Production & Supply Chain
Methanol Reforming Processes for Fuel Cell Applications
Dec 2021
Publication
Hydrogen production through methanol reforming processes has been stimulated over the years due to increasing interest in fuel cell technology and clean energy production. Among different types of methanol reforming the steam reforming of methanol has attracted great interest as reformate gas stream where high concentration of hydrogen is produced with a negligible amount of carbon monoxide. In this review recent progress of the main reforming processes of methanol towards hydrogen production is summarized. Different catalytic systems are reviewed for the steam reforming of methanol: mainly copper- and group 8–10-based catalysts highlighting the catalytic key properties while the promoting effect of the latter group in copper activity and selectivity is also discussed. The effect of different preparation methods different promoters/stabilizers and the formation mechanism is analyzed. Moreover the integration of methanol steam reforming process and the high temperature–polymer electrolyte membrane fuel cells (HT-PEMFCs) for the development of clean energy production is discussed.
Production of Hydrogen by Chemical Looping Reforming of Methane and Biogas using a Reactive and Durable Cu-based Oxygen Carrier
Apr 2022
Publication
The objective of this work was to assess the suitability of a synthetic Cu-based oxygen carrier in a continuous pilot plant for the production of blue and green hydrogen through the autothermal Chemical Looping Reforming (CLRa). In CLRa methane is converted to a H2 + CO mixture through partial oxidation and reforming reactions in the fuel reactor. The degree of the partial oxidation of methane was defined by controlling the oxygen flow in the air reactor. Steam was used as reforming gas in natural gas to produce blue H2 but the existing CO2 in biogas was the reforming gas to produce green H2. Operating at 950 ◦C in the fuel and air reactors CH4 conversion and H2 yield parameters were 96 % and 2.60 mol of H2 per mole of CH4 respectively. These experimental results were close to the theoretical values that could be achieved in the CLRa process. Furthermore the physico-chemical characterization of the samples extracted from the pilot plant throughout the experimental campaign revealed that the Cu-based oxygen carrier maintained its mechanical integrity and chemical stability under harsh operating conditions. Therefore it can be concluded that Cu-based oxygen carriers can be considered a promising alternative to Ni-based materials for the production of blue and green hydrogen through the CLRa process.
Techno-economic Analysis on Renewable Energy Via Hydrogen, Views from Macro and Micro Scopes
Mar 2019
Publication
This paper addresses from both macro- and micro- areal coverage in introducing hydrogen system in terms of cost and performance where the produced hydrogen from surplus photovoltaic (PV) power is stored. Feed-in tariff in Japan had successful achievement for great expansion of renewable energy systems (RES) causing problematic operation due to excess power by overcapacity of RES. One of the candidate approaches to overcome this surplus energy by RES is Power to gas (P2G) system using electrolysis cells (ECs) fuel cells (FCs) or co-firing in gas turbines both for energy conversion as well as power balancing. Numerous studies had been investigated on P2G however within our knowledge no study had been addressed the system from both coverages with different capacity and scales. We investigate micro level (zero emission building in our university) and macro level (Kyushu one of big regions in Japan). We describe for macro side preliminary result on economic analysis of using surplus power of RES via production and storage of hydrogen while for micro side research design.
Pathways to Hydrogen as an Energy Carrier
Feb 2007
Publication
When hydrogen is used as an alternative energy carrier it is very important to understand the pathway from the primary energy source to the final use of the carrier. This involves for example the understanding of greenhouse gas emissions associated with the production of hydrogen and throughout the lifecycle of a given utilization pathway as well as various energy or exergy1 efficiencies and aspects involved. This paper which is based on a talk given at the Royal Society in London assesses and reviews the various production pathways for hydrogen with emphasis on emissions energy use and energy efficiency. The paper also views some aspects of the breaking of the water molecule and examines some new emerging physical evidence which could pave the way to a new and more feasible pathway.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Combined Dehydrogenation and Hydrogen-based Power Generation
Jan 2018
Publication
An energy production from the combination of dehydrogenation and combined cycle power generation is proposed. The delivered system is established from three main modules: dehydrogenation combustion and combined cycle. The heat in the system is circulated thoroughly to enhance the energy efficiency due to optimum energy recovery. The Pt/Al2O3 catalyst is applied in the dehydrogenation module due to superior activity to accelerate the dehydrogenation of MCH. The toluene emitted from the MCH is recirculated to the hydrogenation plant while the hydrogen is further utilized as the fuel in the combustion. Although the high-temperature condition is necessary to perform high yield dehydrogenation the proposed system is capable of carrying out self-heating mechanism with no external heat. With the optimum configuration the delivered system can produce 100.0 MW of electricity from 100 t/h of MCH with 50.19% of energy efficiency.
State of the Art of Hydrogen Production via Pyrolysis of Natural Gas
Jul 2020
Publication
Fossil fuels have to be substituted by climate neutral fuels to contribute to CO2 reduction in the future energy system. Pyrolysis of natural gas is a well-known technical process applied for production of e. g. carbon black.
In the future it might contribute to carbon dioxide-free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by-product of this process can be used for material production or can be sequestrated the produced hydrogen has a low carbon footprint.
This article reviews literature on the state of the art of methane/ natural gas pyrolysis process developments and at-tempts to assess the technology readiness level (TRL).
In the future it might contribute to carbon dioxide-free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by-product of this process can be used for material production or can be sequestrated the produced hydrogen has a low carbon footprint.
This article reviews literature on the state of the art of methane/ natural gas pyrolysis process developments and at-tempts to assess the technology readiness level (TRL).
Methodology for the Development of Hybrid Renewable Energy Systems (HRES) with Pumped Storage and Hydrogen Production on Lemnos Island
Apr 2022
Publication
The non-interconnected islands of Greece can benefit from the comprehensive use of RES to avoid water droughts and ensure energy autonomy. The present paper analyzes an HRES with two possible operating scenarios. Both of them include a wind park of 27.5 MW capacity an 1175 m3/day desalination plant and a 490000 m3/day water tank in Lemnos Greece. Regarding the wind power 70% is used in the HRES while the rest is channeled directly to the grid. The main difference comes down to how the wind energy is stored either in the form of hydraulic energy or in the form of hydrogen. The lifespan of the system is 25 years such as the produced stochastic series of rainfall temperature and wind of the area. Through the comparison of the operating scenarios the following results arise: (i) the water needs of the island are fully covered and the irrigation needs have a reliability of 66% in both scenarios. (ii) Considering the energy needs the pumping storage seems to be the most reliable solution. (iii) However depending on the amount of wind energy surplus the use of hydrogen could produce more energy than the hydroelectric plant.
Multi-objective Optimal Configurations of a Membrane Reactor for Steam Methane Reforming
Nov 2021
Publication
The combination of traditional reactor and permeable membrane is beneficial to increase the production rate of the target product. How to design a high efficiency and energy saving membrane reactor is one of the key problems to be solved urgently. This paper utilizes finite-time thermodynamics and nonlinear programming to solve the optimal configurations of the membrane reactor of steam methane reforming (MR-SMR) for two optimization objectives that is heat exchange rate minimization and power consumption minimization. The exterior wall temperature and fixed hydrogen production rate are regarded as the control variable and constraint respectively. The results indicate that the hydrogen production rate and heat exchange rate in MR-SMR are increased by 108.58% and 58.42% respectively while the power consumption is reduced by 33.44% compared with those in the traditional reactor under the same condition. Compared with the results in reference reactor (MR-SMR obtained with initial values) the heat exchange rate is reduced by 1.40% by optimizing the exterior wall temperature and the power consumption is reduced by 5.10% by optimizing the exterior wall temperature and molar flow rate of sweep gas. The optimal distributions of exterior wall temperatures in the optimal reactors of minimum heat exchange rate and power consumption have a theoretical guiding significance for the thermal design of the membrane reactors.
Exchange Current Density of Reversible Solid Oxide Cell Electrodes
Mar 2022
Publication
Reversible solid oxide cells (r-SOCs) can be operated in either solid oxide fuel cell or solid oxide electrolysis cell mode. They are expected to become important in the support of renewable energy due to their high efficiency for both power generation and hydrogen generation. The exchange current density is one of the most important parameters in the quantification of electrode performance in solid oxide cells. In this study four different fuel electrodes and two different air electrodes are fabricated using different materials and the microstructures are compared. The temperature fuel humidification and oxygen concentration at the air electrode are varied to obtain the apparent exchange current density for the different electrode materials. In contrast to ruthenium-and-gadolinia-doped ceria (Rh-GDC) as well as nickel-and-gadolinia-doped ceria (Ni-GDC) electrodes significant differences in the apparent exchange current density were observed between electrolysis and fuel cell modes for the nickel-scandia-stabilized zirconia (Ni-ScSZ) cermet. Variation of gas concentration revealed that surface adsorption sites were almost completely vacant for all these electrodes. The apparent exchange current densities obtained in this study are useful as a parameter for simulation of the internal properties of r-SOCs.
Advances and Challenges of MOF Derived Carbon-based Electrocatalysts and Photocatalyst for Water Splitting: A Review
Apr 2022
Publication
Environmental pollution and energy shortage are substantial fears to the modern world's long-term sustainability. Water splitting is an essential technique for eco - friendly and sustainable energy storage as well as a pollution-free method to produce hydrogen. In this regards Metal–organic frameworks have emerged as the most competent multifunctional materials in recent times due to its large surface areas adjustable permeability easy compositional alteration and capability for usage as precursors with a wide range of morphological forms. Further MOF-derived carbon-based nanomaterials also offer significant benefits in terms of tunable morphological features and hierarchical permeability as well as ease of functionalization making them extremely effective as catalysts or catalysts supports for a wide variety of important reactions. Recent developments in carbon-based MOFs as catalysts for overall water splitting are discussed in this review. We explore how MOFs and carbon-based MOFs might well be beneficial as well as which methods should be explored for future development. We divided our review into two sections: photocatalytic and electrocatalytic water splitting and we gathered published literature on carbon-based MOFs materials for their outstanding activity offers helpful methods for catalysts design and analysis as well as difficulties This study highlights the developments in MOF derived materials as photo and electro catalysts by explaining respective approaches for their use in overall water splitting.
New Insights into the Electrochemical Behaviour of Porous Carbon Electrodes for Supercapacitors
Aug 2018
Publication
Activated carbons with different surface chemistry and porous textures were used to study the mechanism of electrochemical hydrogen and oxygen evolution in supercapacitor devices. Cellulose precursor materials were activated with different potassium hydroxide (KOH) ratios and the electrochemical behaviour was studied in 6 M KOH electrolyte. In situ Raman spectra were collected to obtain the structural changes of the activated carbons under severe electrochemical oxidation and reduction conditions and the obtained data were correlated to the cyclic voltammograms obtained at high anodic and cathodic potentials. Carbon-hydrogen bonds were detected for the materials activated at high KOH ratios which form reversibly under cathodic conditions. The influence of the specific surface area narrow microporosity and functional groups in the carbon electrodes on their chemical stability and hydrogen capture mechanism in supercapacitor applications has been revealed.
Large Transition State Stabilization From a Weak Hydrogen Bond
Jul 2020
Publication
A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O–H⋯O[double bond length as m-dash]C hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol−1) than control rotors which could not form hydrogen bonds. The magnitude of the stabilization was significantly larger than predicted based on the independently measured strength of a similar O–H⋯O[double bond length as m-dash]C hydrogen bond (1.5 kcal mol−1). The origins of the large transition state stabilization were studied via experimental substituent effect and computational perturbation analyses. Energy decomposition analysis of the hydrogen bonding interaction revealed a significant reduction in the repulsive component of the hydrogen bonding interaction. The rigid framework of the molecular rotors positions and preorganizes the interacting groups in the transition state. This study demonstrates that with proper design a single hydrogen bond can lead to a TS stabilization that is greater than the intrinsic interaction energy which has applications in catalyst design and in the study of enzyme mechanisms.
An Extended Flamelet-based Presumed Probability Density Function for Predicting Mean Concentrations of Various Species in Premixed Turbulent Flames
Sep 2020
Publication
Direct Numerical Simulation (DNS) data obtained by Dave and Chaudhuri (2020) from a lean complex-chemistry hydrogen-air flame associated with the thin-reaction-zone regime of premixed turbulent burning are analyzed to perform a priori assessment of predictive capabilities of the flamelet approach for evaluating mean species concentrations. For this purpose dependencies of mole fractions and rates of production of various species on a combustion progress variable c obtained from the laminar flame are averaged adopting either the actual Probability Density Function (PDF) P (c) extracted from the DNS data or a common presumed β-function PDF. On the one hand the results quantitatively validate the flamelet approach for the mean mole fractions of all species including radicals but only if the actual PDF P (c) is adopted. The use of the β-function PDF yields substantially worse results for the radicals’ concentrations. These findings put modeling the PDF P (c) on the forefront of the research agenda. On the other hand the mean rate of product creation and turbulent burning velocity are poorly predicted even adopting the actual PDF. These results imply that in order to evaluate the mean species concentrations the flamelet approach could be coupled with another model that predicts the mean rate and turbulent burning velocity better. Accordingly the flamelet approach could be implemented as post-processing of numerical data yielded by that model. Based on the aforementioned findings and implications a new approach to building a presumed PDF is developed. The key features of the approach consist in (i) adopting a re-normalized flamelet PDF for intermediate values of c and (ii) directly using the mean rate of product creation to calibrate the presumed PDF. Capabilities of the newly developed PDF for predicting mean species concentrations are quantitively validated for all species including radicals.
Business Models for Low Carbon Hydrogen Production: A Report for BEIS
Aug 2020
Publication
Low carbon hydrogen could have a significant role to play in meeting the UK’s Net Zero target: the Committee on Climate Change (CCC) estimates that up to 270TWh of low carbon hydrogen could be needed in its ‘Further Ambition’ scenario. However at present there is no large-scale production of low carbon hydrogen in the UK not least as it is more costly than most high carbon alternatives. For hydrogen to be the viable option envisaged by the CCC projects may need to be deployed from the 2020s.<br/>BEIS has commissioned Frontier Economics to develop business models to support low carbon hydrogen production. This report builds on the earlier Carbon Capture Usage and Storage (CCUS) business models consultation2 and develops business models for BEIS to consider further. This report is a milestone in BEIS’ longer term process of developing hydrogen business models. It forms a part of BEIS’ wider research into a range of decarbonisation options across the economy.<br/>Further analysis will be required before a final decision is made.
Hydrogen Production from Natural Gas and Biomethane with Carbon Capture and Storage – A Techno-environmental Analysis
Mar 2020
Publication
This study presents an integrated techno-environmental assessment of hydrogen production from natural gas and biomethane combined with CO2 capture and storage (CCS). We have included steam methane reforming (SMR) and autothermal reforming (ATR) for syngas production. CO2 is captured from the syngas with a novel vacuum pressure swing adsorption (VPSA) process that combines hydrogen purification and CO2 separation in one cycle. As comparison we have included cases with conventional amine-based technology. We have extended standard attributional Life Cycle Assessment (LCA) following ISO standards with a detailed carbon balance of the biogas production process (via digestion) and its by-products. The results show that the life-cycle greenhouse gas (GHG) performance of the VPSA and amine-based CO2 capture technologies is very similar as a result of comparable energy consumption. The configuration with the highest plant-wide CO2 capture rate (almost 100% of produced CO2 captured) is autothermal reforming with a two-stage water-gas shift and VPSA CO2 capture – because the latter has an inherently high CO2 capture rate of 98% or more for the investigated syngas. Depending on the configuration the addition of CCS to natural gas reforming-based hydrogen production reduces its life-cycle Global Warming Potential by 45–85 percent while the other environmental life-cycle impacts slightly increase. This brings natural gas-based hydrogen on par with renewable electricity-based hydrogen regarding impacts on climate change. When biomethane is used instead of natural gas our study shows potential for net negative greenhouse gas emissions i.e. the net removal of CO2 over the life cycle of biowaste-based hydrogen production. In the special case where the biogas digestate is used as agricultural fertiliser and where a substantial amount of the carbon in the digestate remains in the soil the biowaste-based hydrogen reaches net-negative life cycle greenhouse gas emissions even without the application of CCS. Addition of CCS to biomethane-based hydrogen production leads to net-negative emissions in all investigated cases.
Thermal Hydrogen: An Emissions Free Hydrocarbon Economy
Apr 2017
Publication
Envisioned below is an energy system named Thermal Hydrogen developed to enable economy-wide decarbonization. Thermal Hydrogen is an energy system where electric and/or heat energy is used to split water (or CO2) for the utilization of both by-products: hydrogen as energy storage and pure oxygen as carbon abatement. Important advantages of chemical energy carriers are long term energy storage and extended range for electric vehicles. These minimize the need for the most capital intensive assets of a fully decarbonized energy economy: low carbon power plants and batteries. The pure oxygen pre-empts the gas separation process of “Carbon Capture and Sequestration” (CCS) and enables hydrocarbons to use simpler more efficient thermodynamic cycles. Thus the “externality” of water splitting pure oxygen is increasingly competitive hydrocarbons which happen to be emissions free. Methods for engineering economy-wide decarbonization are described below as well as the energy supply carrier and distribution options offered by the system.
Achieving High-rate Hydrogen Recovery from Wastewater Using Customizable Alginate Polymer Gel Matrices Encapsulating Biomass
Jul 2018
Publication
In addition to methane gas higher-value resources such as hydrogen gas are produced during anaerobic wastewater treatment. They are however immediately consumed by other organisms. To recover these high-value resources not only do the desired phenotypes need to be retained in the anaerobic reactor but the undesired ones need to be washed out. In this study a well-established alginate-based polymer gel with and without a coating layer was used to selectively encapsulate hydrogen-producing biomass in beads to achieve high-rate recovery of hydrogen during anaerobic wastewater treatment. The effect of cross-linking agents Ca2+ Sr2+ and Ba2+ as well as a composite coating on the beads consisting of alternating layers of polyethylenimine and silica hydrogel were investigated with respect to their performance specifically their mass transfer characteristics and their differential ability to retain the encapsulated biomass. Although the coating reduced the escape rate of encapsulated biomass from the beads all alginate polymer matrices without coating effectively retained biomass. Fast diffusion of dissolved organic carbon (DOC) through the polymer gel was observed in both Ca-alginate and Sr-alginate without coating. The coating however decreased either the diffusivity or the permeability of the DOC depending on whether the DOC was from synthetic wastewater (more lipids and proteins) or real brewery wastewater (more sugars). Consequently the encapsulation system with coating became diffusion limited when brewery wastewater with high chemical oxygen demand was fed resulting in a lower hydrogen production rate than the uncoated encapsulation systems. In all cases the encapsulated biomass was able to produce hydrogen even at a hydraulic residence time of 45 min. Although there are limitations to this system the used of encapsulated biomass for resource recovery from wastewater shows promise particularly for high-rate systems in which the retention of specific phenotypes is desired.
Debunking the Myths of Hydrogen Production and Water Consumption
Dec 2020
Publication
In our factsheet where we debunk 3 myths around hydrogen production and water consumption: electrolysis uses vast amounts of water; electrolysis uses freshwater resources only and electrolysis is bound to create water stress in water-scarce regions.
Recent Advancements in Chemical Looping Water Splitting for the Production of Hydrogen
Oct 2016
Publication
Chemical looping water splitting or chemical looping hydrogen is a very promising technology for the production of hydrogen. In recent years extensive research has enabled remarkable leaps towards a successful integration of the chemical looping technology into a future hydrogen infrastructure. Progress has been reported with iron based oxygen carriers for stable hydrogen production capacity over consecutive cycles without significant signs of degradation. The high stability improvements were achieved by adding alien metal oxides or by integrating the active component into a mineral structure which offers excellent resistance towards thermal stress. Prototype systems from small μ-systems up to 50 kW have been operated with promising results. The chemical looping water splitting process was broadened in terms of its application area and utilization of feedstocks using a variety of renewable and fossil resources. The three-reactor system was clearly advantageous due to its flexibility heat integration capabilities and possibility to produce separate pure streams of hydrogen CO2 and N2. However two-reactor and single fixed-bed reactor systems were successfully operated as well. This review aims to survey the recently presented literature in detail and systematically summarize the gathered data.
Design and Cost Considerations for Practical Solar-hydrogen Generators
Oct 2014
Publication
Solar-hydrogen generation represents a promising alternative to fossil fuels for the large-scale implementation of a clean-fuel transportation infrastructure. A significant amount of research resources has been allocated to the development of photoelectrochemical components (i.e. photovoltaic and water splitting catalysts) that are able to spontaneously split water in the presence of solar irradiation which has led to major advances in the solar-fuels field. At the same time only limited attention has been given to understanding the key aspects that drive economically viable solar-fuel generators. This study presents a generalized approach to understand the economic factors behind the design of solar-hydrogen generators composed of photovoltaic components integrated with water electrolyzers. It evaluates the underpinning effects of the material selection for the light absorption and water splitting components on the cost of the generated fuel ($ per Kg of H2). The results presented in this work provide insights into important engineering aspects related to the sizing of devices and the use of light concentration components that when optimized can lead to costs below $2.90 per kilogram of hydrogen after compression and distribution. Most significantly the analysis demonstrates that the cost of hydrogen is defined primarily by the light-absorbing component (up to 97% of the cost) while the material selection for the electrolysis components has to a large extent minor effects. The findings presented here can help direct research and development efforts towards the fabrication of deployable solar-hydrogen generators that are cost competitive with commercial energy sources.
No more items...