fuelled automobile with a full tank. Temporal profiles of helium were measured at seven vertical locations within the enclosure during and following one hour and four hour releases. Idealized vents in one wall sized to provide air exchange rates typical of actual garages were used. The effects of vent size number and location were investigated using three different vent combinations. The dependence on leak location was considered by releasing helium from three different points within the enclosure. It is shown that the National Institute of Standards and Technology (NIST) CFD code Fire Dynamics Simulator (FDS) provides time resolved predictions for helium concentrations that agree well with the experimental measurements.
Hytunnel Project to Investigate the Use of Hydrogen Vehicles in Road Tunnels
Sep 2009
Publication
Hydrogen vehicles may emerge as a leading contender to replace today’s internal combustion engine powered vehicles. A Phenomena Identification and Ranking Table exercise conducted as part of the European Network of Excellence on Hydrogen Safety (HySafe) identified the use of hydrogen vehicles in road tunnels as a topic of important concern. An internal project called HyTunnel was duly established within HySafe to review identify and analyse the issues involved and to contribute to the wider activity to establish the true nature of the hazards posed by hydrogen vehicles in the confined space of a tunnel and their relative severity compared to those posed by vehicles powered by conventional fuels including compressed natural gas (CNG). In addition to reviewing current hydrogen vehicle designs tunnel design practice and previous research a programme of experiments and CFD modelling activities was performed for selected scenarios to examine the dispersion and explosion hazards potentially posed by hydrogen vehicles. Releases from compressed gaseous hydrogen (CGH2) and liquid hydrogen (LH2) powered vehicles have been studied under various tunnel geometries and ventilation regimes. The findings drawn from the limited work done so far indicate that under normal circumstances hydrogen powered vehicles do not pose a significantly higher risk than those powered by petrol diesel or CNG but this needs to be confirmed by further research. In particular obstructions at tunnel ceiling level have been identified as a potential hazard in respect to fast deflagration or even detonation in some circumstances which warrants further investigation. The shape of the tunnel tunnel ventilation and vehicle pressure relief device (PRD) operation are potentially important parameters in determining explosion risks and the appropriate mitigation measures.
The Interaction of Hydrogen Jet Releases With Walls and Barriers
Sep 2009
Publication
It has been suggested that separation or safety distances for pressurised hydrogen storage can be reduced by the inclusion of walls or barriers between the hydrogen storage and vulnerable plant or other items. Various NFPA codes (1) suggest the use of 60° inclined fire barriers for protection against jet flames in preference to vertical ones.<br/>This paper describes a series of experiments performed in order to compare the performance of 60° barriers with that of 90° barriers. Their relative efficiency at protecting from thermal radiation and blast overpressure was measured together with the propensity for the thermal radiation and blast overpressure to be reflected back to the source of the leak. The work was primarily focused on compressed H2 storage for stationary fuel cell systems which may be physically separated from a fuel cell system or could be on board such a system. Different orifice sizes were used to simulate different size leaks and all releases were made were from storage at 200 bar.<br/>Overall conclusions on barrier performance were made based on the recorded measurements.
No more items...