Projects & Initiatives
Hydrogen – Analysis
Jun 2020
Publication
Hydrogen technologies maintained strong momentum in 2019 awakening keen interest among policy makers. It was a record year for electrolysis capacity becoming operational and several significant announcements were made for upcoming years. The fuel cell electric vehicle market almost doubled owing to outstanding expansion in China Japan and Korea. However low-carbon production capacity remained relatively constant and is still off track with the SDS. More efforts are needed to: scale up to reduce costs; replace high-carbon with low-carbon hydrogen in current applications; and expand hydrogen use to new applications.
Link to Document on IEA Website
Link to Document on IEA Website
Progressing the Gas Goes Green Roadmap to Net Zero Webinar
Dec 2021
Publication
The Gas Goes Green Programme developed by the gas networks and the Energy Networks Association (ENA) describes a viable pathway to the injection of hydrogen and biomethane as a practical step towards the decarbonisation of the UK gas sector and will play a key role in the UK’s Net Zero energy strategy. It therefore follows that technical and management teams in the supply chain and related industries will need a sound understanding of the issues surrounding this deployment. This video shares the industry’s progress towards implementing the Gas Goes Green programme. Presenters including Oliver Lancaster CEO IGEM Dr Thomas Koller Programme Lead Gas Goes Green at the Energy Network Association (ENA) and Ian McCluskey CEng FIMechE FIGEM Head of Technical and Policy IGEM share their views on what has already been achieved and explain what they feel still needs to be done to develop the decarbonised gas network of tomorrow.
HyDeploy Gas Safe Webinar
Nov 2020
Publication
HyDeploy is a pioneering hydrogen energy project designed to help reduce UK CO2 emissions and reach the Government’s net zero target for 2050.
As the first ever live demonstration of hydrogen in homes HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now. It is providing evidence on how customers don’t have to change their cooking or heating appliances to take the blend which means less disruption and cost for them.
As the first ever live demonstration of hydrogen in homes HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now. It is providing evidence on how customers don’t have to change their cooking or heating appliances to take the blend which means less disruption and cost for them.
SGN Aberdeen Vision Project: Final Report
May 2020
Publication
The Aberdeen Vision Project could deliver CO2 savings of 1.5MtCO2/y compared with natural gas. A dedicated pipeline from St Fergus to Aberdeen would enable the phased transfer of the Aberdeen regional gas distribution system to 20% then 100% hydrogen.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Achievements of The EC Network of Excellence Hysafe
Sep 2009
Publication
In many areas European research has been largely fragmented. To support the required integration and to focus and coordinate related research efforts the European Commission created a new instrument the Networks of Excellences (NoEs). The goal of the NoE HySafe has been to provide the basis to facilitate the safe introduction of hydrogen as an energy carrier by removing the safety related obstacles. The prioritisation of the HySafe internal project activities was based on a phenomena identification and ranking exercise (PIRT) and expert interviews. The identified research headlines were “Releases in (partially) confined areas” “Mitigation” and “Quantitative Risk Assessment”. Along these headlines existing or planned research work was re-orientated and slightly modified to build up three large internal research projects “InsHyde” “HyTunnel” and “HyQRA”. In InsHyde realistic indoor hydrogen leaks and associated hazards have been investigated to provide recommendations for the safe use of indoor hydrogen systems including mitigation and detection means. The appropriateness of available regulations codes and standards (RCS) has been assessed. Experimental and numerical work was conducted to benchmark simulation tools and to evaluate the related recommendations. HyTunnel contributed to the understanding of the nature of the hazards posed by hydrogen vehicles inside tunnels and its relative severity compared to other fuels. In HyQRA quantitative risk assessment strategies were applied to relevant scenarios in a hydrogen refuelling station and the performance was compared to derive also recommendations. The integration provided by the network is manifested by a series of workshops and benchmarks related to experimental and numerical work. Besides the network generated the following products: the International Conference on Hydrogen Safety the first academic education related to hydrogen safety and the Safety Handbook. Finally the network initiated the founding of the International Association for Hydrogen Safety which will open up the future networking to all interested parties on an international level. The indicated results of this five years integration activity will be described in short.
Potential Economic Impacts of the HyNet North West Project
Jan 2018
Publication
The objective of the analysis is to provide a robust assessment of the economic impact of HyNet NW over the period to 2050 across both the North West of England and the UK as a whole. Impact is assessed through modelling of direct indirect and induced effect frameworks:
Consideration is also given to the potential impacts of inward investment attracted to the North West/UK in the wake of the Project.
- Direct effects – activities that directly accrue due to the construction and operation of the facilities;
- Indirect effects – the purchase of goods and services to facilitate construction/operation; and
- Induced effects – spending of wages and salaries generated directly and indirectly through construction and operation.
Consideration is also given to the potential impacts of inward investment attracted to the North West/UK in the wake of the Project.
Sustainable Hydrogen Production: A Role for Fusion
Apr 2007
Publication
This Meeting Report summarises the findings of a two-day workshop in April 2007 at the Culham Science Centre and Worcester College Oxford which explored the potential for large-scale Hydrogen production through methods other than electrolysis.<br/>Operating at the cusp of research and policy-making the UK Energy Research Centre's mission is to be the UK's pre-eminent centre of research and source of authoritative information and leadership on sustainable energy systems. The Centre takes a whole systems approach to energy research incorporating economics engineering and the physical environmental and social sciences while developing and maintaining the means to enable cohesive research in energy. A key supporting function of UKERC is the Meeting Place based in Oxford which aims to bring together members of the UK energy community and overseas experts from different disciplines to learn identify problems develop solutions and further the energy debate.
SGN Project Report - Flame Visibility Risk Assessment
Feb 2021
Publication
This report contains information on the relative risks of natural gas and hydrogen fires particularly regarding their visibility. The fires considered are those that could occur on the H100 Fife trial network. The H100 Fife project will connect a number of residential houses to 100% hydrogen gas supply. The project includes hydrogen production storage and a new distribution network. From a review of large and small-scale tests and incidents it is concluded that hydrogen flames are likely to be clearly visible for releases above 2 bar particularly for larger release rates. At lower pressures hydrogen flame visibility will be affected by ambient lighting background colour and release orientation although this is also the case for natural gas. Potential safety implications from lack of flame visibility are that SGN workers other utility workers or members of the public could inadvertently come into contact with an ignited release. However some releases would be detected through noise thrown soil or interaction with objects. From a workshop and review of risk reduction measures and analysis of historical interference damage incidents it is concluded that flames with the potential for reduced visibility are adequately controlled. This is due to the likelihood of such scenarios occurring being low and that the consequences of coming into contact with such a flame are unlikely to be severe. These conclusions are supported by cost-benefit analysis that shows that no additional risk mitigation measures are justified for the H100 project. It is recommended that the cost-benefit analysis is revisited before applying the approach to a network wider than the H100 project. It was observed that the addition of odorant at relevant concentrations did not have an effect on the visibility of hydrogen flames.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2013 Final Report
Mar 2014
Publication
The 2013 Programme Review is the third annual review of the FCH JU portfolio of projects. This edition covers over 100 projects funded through annual calls for proposals from 2008 to 2012.<br/>The Programme Review serves to evaluate the achievements of the portfolio of FCH JU-funded projects against FCH JU strategic objectives in terms of advancing technological progress addressing horizontal activities and promoting cooperation with other projects both within the FCH JU portfolio as well as externally.<br/>The 2013 Review confirms that the portfolio of projects supported within energy and transport pillars and within its cross-cutting activities is a solid one aligned with the FCH JU strategic objectives. Industry and research collaboration is strong with SMEs making up 30% of total participants. The continued expansion of demonstration activities in both pillars answers to a greater emphasis on addressing the commercialisation challenge which is bolstered by activities in basic and breakthrough research.
Hy4Heat Progress Report
Jan 2021
Publication
Hy4Heat’s mission is to establish if it is technically possible safe and convenient to replace natural gas (methane) with hydrogen in residential and commercial buildings and gas appliances. This will enable the government to determine whether to proceed to a community trial.
There is growing international consensus that hydrogen will be essential to successfully tackling climate change. So BEIS is working to develop hydrogen as a strategic decarbonised energy carrier for the UK which will be an essential element of the UK’s efforts to transform and decarbonise our energy system in line with our legally binding 2050 net zero commitment. Hydrogen can be used across multiple end-use sectors including industry transport heat and power. BEIS is looking to support and develop low carbon hydrogen production methods which will position hydrogen as a highly effective decarbonisation option particularly in hard-to electrify sectors and processes.
At the end of 2017 BEIS appointed Arup to be the programme manager for the Hy4Heat programme. Arup partnered with technical and industry specialists: Kiwa Gastec Progressive Energy Embers and Yo Energy and together the team oversees the programme and technical management of all the work packages. For the past three years Hy4Heat has been exploring whether replacing natural gas (methane) with hydrogen for domestic heating and cooking is feasible and could be part of a plausible potential pathway to help meet heat decarbonisation targets. To do this the programme has been seeking to provide the technical performance usability and safety evidence to demonstrate whether hydrogen can be used for heat in buildings.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above.
There is growing international consensus that hydrogen will be essential to successfully tackling climate change. So BEIS is working to develop hydrogen as a strategic decarbonised energy carrier for the UK which will be an essential element of the UK’s efforts to transform and decarbonise our energy system in line with our legally binding 2050 net zero commitment. Hydrogen can be used across multiple end-use sectors including industry transport heat and power. BEIS is looking to support and develop low carbon hydrogen production methods which will position hydrogen as a highly effective decarbonisation option particularly in hard-to electrify sectors and processes.
At the end of 2017 BEIS appointed Arup to be the programme manager for the Hy4Heat programme. Arup partnered with technical and industry specialists: Kiwa Gastec Progressive Energy Embers and Yo Energy and together the team oversees the programme and technical management of all the work packages. For the past three years Hy4Heat has been exploring whether replacing natural gas (methane) with hydrogen for domestic heating and cooking is feasible and could be part of a plausible potential pathway to help meet heat decarbonisation targets. To do this the programme has been seeking to provide the technical performance usability and safety evidence to demonstrate whether hydrogen can be used for heat in buildings.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above.
Hy4Heat Hydrogen Purity - Work Package 2
Feb 2020
Publication
The report makes a recommendation for a minimum hydrogen purity standard to be used by manufacturers developing prototype hydrogen appliances and during their subsequent demonstration as part of the Hy4Heat programme. It makes a recommendation for a hydrogen purity level with the aim that it is reasonable and practicable and considers implications related to hydrogen production the gas network and cost.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Roadmap to Hydrogen in the NTS - National Grid Gas Transmission
Jan 2020
Publication
DNV GL believes that the National Transmission System (NTS) will be central to the future of decarbonised energy in the UK. The future NTS could transmit natural gas hydrogen blends of the two and carbon dioxide. New pipelines will be built however a large cost-saving is available if the existing NTS assets can also be re-purposed. To move towards this future National Grid Gas Transmission wants to develop a project to trial injection hydrogen into the NTS. This is an opportunity to show that National Grid is part of the solution to achieving Net Zero. The trial will demonstrate to the Government and public that re-purposing the NTS is cost-effective safe and involves minimal disruption.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hydrogen Deblending in the GB Network - Feasibility Study Report
Nov 2020
Publication
The UK government has committed to reducing greenhouse gas emissions to net zero by 2050. All future energy modelling identifies a key role for hydrogen (linked to CCUS) in providing decarbonised energy for heat transport industry and power generation. Blending hydrogen into the existing natural gas pipeline network has already been proposed as a means of transporting low carbon energy. However the expectation is that a gas blend with maximum hydrogen content of 20 mol% can be used without impacting consumers’ end use applications. Therefore a transitional solution is needed to achieve a 100% hydrogen future network.
Deblending (i.e. separation of the blended gas stream) is a potential solution to allow the existing gas transmission and distribution network infrastructure to transport energy as a blended gas stream. Deblending can provide either hydrogen natural gas or blended gas for space heating transport industry and power generation applications. If proven technically and economically feasible utilising the existing gas transmission and distribution networks in this manner could avoid the need for investment in separate gas and hydrogen pipeline networks during the transition to a future fully decarbonised gas network.
The Energy Network Association (ENA) “Gas Goes Green” programme identifies deblending could play a critical role in the transition to a decarbonised gas network. Gas separation technologies are well-established and mature and have been used and proven in natural gas processing for decades. However these technologies have not been used for bulk gas transportation in a transmission and distribution network setting. Some emerging hydrogen separation technologies are currently under development. The main hydrogen recovery and purification technologies currently deployed globally are:
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Deblending (i.e. separation of the blended gas stream) is a potential solution to allow the existing gas transmission and distribution network infrastructure to transport energy as a blended gas stream. Deblending can provide either hydrogen natural gas or blended gas for space heating transport industry and power generation applications. If proven technically and economically feasible utilising the existing gas transmission and distribution networks in this manner could avoid the need for investment in separate gas and hydrogen pipeline networks during the transition to a future fully decarbonised gas network.
The Energy Network Association (ENA) “Gas Goes Green” programme identifies deblending could play a critical role in the transition to a decarbonised gas network. Gas separation technologies are well-established and mature and have been used and proven in natural gas processing for decades. However these technologies have not been used for bulk gas transportation in a transmission and distribution network setting. Some emerging hydrogen separation technologies are currently under development. The main hydrogen recovery and purification technologies currently deployed globally are:
- Cryogenic separation
- Membrane separation
- Pressure Swing Adsorption (PSA)
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Liverpool-Manchester Hydrogen Cluster: A Low Cost, Deliverable Project
Aug 2017
Publication
Emissions from natural gas combustion and use are the largest source of greenhouse gas (GHG) emissions in the UK. The use of hydrogen in place of natural gas in principle offers a potential route to long term widespread decarbonisation of gas distribution networks as shown by the Leeds City Gate (‘H21’) study.1 The purpose of considering conversion to hydrogen is to deliver widespread carbon abatement across the UK at lower cost than alternative decarbonisation strategies.<br/>The Government is to finalise and publish the long-awaited ‘Clean Growth Plan’ along with an Industrial Strategy White Paper in Autumn 2017. Conversion from natural gas to hydrogen potentially on an incremental basis would likely represent a major opportunity for new industrial growth. This might be through the longer term stability or potential expansion of existing (newly decarbonised) energy intensive industry or through business opportunities and growth created from new technologies developed to facilitate the transition to hydrogen as the UK becomes a global leader and major exporter of equipment and skills. Job creation and the resulting gross value added (GVA) to the economy could therefore be significant in delivery of the goals of the Industrial Strategy Challenge Fund (ISCF).<br/>The core requirement is to supply low carbon hydrogen in bulk matching production to distribution network demand at an affordable cost. The H21 study concluded that to do so reliably hydrogen is best produced by reducing natural gas in steam methane reformers (SMRs) fitted with Carbon Capture and Storage (CCS). The study proposed that the considerable inter-seasonal and daily fluctuations in network demand can be managed by storing hydrogen in underground salt formations. It concluded that the SMRs with associated carbon dioxide (CO2) capture should be located near to where CO2 transport and storage infrastructure was likely to be created and noted that candidate locations for this are Teesside Humberside Grangemouth and the Liverpool-Manchester (L-M) area. Two of these Humberside and the L-M area are within the Cadent Gas Ltd (‘Cadent’) network and are also industrial ‘clusters’ with significant populations.<br/>The work reported here builds upon the approach proposed in the H21 project by focussing on defining ‘low carbon’ hydrogen supply and distribution systems in Humberside and the L-M area at a system scale sufficient to supply a large city.2 Both the Humber and L-M clusters are close to salt deposits which are suitable for both daily and inter-seasonal storage of hydrogen (for initial or expanded projects). Furthermore new large-scale gas Combined Cycle Gas Turbine (CCGT) plants widely assumed as likely anchor projects for CCS infrastructure have been consented in both cluster areas confirming that they are both strong candidates as locations for the first CCS clusters and hence as locations for a hydrogen supply system.
Hydrogen Taskforce: The Role of Hydrogen in Delivering Net Zero
Feb 2020
Publication
Hydrogen is essential to the UK meeting its net zero emissions target. We must act now to scale hydrogen solutions and achieve cost effective deep decarbonisation. With the support of Government UK industry is ready to deliver.
The potential to deploy hydrogen at scale as an energy vector has risen rapidly in the political and industrial consciousness in recent years as the benefits and opportunities have become better understood. Early stage projects across the globe have demonstrated the potential of hydrogen to deliver deep decarbonisation reduce the cost of renewable power and balance energy supply and demand. Governments and major industrial and commercial organisations across the world have set out their ambition to deploy hydrogen technologies at scale. This has created a growing confidence that hydrogen will present both a viable decarbonisation pathway and a global market opportunity. Hydrogen will have an important role to play in meeting the global climate goals set out in the Paris Climate Agreement and due to be discussed later this year at COP26.
The UK’s commitment to a net zero greenhouse gas emissions target has sharpened the conversation around hydrogen. Most experts agree that net zero by 2050 cannot be achieved through electrification alone and as such there is a need for a clean molecule to complement the electron. Hydrogen has properties which lend themselves to the decarbonisation of parts of the energy system which are less well suited to electrification such as industrial processes heating and heavy and highly utilised vehicles. Hydrogen solutions can be scaled meaning that the contribution of hydrogen to meeting net zero could be substantial.
A steady start has been made to exploring the hydrogen opportunity. Partnerships between policymakers and industry exist on several projects which are spread out right across the country from London to many industrial areas in the north east and north west. Existing projects include the early stage roll out of transport infrastructure and vehicles feasibility studies focused on large scale hydrogen production technologies projects exploring the decarbonisation of the gas grid and the development of hydrogen appliances.
The Government recently announced new funding for hydrogen through the Hydrogen Supply Programme and Industrial Fuel Switching Competition. These programmes are excellent examples of collaboration between Government and industry in driving UK leadership in hydrogen and developing solutions that will be critical for meeting net zero.
If the UK is going to meet net zero and capitalise on the economic growth opportunities presented by domestic and global markets for hydrogen solutions and expertise it is critical that the 2020s deliver a step change in hydrogen activity building on the unique strengths and expertise developed during early stage technology development.
The Hydrogen Taskforce brings together leading companies pushing hydrogen into the mainstream in the UK to offer a shared view of the opportunity and a collective position on the next steps that must be taken to ensure that the UK capitalises on this opportunity. There are questions to be answered and challenges that must be overcome as hydrogen technologies develop yet by focusing on what can be done today the benefits of hydrogen can be immediately realised whilst industry expertise and knowledge is built.
You can download the whole document from the Hydrogen Taskforce website here
The potential to deploy hydrogen at scale as an energy vector has risen rapidly in the political and industrial consciousness in recent years as the benefits and opportunities have become better understood. Early stage projects across the globe have demonstrated the potential of hydrogen to deliver deep decarbonisation reduce the cost of renewable power and balance energy supply and demand. Governments and major industrial and commercial organisations across the world have set out their ambition to deploy hydrogen technologies at scale. This has created a growing confidence that hydrogen will present both a viable decarbonisation pathway and a global market opportunity. Hydrogen will have an important role to play in meeting the global climate goals set out in the Paris Climate Agreement and due to be discussed later this year at COP26.
The UK’s commitment to a net zero greenhouse gas emissions target has sharpened the conversation around hydrogen. Most experts agree that net zero by 2050 cannot be achieved through electrification alone and as such there is a need for a clean molecule to complement the electron. Hydrogen has properties which lend themselves to the decarbonisation of parts of the energy system which are less well suited to electrification such as industrial processes heating and heavy and highly utilised vehicles. Hydrogen solutions can be scaled meaning that the contribution of hydrogen to meeting net zero could be substantial.
A steady start has been made to exploring the hydrogen opportunity. Partnerships between policymakers and industry exist on several projects which are spread out right across the country from London to many industrial areas in the north east and north west. Existing projects include the early stage roll out of transport infrastructure and vehicles feasibility studies focused on large scale hydrogen production technologies projects exploring the decarbonisation of the gas grid and the development of hydrogen appliances.
The Government recently announced new funding for hydrogen through the Hydrogen Supply Programme and Industrial Fuel Switching Competition. These programmes are excellent examples of collaboration between Government and industry in driving UK leadership in hydrogen and developing solutions that will be critical for meeting net zero.
If the UK is going to meet net zero and capitalise on the economic growth opportunities presented by domestic and global markets for hydrogen solutions and expertise it is critical that the 2020s deliver a step change in hydrogen activity building on the unique strengths and expertise developed during early stage technology development.
The Hydrogen Taskforce brings together leading companies pushing hydrogen into the mainstream in the UK to offer a shared view of the opportunity and a collective position on the next steps that must be taken to ensure that the UK capitalises on this opportunity. There are questions to be answered and challenges that must be overcome as hydrogen technologies develop yet by focusing on what can be done today the benefits of hydrogen can be immediately realised whilst industry expertise and knowledge is built.
You can download the whole document from the Hydrogen Taskforce website here
Transitioning to Hydrogen - Assessing the Engineering Risks and Uncertainties
Jun 2016
Publication
Transitioning to Hydrogen a joint report from five engineering organisations focuses on the engineering challenges of replacing natural gas in the gas distribution network with hydrogen in order to reduce emissions. The production of this report is timely following the commitment from Government this week to legislate for net zero emissions by 2050. It is expected that hydrogen will play a big part in the reduction of emissions from the heating transport and industrial sectors.<br/><br/>The report concludes that there is no reason why repurposing the gas network to hydrogen cannot be achieved but there are some engineering risks and uncertainties that need to be addressed. In the development of the report many questions were posed and members of IMechE IChemE IET and IGEM were surveyed to better understand the challenges faced by the hydrogen production and gas industries planning to undertake this ambitious transition. Further information was obtained from the Health and Safety Laboratories.<br/><br/>The report also highlights 20 ongoing projects in the UK that are looking at various aspects of hydrogen production distribution and use.
H2FC SUPERGEN: An Overview of the Hydrogen and Fuel Cell Research Across the UK
Mar 2015
Publication
The United Kingdom has a vast scientific base across the entire Hydrogen and Fuel Cell research landscape with a world class academic community coupled with significant industrial activity from both UK-based Hydrogen and Fuel Cell companies and global companies with a strong presence within the country. The Hydrogen and Fuel Cell (H2FC) SUPERGEN Hub funded by the Engineering and Physical Sciences Research Council (EPSRC) was established in 2012 as a five-year programme to bring the UK's H2FC research community together. Here we present the UK's current Hydrogen and Fuel Cell activities along with the role of the H2FC SUPERGEN Hub.
HyNet North West- from Vision to Reality
Jan 2018
Publication
HyNet North West (NW) is an innovative integrated low carbon hydrogen production distribution and carbon capture utilisation and storage (CCUS) project. It provides hydrogen distribution and CCUS infrastructure across Liverpool Manchester and parts of Cheshire in support of the Government’s Clean Growth Strategy (CGS) and achievement of the UK’s emissions reduction targets.<br/>Hydrogen will be produced from natural gas and sent via a new pipeline to a range of industrial sites for injection as a blend into the existing natural gas network and for use as a transport fuel. Resulting carbon dioxide (CO2) will be captured and together with CO2 from local industry which is already available sent by pipeline for storage offshore in the nearby Liverpool Bay gas fields. Key data for the Project are presented in Table ES1.
HyNet North West: Delivering Clean Growth
Jan 2018
Publication
HyNet North West is a significant clean growth opportunity for the UK. It is a low cost deliverable project which meets the major challenges of reducing carbon emissions from industry domestic heat and transport.<br/>HyNet North West is based on the production of hydrogen from natural gas. It includes the development of a new hydrogen pipeline; and the creation of the UK’s first carbon capture and storage (CCS) infrastructure. CCS is a vital technology to achieve the widespread emissions savings needed to meet the 2050 carbon reduction targets.<br/>Accelerating the development and deployment of hydrogen technologies and CCS through HyNet North West positions the UK strongly for skills export in a global low carbon economy.<br/>The North West is ideally placed to lead HyNet. The region has a history of bold innovation and today clean energy initiatives are thriving. On a practical level the concentration of industry existing technical skill base and unique geology means the region offers an unparalleled opportunity for a project of this kind.<br/>The new infrastructure built by HyNet is readily extendable beyond the initial project and provides a replicable model for similar programmes across the UK<br/>Contains Vision statement 2 leaflets a presentation and a summary report which are all stored as supplements.
HyMotion- Network Supplied Hydrogen Unlocks Low Carbon Opportunities
Jun 2019
Publication
The Government’s recently published ‘Road to Zero’ strategy sets out objectives to electrify cars and reduce emissions from heavy goods vehicles (HGVs) through policies such as ending the sale of diesel and petrol cars and subsidising electric charging infrastructure. The CCC response to the strategy however stated that the proposed measures do not go far enough. New Government policies combined with action from industry will be required for mobility related carbon reduction targets to be met.<br/>Hydrogen has been identified by the Government and CCC as one potential solution. The CCC report on a possible future hydrogen economy recognises that in particular hydrogen may have an important role to play for long distance journeys and heavy goods transport. This view was echoed further in the recent CCC ‘Net Zero’ report.<br/>Cadent’s HyNet project will produce low carbon hydrogen through reformation of natural gas combined with carbon capture utilisation and storage (CCUS). HyNet has primarily been designed to supply low carbon heat to industry and a blend of hydrogen to Cadent’s existing natural gas network but also provides the opportunity to supply low cost hydrogen for mobility. The HyMotion project has considered the relative merits of such an approach modelled potential demand scenarios and sought to determine technical and commercial solutions to enable deployment.<br/>Hydrogen fuel cell electric vehicles (FCEVs) share powertrain technologies with battery electric vehicles (BEVs) but the roll-out of BEVs is currently ahead of FCEVs. This is largely due to a lack of low cost low carbon bulk hydrogen production and refuelling infrastructure both of which HyNet seeks to address.
Heat Network Detailed Project Development Resource: Guidance on Strategic and Commercial Case
Jul 2016
Publication
This document provides guidance on the commercial and strategic elements of a heat network project to support completion of a project business case.
The guidance is intended for local authorities and heat network developers to support their investigations and enable progression from feasibility stage through to business case delivery. The guidance has been drafted with reference to policy legislation and regulation in England and Wales; however much of the guidance is likely also to be relevant to projects in Scotland and Northern Ireland.
The guidance specifically supports the HMT Green Book Five Cases Business Model (the Five Cases Model) and the derived DBEIS Business Case Template (DBEIS BCT) that follows this structure but will also be applicable in other instances. The Five Cases Model (and similarly the DBEIS BCT) considers the viability of the project from five perspectives:
Although all five elements are relevant this guide particularly focuses on the Strategic and Commercial cases.
Related Document Heat Networks 2020
The guidance is intended for local authorities and heat network developers to support their investigations and enable progression from feasibility stage through to business case delivery. The guidance has been drafted with reference to policy legislation and regulation in England and Wales; however much of the guidance is likely also to be relevant to projects in Scotland and Northern Ireland.
The guidance specifically supports the HMT Green Book Five Cases Business Model (the Five Cases Model) and the derived DBEIS Business Case Template (DBEIS BCT) that follows this structure but will also be applicable in other instances. The Five Cases Model (and similarly the DBEIS BCT) considers the viability of the project from five perspectives:
- Strategic
- Economic
- Commercial
- Financial
- Management
Although all five elements are relevant this guide particularly focuses on the Strategic and Commercial cases.
Related Document Heat Networks 2020
Hy4Heat Understanding Commercial Appliances - Work Package 5
Nov 2020
Publication
The 'Hydrogen for Heat' (Hy4Heat) programme aims to support the UK Government in its ambitions to decarbonise the UK energy sector in line with the targets of the Climate Change Act 2008 by attempting to evaluate and de-risk the natural gas to hydrogen network conversion option. The impact on the commercial sector is an important factor in understanding the feasibility of utilising hydrogen to decarbonise heat in the UK. The overall objective of the market research study Work Package 5 (WP5) was to determine if it is theoretically possible to successfully convert the commercial sector to hydrogen. This work will contribute to the understanding of the scale type and capacity of gas heating appliances within the sector providing a characterisation of the market and determining the requirements and feasibility for successfully transitioning them to hydrogen in the future.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
HyDeploy Webinar - Public Perceptions
May 2020
Publication
HyDeploy is a pioneering hydrogen energy project designed to help reduce UK CO2 emissions and reach the Government’s net zero target for 2050.
As the first ever live demonstration of hydrogen in homes HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now. It is providing evidence on how customers don’t have to change their cooking or heating appliances to take the blend which means less disruption and cost for them. It is also confirming initial findings that customers don’t notice any difference when using the hydrogen blend.
As the first ever live demonstration of hydrogen in homes HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now. It is providing evidence on how customers don’t have to change their cooking or heating appliances to take the blend which means less disruption and cost for them. It is also confirming initial findings that customers don’t notice any difference when using the hydrogen blend.
HyDeploy Webinar - Unlocking the Deployment of Hydrogen in the Grid
May 2020
Publication
A project overview of HyDeploy project led by Cadent Gas and supported by Northern Gas Networks Progressive Energy Ltd Keele University HSE – Science Division and ITM Power.
First Phase:
HyDeploy at Keele is the first stage of this three stage programme. In November 2019 the UK Health & Safety Executive gave permission to run a live test of blended hydrogen and natural gas on part of the private gas network at Keele University campus in Staffordshire. HyDeploy is the first project in the UK to inject hydrogen into a natural gas network.
Second and Third Phases;
Once the Keele stage has been completed HyDeploy will move to a larger demonstration on a public network in the North East. After that HyDeploy will have another large demonstration in the North West. These are designed to test the blend across a range of networks and customers so that the evidence is representative of the UK as a whole. With HSE approval and success at Keele these phases will go ahead in the early 2020s.
The longer term goal:
Once the evidence has been submitted to Government policy makers we very much expect hydrogen to take its place alongside other forms of zero carbon energy in meeting the needs of the UK population.
First Phase:
HyDeploy at Keele is the first stage of this three stage programme. In November 2019 the UK Health & Safety Executive gave permission to run a live test of blended hydrogen and natural gas on part of the private gas network at Keele University campus in Staffordshire. HyDeploy is the first project in the UK to inject hydrogen into a natural gas network.
Second and Third Phases;
Once the Keele stage has been completed HyDeploy will move to a larger demonstration on a public network in the North East. After that HyDeploy will have another large demonstration in the North West. These are designed to test the blend across a range of networks and customers so that the evidence is representative of the UK as a whole. With HSE approval and success at Keele these phases will go ahead in the early 2020s.
The longer term goal:
Once the evidence has been submitted to Government policy makers we very much expect hydrogen to take its place alongside other forms of zero carbon energy in meeting the needs of the UK population.
HyDeploy Project - First Project Progress Report
Dec 2017
Publication
The HyDeploy Project seeks to address a key issue for UK customers: how to reduce the carbon they emit in heating their homes. The UK has a world class gas grid delivering heat conveniently and safely to over 83% of homes. Emissions could be reduced by lowering the carbon content of gas through blending with hydrogen. Compared with solutions such as heat pumps this means that customers would not need disruptive and expensive changes in their homes. This Network Innovation Competition (NIC) funded project seeks to establish the level of hydrogen that can be safely blended with natural gas for transport and use in a UK network.
Under its Smart Energy Network Demonstration innovation programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with potentially up to 20% volume of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Any approval will be given as an exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. The evidence presented to the HSE comprises critically appraised literature combined with the results from a specifically commissioned experimental and testing programme. Based on engagement with all local customers this includes detailed safety checks on the network appliances and installations at Keele. Subject to approval by the HSE the hydrogen production and grid injection units will be installed and an extensive trial programme of blending will be undertaken. If hydrogen were blended at 20% volume with natural gas across the UK it would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of taking 2.5 million cars off the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Under its Smart Energy Network Demonstration innovation programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with potentially up to 20% volume of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Any approval will be given as an exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. The evidence presented to the HSE comprises critically appraised literature combined with the results from a specifically commissioned experimental and testing programme. Based on engagement with all local customers this includes detailed safety checks on the network appliances and installations at Keele. Subject to approval by the HSE the hydrogen production and grid injection units will be installed and an extensive trial programme of blending will be undertaken. If hydrogen were blended at 20% volume with natural gas across the UK it would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of taking 2.5 million cars off the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
FutureGrid: Project Progress Report
Dec 2021
Publication
The facility will be built from a range of decommissioned transmission assets to create a representative whole-network which will be used to trial hydrogen and will allow for accurate results to be analysed. Blends of hydrogen up to 100% will then be tested at transmission pressures to assess how the assets perform.<br/>The hydrogen research facility will remain separate from the main National Transmission System allowing for testing to be undertaken in a controlled environment with no risk to the safety and reliability of the existing gas transmission network.<br/>Ofgem’s Network Innovation Competition will provide £9.07m of funding with the remaining amount coming from the project partners.<br/>The aim is to start construction in 2021 with testing beginning in 2022.
HyDeploy Project - Second Project Progress Report
Dec 2018
Publication
The HyDeploy project seeks to address a key issue for UK customers: how to reduce the carbon they emit in heating their homes. The UK has a world class gas grid delivering heat conveniently and safely to over 83% of homes. Emissions can be reduced by lowering the carbon content of gas through blending with hydrogen. This delivers carbon savings without customers requiring disruptive and expensive changes in their homes. It also provides the platform for deeper carbon savings by enabling wider adoption of hydrogen across the energy system.
This Network Innovation Competition (NIC) funded project seeks to establish the level of hydrogen that can be safely blended with natural gas for transport and use in a UK network. Under its smart energy network innovation demonstration programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with 20%mol of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Such approval is provided as an Exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. Following such approval hydrogen production and grid injection units are to be installed and an extensive trial programme undertaken. Blending hydrogen at 20%mol with natural gas across the UK would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of removing 2.5 million cars from the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This Network Innovation Competition (NIC) funded project seeks to establish the level of hydrogen that can be safely blended with natural gas for transport and use in a UK network. Under its smart energy network innovation demonstration programme Keele University is establishing its electricity and gas networks as facilities to drive forward innovation in the energy sector. The objective of HyDeploy is to trial natural gas blended with 20%mol of hydrogen in a part of the Keele gas network. Before any hydrogen can be blended with natural gas in the network the percentage of hydrogen to be delivered must be approved by the Health and Safety Executive (HSE). It must be satisfied that the approved blended gas will be as safe to use as normal gas. Such approval is provided as an Exemption to the Gas Safety (Management) Regulations. These regulations ensure the safe use and management of gas through the gas network in the UK. Following such approval hydrogen production and grid injection units are to be installed and an extensive trial programme undertaken. Blending hydrogen at 20%mol with natural gas across the UK would save around 6 million tonnes of carbon dioxide emissions every year the equivalent of removing 2.5 million cars from the road.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
HyDeploy: The UK’s First Hydrogen Blending Deployment Project
Mar 2019
Publication
The HyDeploy project is the UK’s first practical project to demonstrate that hydrogen can be safely blended into the natural-gas distribution system without requiring changes to appliances and the associated disruption. The project is funded under Ofgem’s Network Innovation Competition and is a collaboration between Cadent Gas Northern Gas Networks Progressive Energy Ltd Keele University (Keele) Health & Safety Laboratory and ITM Power. Cadent and Northern Gas Networks are the Gas Distribution Network sponsors of the project. Keele University is the host site providing the gas-distribution network which will receive the hydrogen blend. Keele University is the largest campus university in the UK. Health & Safety Laboratory provides the scientific laboratories and experimental expertise. ITM Power provides the electrolyser that produces the hydrogen. Progressive Energy Ltd is the project developer and project manager. HyDeploy is structured into three distinct phases. The first is an extensive technical programme to establish the necessary detailed evidence base in support of an application to the Health & Safety Executive for Exemption to Schedule 3 of the Gas Safety (Management) Regulations (GS(M)R) to permit the injection of hydrogen at 20 mol%. This is required to allow hydrogen to be blended into a natural-gas supply above the current British limit of 0.1 mol%.
The second phase comprises the construction of the electrolyser and grid entry unit along with the necessary piping and valves to allow hydrogen to be mixed and injected into the Keele University gas-distribution network and to ensure all necessary training of operatives is conducted before injection. The third phase is the trial itself which is due to start in the summer of 2019 and last around 10 months. The trial phase also provides an opportunity to undertake further experimental activities related to the operational network to support the pathway to full deployment of blended gas. The outcome of HyDeploy is principally developing the initial evidence base that hydrogen can be blended into a UK operational natural-gas network without disruption to customers and without prejudicing the safety of end users. If deployed at scale hydrogen blending at 20 mol% would unlock 29 TWh pa of decarbonized heat and provide a route map for deeper savings. The equivalent carbon savings of a national roll-out of a 20-mol% hydrogen blend would be to remove 2.5 million cars from the road.
HyDeploy is a seminal UK project for the decarbonization of the gas grid via hydrogen deployment and will provide the first stepping stone for setting technical operational and regulatory precedents of the hydrogen vector.
The second phase comprises the construction of the electrolyser and grid entry unit along with the necessary piping and valves to allow hydrogen to be mixed and injected into the Keele University gas-distribution network and to ensure all necessary training of operatives is conducted before injection. The third phase is the trial itself which is due to start in the summer of 2019 and last around 10 months. The trial phase also provides an opportunity to undertake further experimental activities related to the operational network to support the pathway to full deployment of blended gas. The outcome of HyDeploy is principally developing the initial evidence base that hydrogen can be blended into a UK operational natural-gas network without disruption to customers and without prejudicing the safety of end users. If deployed at scale hydrogen blending at 20 mol% would unlock 29 TWh pa of decarbonized heat and provide a route map for deeper savings. The equivalent carbon savings of a national roll-out of a 20-mol% hydrogen blend would be to remove 2.5 million cars from the road.
HyDeploy is a seminal UK project for the decarbonization of the gas grid via hydrogen deployment and will provide the first stepping stone for setting technical operational and regulatory precedents of the hydrogen vector.
H21- Hydrogen Boilers Installed in Demonstration Houses
Nov 2020
Publication
Hydrogen boilers have been developed by Worcester Bosch and Baxi and are being trialled in demonstration houses. They look and feel just like the boilers we use today. Hydrogen produces no carbon when used and a hydrogen gas network could provide the least disruptive route to a net zero carbon future.
H21- Science and Research Centre - HSE Buxton Launch Video
Aug 2019
Publication
The site at the Health and Safety Executive’s Science and Research Centre in Buxton will carry out controlled tests to establish the critical safety evidence proving that a 100% hydrogen gas network is equally as safe as the natural gas grid heating our homes and businesses today. The results will be critical in determining if it is safe to convert millions of homes across the country from natural gas to hydrogen. H21 which is led by Northern Gas Networks (NGN) the gas distributor for the North of England in partnership with Cadent SGN and Wales & West Utilities HSE Science and Research Centre and DNV-GL is part of a number of gas industry projects designed to support conversion of the UK gas networks to carry 100% hydrogen. Currently about 30% of UK carbon emissions are from the heating of homes businesses and industry. H21 states that a large-scale conversion of the gas grid from natural gas to hydrogen is vital to meeting the Government’s Net Zero targets.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2011 Final Report
Apr 2012
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has the ambitious objective to place Europe at the forefront of the development commercialization and deployment of fuel cells and hydrogen technologies as of 2015. About €470 million over a six year period have been granted by the European Union to achieve this and private funds are being attracted to support the same ambition as part of the global European effort embedded in the multi-annual implementation plan MAIP (2008-2013).
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2014 Final Report
Apr 2015
Publication
The 2014 Review is the fourth review of the FCH JU project portfolio. The reviews began in 2011 following a recommendation arising from the interim evaluation of the FCH JU which identified the need to ensure that the FCH JU project portfolio as a whole fulfilled the objectives of the Multi-Annual Implementation or Work Plan.
Hydrogen Odorant and Leak Detection: Part 1, Hydrogen Odorant - Project Closure Report
Nov 2020
Publication
This work programme was focused on identifying a suitable odorant for use in a 100% hydrogen gas grid (domestic use such as boilers and cookers). The research involved a review of existing odorants (used primarily for natural gas) and the selection of five suitable odorants based on available literature. One odorant was selected based on possible suitability with a Polymer Electrolyte Membrane (PEM) based fuel cell vehicle which could in future be a possible end-user of grid hydrogen. NPL prepared Primary Reference Materials containing the five odorants in hydrogen at the relevant amount fraction levels (as would be found in the grid) including ones provided by Robinson Brothers (the supplier of odorants for natural gas in the UK). These mixtures were used by NPL to perform tests to understand the effects of the mixtures on pipeline (metal and plastic) appliances (a hydrogen boiler provided by Worcester Bosch) and PEM fuel cells. HSE investigated the health and environmental impact of these odorants in hydrogen. Olfactory testing was performed by Air Spectrum to characterise the ‘smell’ of each odorant. Finally an economic analysis was performed by E4tech. The results confirm that Odorant NB would be a suitable odorant for use in a 100% hydrogen gas grid for combustion applications but further research would be required if the intention is to supply grid hydrogen to stationery fuel cells or fuel cell vehicles. In this case further testing would need to be performed to measure the extent of fuel cell degradation caused by the non-sulphur odorant obtained as part of this work programme and also other UK projects such as the Hydrogen Grid to Vehicle (HG2V) project would provide important information about whether a purification step would be required regardless of the odorant before the hydrogen purity would be suitable for a PEM fuel cell vehicle. If purification was required it would be fine to use Odorant NB as this would be removed during the purification step.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Decarbonising the UK’s Gas Network - Realising the Green Power-to-hydrogen Opportunity in the East Network
Aug 2020
Publication
Although the UK has done a great job of decarbonising electricity generation to get to net zero we need to tackle harder-to-decarbonise sectors like heat transport and industry. Decarbonised gas – biogases hydrogen and the deployment of carbon capture usage and storage (CCUS) – can make our manufacturing more sustainable minimise disruption to families and deliver negative emissions.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Heat Networks 2020
Dec 2020
Publication
This publication by the Department for Business Energy and Industrial Strategy (BEIS) brings together heat networks investment opportunities in England and Wales. The opportunities present a wide range of projects supported through the development stages by the Heat Networks Delivery Unit (HNDU) and projects seeking capital support from the Heat Networks Investment Project (HNIP).
The publication includes a list of one-page summaries for each of the heat network projects supported by BEIS which set out details of HNDU and HNIP projects where projects have provided enough detail in time for publication.
For HNIP this represents projects which have submitted at least a pre-application to the Delivery Partner Triple Point Heat Networks Investment Management since the scheme opened in February 2019. As a number of the projects are at different stages of development some of the costs aren’t currently available or will be subject to project consent and change as they progress through the project lifecycle.
Related Document: Heat Network Detailed Project Development Resource: Guidance on Strategic and Commercial Case
The publication includes a list of one-page summaries for each of the heat network projects supported by BEIS which set out details of HNDU and HNIP projects where projects have provided enough detail in time for publication.
For HNIP this represents projects which have submitted at least a pre-application to the Delivery Partner Triple Point Heat Networks Investment Management since the scheme opened in February 2019. As a number of the projects are at different stages of development some of the costs aren’t currently available or will be subject to project consent and change as they progress through the project lifecycle.
Related Document: Heat Network Detailed Project Development Resource: Guidance on Strategic and Commercial Case
H21- Public Perceptions of Converting the Gas Network to Hydrogen - Social Sciences Sudy
Jun 2020
Publication
The next decade will see fundamental changes in how people heat their homes. The global energy system is changing in response to the need to transition away from fossil-based generation towards more environmentally sustainable alternatives.
Hydrogen offers one such alternative but currently there is limited understanding of public perceptions of hydrogen the information that people need in order to make an informed choice about using hydrogen in their homes and how misunderstandings could present barriers to the uptake of hydrogen technology. This is crucial to ensure the success of future policy and investment. The H21 concept is to convert the UK gas distribution network to 100% hydrogen over time thereby decarbonising heat and supporting decarbonisation of electric large industrials and transport. This would be achieved using the existing UK gas grid network and technology available across the world today whilst maintaining the benefits of gas and the gas networks in the energy mix for the long-term future. Additionally this would maintain choice of energy for customers i.e. they would be able to use both gas and electricity. The H21 project is being delivered by the UK gas distribution networks Northern Gas Networks Cadent Wales & West Utilities and SGN. As part of the H21 project Leeds Beckett University has been working with Northern Gas Networks to gain insight into public perceptions of hydrogen as a domestic fuel. Using innovative social science methods the research team has explored for the first time public perceptions of moving the UK domestic fuel supply to 100% hydrogen. We identify what people think and feel about a potential conversion the concerns and questions that they have and how to address them clearly. The findings presented in this report will ensure that issues around the current perception of hydrogen are identified and addressed prior to any large-scale technology rollout.
The first stage of the project comprised a series of discovery interviews which explored how to talk to people about hydrogen and the H21 project. We interviewed 12 participants selected to ensure we included people with a range of experiences and domestic settings for example people who live in urban and rural areas those who live alone those who live with children or a partner those who live in their own home and those who rent. Most participants had given very little thought about where their gas and electric comes from and other than switching supplier to get a better tariff had very little interest in it. They had not previously considered their domestic heating as a source of carbon emissions and were surprised that there may be a need in the future to change their gas supply. From the discovery interviews we identified several key areas to explore in the next stage of the work:
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hydrogen offers one such alternative but currently there is limited understanding of public perceptions of hydrogen the information that people need in order to make an informed choice about using hydrogen in their homes and how misunderstandings could present barriers to the uptake of hydrogen technology. This is crucial to ensure the success of future policy and investment. The H21 concept is to convert the UK gas distribution network to 100% hydrogen over time thereby decarbonising heat and supporting decarbonisation of electric large industrials and transport. This would be achieved using the existing UK gas grid network and technology available across the world today whilst maintaining the benefits of gas and the gas networks in the energy mix for the long-term future. Additionally this would maintain choice of energy for customers i.e. they would be able to use both gas and electricity. The H21 project is being delivered by the UK gas distribution networks Northern Gas Networks Cadent Wales & West Utilities and SGN. As part of the H21 project Leeds Beckett University has been working with Northern Gas Networks to gain insight into public perceptions of hydrogen as a domestic fuel. Using innovative social science methods the research team has explored for the first time public perceptions of moving the UK domestic fuel supply to 100% hydrogen. We identify what people think and feel about a potential conversion the concerns and questions that they have and how to address them clearly. The findings presented in this report will ensure that issues around the current perception of hydrogen are identified and addressed prior to any large-scale technology rollout.
The first stage of the project comprised a series of discovery interviews which explored how to talk to people about hydrogen and the H21 project. We interviewed 12 participants selected to ensure we included people with a range of experiences and domestic settings for example people who live in urban and rural areas those who live alone those who live with children or a partner those who live in their own home and those who rent. Most participants had given very little thought about where their gas and electric comes from and other than switching supplier to get a better tariff had very little interest in it. They had not previously considered their domestic heating as a source of carbon emissions and were surprised that there may be a need in the future to change their gas supply. From the discovery interviews we identified several key areas to explore in the next stage of the work:
- Beliefs about the environment
- Beliefs about inconvenience and cost
- Beliefs about safety
- Beliefs about the economic impact
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Impact of Hydrogen Admixture on Combustion Processes – Part I: Theory
Jun 2020
Publication
Climate change is one of today’s most pressing global challenges. Since the emission of greenhouse gases is often closely related to the use and supply of energy the goal to avoid emissions requires a fundamental restructuring of the energy system including all parts of the technology chains from production to end-use. Natural gas is today one of the most important primary energy sources in Europe with utilization ranging from power generation and industry to appliances in the residential and commercial sector as well as mobility. As natural gas is a fossil fuel gas utilization is thus responsible for significant emissions of carbon dioxide (CO2 ) a greenhouse gas. However the transformation of the gas sector with its broad variety of technologies and end-use applications is a challenge as a fuel switch is related to changing physical properties. Today the residential and commercial sector is the biggest end user sector for natural gas in the EU both in terms of consumption and in the number of installed appliances. Natural gas is used to provide space heating as well as hot water and is used in cooking and catering appliances with in total about 200 million gas-fired residential and commercial end user appliances installed. More than 40 % of the EU gas consumption is accounted for by the residential and commercial sector. The most promising substitutes for natural gas are biogases and hydrogen. The carbon-free fuel gas hydrogen may be produced e.g. from water and renewable electricity; therefore it can be produced with a greatly lowered carbon footprint and on a very large scale. As a gaseous fuel it can be transported stored and utilised in all end-use sectors that are served by natural gas today: Power plants industry commercial appliances households and mobility. Technologies and materials however need to be suitable for the new fuel. The injection of hydrogen into existing gas distribution for example will impact all gas-using equipment in the grids since these devices are designed and optimized to operate safely efficiently and with low pollutant emissions with natural gas as fuel. The THyGA project1 focusses on all technical aspects and the regulatory framework concerning the potential operation of domestic and commercial end user appliances with hydrogen / natural gas blends. The THyGA deliverables start with theoretical background from material science (D2.4) and combustion theory (this report) and extend to the project’s experimental campaign on hydrogen tolerance tests as well as reports on the status quo and potential future developments on rules and standards as well as mitigation strategies for coping with high levels of hydrogen admixture. By this approach the project aims at investigating which levels of hydrogen blending impact the various appliance technologies to which extent and to identify the regime in which a safe efficient and low-polluting operation is possible. As this is in many ways a question of combustion this report focuses on theoretical considerations about the impact of hydrogen admixture on combustion processes. The effects of hydrogen admixture on main gas quality properties as well as combustion temperatures laminar combustion velocities pollutant formation (CO NOx) safety-related aspects and the impact of combustion control are discussed. This overview provides a basis for subsequent steps of the project e.g. for establishing the testing program. A profound understanding of the impact on hydrogen on natural gas combustion is also essential for the development of mitigation strategies to reduce potential negative consequences of hydrogen admixture on appliances.
This is part one. Part two of this project can be found at this link
This is part one. Part two of this project can be found at this link
H21- Strategic Modelling Major Urban Centres
Aug 2019
Publication
This report summarises the results of an independent audit carried out by DNV GL on the model conversions from natural gas to hydrogen for the models being used as a benchmark for the wider UK proposed hydrogen conversion of the natural gas network. The detailed model conversion process was derived from the H21 modelling meetings and the detailed notes were put together by NGN as a basic guide which has been included in Appendix A and is summarised as follows:
- Current 5 year planning model is updated and then used to generate a Replacement Expenditure (REPEX) natural gas model which would remove metallic pipes from the networks by insertion where possible
- Merging models together to form larger networks where required
- Preparation for conversion to hydrogen which would include the District Governor (DG) capacity increases to run the additional model flows
- Conversion of the models to hydrogen by changing demands to thermal and the gas characteristics to those of hydrogen
- Applying reinforcement to remove pressure failures.
Flow Loop Test for Hydrogen
Jul 2020
Publication
National Grid (NG) needs to understand the implications that a hydrogen rich gas mix may have on the existing pipeline network. The primary network consists extensively of X52 steel pipe sections welded together using girth welds. Different welding specifications that have been used in the past 40 years and girth welds with different specifications may behave differently when coming into contact with hydrogen gas.
The aim of the flow loop test programme is to begin to evaluate the durability of pipeline materials in the context of future proofing of gas grid service where the gas mix may include a significant proportion of hydrogen. One specific objective is to investigate the resistance to hydrogen embrittlement of a conventional steel (X52) with commonly used girth welds. The primary concern is that the phenomenon of hydrogen embrittlement may cause unexpected or early failure mechanisms especially in older pipe sections with less stringent girth weld specifications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The aim of the flow loop test programme is to begin to evaluate the durability of pipeline materials in the context of future proofing of gas grid service where the gas mix may include a significant proportion of hydrogen. One specific objective is to investigate the resistance to hydrogen embrittlement of a conventional steel (X52) with commonly used girth welds. The primary concern is that the phenomenon of hydrogen embrittlement may cause unexpected or early failure mechanisms especially in older pipe sections with less stringent girth weld specifications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2017 Final Report
Dec 2018
Publication
The Programme Review Report ensures that the FCH JU programme is aligned with its strategy and objectives. This year the programme review was performed following a new procedure: it was carried out by the European Commission’s in-house science service the Joint Research Committee (JRC). The 2017 review pays particular attention to the added value effectiveness and efficiency of FCH JU activities. The review is structured around six panels under three pillars: transport energy and cross-cutting projects summarising the FCH JU Project Portfolio
Hy4Heat Final Progress Report
Apr 2022
Publication
A final report covering covering activity in 2021 and early 2022 including: standards and certification safety assessment and appliance and meter development. It has a foreword from Mark Taylor BEIS Deputy Director for Energy Innovation and an introduction letter from Arup Hy4Heat Director Mark Neller.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2016 Final Report
Jun 2017
Publication
The Fuel Cell and Hydrogen 2 Joint Undertaking (FCH 2 JU) organised the sixth edition of its Programme Review Days (PRD). 100 projects allocated in 6 panels covering cross-cutting energy and transport in research and demonstration activities have been the basis of the FCH JU's annual review of its research and innovation programme.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2015 Final Report
Apr 2016
Publication
The 2015 Programme Review Report refers to the fifth review of the FCH JU project portfolio and covers 100 projects funded through annual calls for proposals from 2009 to 2013.<br/>The reviews began in 2011 following a recommendation arising from the interim evaluation of the FCH JU which identified the need to ensure that the overall project portfolio fulfilled the objectives of the FCH JU Multi-Annual Implementation and Work Plans.
Hy4Heat Conversion of Industrial Heating Equipment to Hydrogen - Work Package 6
Jan 2020
Publication
The study focuses on converting current industrial natural gas heating technologies to use 100% hydrogen considering the evidence which must be available before a decision on the UK’s decarbonisation pathway for heating could be made. The aim of the study is to assess the technical requirements and challenges associated with industrial hydrogen conversion and estimate the associated costs and timeframes.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Non-combustion Related Impact of Hydrogen Admixture - Material Compatibility
Jun 2020
Publication
The present document is part of a larger literature survey of this WP aiming to establish the current status of gas utilisation technologies in order to determine the impact of hydrogen (H2) admixture on natural gas (NG) appliances. This part focuses on the non-combustion related aspects of injecting hydrogen in the gas distribution networks within buildings including hydrogen embrittlement of metallic materials chemical compatibility and leakage issues. In the particular conditions of adding natural gas and hydrogen (NG / H2) mixture into a gas distribution network hydrogen is likely to reduce the mechanical properties of metallic components. This is known as hydrogen embrittlement (HE) (Birnbaum 1979). This type of damage takes place once a critical level of stress / strain and hydrogen content coexist in a susceptible microstructure. Currently four mechanisms were identified and will be discussed in detail. The way those mechanisms act independently or together is strongly dependent on the material the hydrogen charging procedure and the mechanical loading type. The main metallic materials used in gas appliances and gas distribution networks are: carbon steels stainless steels copper brass and aluminium alloys (Thibaut 2020). The presented results showed that low alloy steels are the most susceptible materials to hydrogen embrittlement followed by stainless steels aluminium copper and brass alloys. However the relative pressures of the operating conditions of gas distribution network in buildings are low i.e. between 30 to 50 mbar. At those low hydrogen partial pressures it is assumed that a gas mixture composed of NG and up to 50% H2 should not be problematic in terms of HE for any of the metallic materials used in gas distribution network unless high mechanical stress / strain and high stress concentrations are applied. The chemical compatibility of hydrogen with other materials and specifically polyethylene (PE) which is a reference material for the gas industry is also discussed. PE was found to have no corrosion issues and no deterioration or ageing was observed after long term testing in hydrogen gas. The last non-combustion concern related to the introduction of hydrogen in natural gas distribution network is the propensity of hydrogen toward leakage. Indeed the physical properties of hydrogen are different from other gases such as methane or propane and it was observed that hydrogen leaks 2.5 times quicker than methane. This bibliographical report on material deterioration chemical compatibility and leakage concerns coming with the introduction of NG / H2 mixture in the gas distribution network sets the basis for the upcoming experimental work where the tightness of gas distribution network components will be investigated (Task 3.2.3 WP3). In addition tightness of typical components that connect end-user appliances to the local distribution line shall be evaluated as well.
Project Cavendish - National Grid Gas Transmission
Sep 2020
Publication
The Isle of Grain (IoG) presents a technically feasible commercially viable strategic location to build and operate a hydrogen production facility which would be a key enabler to the UK meeting the Net Zero 2050 target.
As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions. Carbon Capture and Storage (CCS) is also seen as essential to support those supplies.
The report further recognises that this will involve increased investments and that CCS and hydrogen will require both capital funding and revenue support.
For hydrogen to have a part to play in the decarbonisation of London and the south east of England a large-scale hydrogen production facility will be required which will provide a multi vector solution through the decarbonisation of the gas grid.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions. Carbon Capture and Storage (CCS) is also seen as essential to support those supplies.
The report further recognises that this will involve increased investments and that CCS and hydrogen will require both capital funding and revenue support.
For hydrogen to have a part to play in the decarbonisation of London and the south east of England a large-scale hydrogen production facility will be required which will provide a multi vector solution through the decarbonisation of the gas grid.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hy4Heat Hydrogen Odorant - Work Package 2
Nov 2020
Publication
This work programme was focused on identifying a suitable odorant for use in a 100% hydrogen gas grid (domestic use such as boilers and cookers). The research involved a review of existing odorants (used primarily for natural gas) and the selection of five suitable odorants based on available literature. One odorant was selected based on possible suitability with a Polymer Electrolyte Membrane (PEM) based fuel cell vehicle which could in future be a possible end-user of grid hydrogen. NPL prepared Primary Reference Materials containing the five odorants in hydrogen at the relevant amount fraction levels (as would be found in the grid) including ones provided by Robinson Brothers (the supplier of odorants for natural gas in the UK). These mixtures were used by NPL to perform tests to understand the effects of the mixtures on pipeline (metal and plastic) appliances (a hydrogen boiler provided by Worcester Bosch) and PEM fuel cells. HSE investigated the health and environmental impact of these odorants in hydrogen. Olfactory testing was performed by Air Spectrum to characterise the ‘smell’ of each odorant. Finally an economic analysis was performed by E4tech. The results confirm that Odorant NB would be a suitable odorant for use in a 100% hydrogen gas grid for combustion applications but further research would be required if the intention is to supply grid hydrogen to stationery fuel cells or fuel cell vehicles. In this case further testing would need to be performed to measure the extent of fuel cell degradation caused by the non-sulphur odorant obtained as part of this work programme and also other UK projects such as the Hydrogen Grid to Vehicle (HG2V) project[1] would provide important information about whether a purification step would be required regardless of the odorant before the hydrogen purity would be suitable for a PEM fuel cell vehicle. If purification was required it would be fine to use Odorant NB as this would be removed during the purification step.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Hydrogen Europe's Position Paper on the Sustainable and Smart Mobility Strategy
Dec 2020
Publication
The document highlights the role of hydrogen in the decarbonisation of the transport sector. It also provides a series of policy recommendations covering all modes of transport hydrogen distribution and infrastructure and hydrogen as a fuel.
Great Expectations: Asia, Australia and Europe Leading Emerging Green Hydrogen Economy, but Project Delays Likely
Aug 2020
Publication
In July 2020 the European Union unveiled its new Hydrogen Strategy a visionary plan to accelerate the adoption of green hydrogen to meet the EU’s net-zero emissions goal by 2050. Combined with smaller-scale plans in South Korea and Japan IEEFA believes this could form the beginnings of a global green hydrogen economy.
Green hydrogen produced exclusively with renewable energy has been acclaimed for decades but ever lower solar electricity costs mean this time really is different.
We expect the EU’s initiative to find strong support as the proposed investment of €430bn by 2030 places it in pole position to develop a world-class green energy manufacturing industry and provides a vital bridge for energy transition by repurposing existing ‘natural’ gas pipelines and fossil-fuel dependent ports.
In the past year numerous green hydrogen projects have been proposed primarily in Asia Europe Australia.
We estimate there are 50 viable projects globally announced in the past year with a total hydrogen production capacity of 4 million tons per annum and renewable power capacity of 50 gigawatts (GW) requiring capex of US$75bn.
The paper can be download on the IEEFA website
Green hydrogen produced exclusively with renewable energy has been acclaimed for decades but ever lower solar electricity costs mean this time really is different.
We expect the EU’s initiative to find strong support as the proposed investment of €430bn by 2030 places it in pole position to develop a world-class green energy manufacturing industry and provides a vital bridge for energy transition by repurposing existing ‘natural’ gas pipelines and fossil-fuel dependent ports.
In the past year numerous green hydrogen projects have been proposed primarily in Asia Europe Australia.
We estimate there are 50 viable projects globally announced in the past year with a total hydrogen production capacity of 4 million tons per annum and renewable power capacity of 50 gigawatts (GW) requiring capex of US$75bn.
The paper can be download on the IEEFA website
HyDeploy Report: Material Effects of Introducing Hydrogen into the UK Gas Supply
Jun 2018
Publication
Introduction of hydrogen into the UK gas main has been reviewed in terms of how materials within the Keele G3 gas distribution network (G3 GDN) on the Keele University network may be affected by contact with natural gas (NG):hydrogen blends up to a limit of 20 % mol/mol hydrogen.<br/>This work has formed part of the supporting evidence for a 1 year hydrogen blending trial on the Keele G3 GDN coordinated by the HyDeploy consortium (formed of representatives of Cadent Northern Gas Networks ITM Power Progressive Energy HSL and Keele University).<br/>A wide range of materials were identified and assessed via a combination of literature review and practical test programmes. No significant changes to material properties in terms of accelerated material degradation or predicted efficiency of gas confinement were identified which would cause concern for the year-long trial at Keele.<br/>It can be concluded that materials on the Keele G3 GDN should be acceptable to provide a safe operating network the HyDeploy demonstrator project up to a level of 20 % mol/mol hydrogen.<br/>Check the supplements tab for the other documents in this report
No more items...