Production & Supply Chain
Current and Future role of Haber–Bosch Ammonia in a Carbon-free Energy Landscape
Dec 2019
Publication
The future of a carbon-free society relies on the alignment of the intermittent production of renewable energy with our continuous and increasing energy demands. Long-term energy storage in molecules with high energy content and density such as ammonia can act as a buffer versus short-term storage (e.g. batteries). In this paper we demonstrate that the Haber–Bosch ammonia synthesis loop can indeed enable a second ammonia revolution as energy vector by replacing the CO2 intensive methane-fed process with hydrogen produced by water splitting using renewable electricity. These modifications demand a redefinition of the conventional Haber–Bosch process with a new optimisation beyond the current one which was driven by cheap and abundant natural gas and relaxed environmental concerns during the last century. Indeed the switch to electrical energy as fuel and feedstock to replace fossil fuels (e.g. methane) will lead to dramatic energy efficiency improvements through the use of high efficiency electrical motors and complete elimination of direct CO2 emissions. Despite the technical feasibility of the electrically-driven Haber–Bosch ammonia the question still remains whether such revolution will take place. We reveal that its success relies on two factors: increased energy efficiency and the development of small-scale distributed and agile processes that can align to the geographically isolated and intermittent renewable energy sources. The former requires not only higher electrolyser efficiencies for hydrogen production but also a holistic approach to the ammonia synthesis loop with the replacement of the condensation separation step by alternative technologies such as absorption and catalysis development. Such innovations will open the door to moderate pressure systems the development and deployment of novel ammonia synthesis catalysts and even more importantly the opportunity for integration of reaction and separation steps to overcome equilibrium limitations. When realised green ammonia will reshape the current energy landscape by directly replacing fossil fuels in transportation heating electricity etc. and as done in the last century food.
Exploring Key Operational Factors for Improving Hydrogen Production in a Pilot-scale Microbial Electrolysis Cell Treating Urban Wastewater
Jun 2023
Publication
Bioelectrochemical systems (BES) are becoming popular technologies with a plethora of applications in the environmental field. However research on the scale-up of these systems is scarce. To understand the limiting factors of hydrogen production in microbial electrolysis cell (MEC) at pilot scale a 135 L MEC was operated for six months under a wide range of operational conditions: applied potential [0.8-1.1 V] hydraulic residence time [1.1-3.9 d] and temperature [18-30 ºC] using three types of wastewater; synthetic (900 mg CODs L-1) raw urban wastewater (200 mg CODs L-1) and urban wastewater amended with acetate (1000 mg CODs L-1). The synthetic wastewater yielded the maximum current density (1.23 A m-2) and hydrogen production (0.1 m3 m-3 d-1) ever reported in a pilot scale MEC with a cathodic recovery of 70% and a coulombic efficiency of 27%. In contrast the use of low COD urban wastewater limited the plant performance. Interestingly it was possible to improve hydrogen production by reducing the hydraulic residence time finding the optimal applied potential or increasing the temperature. Further the pilot plant demonstrated a robust capacity to remove the organic matter present in the wastewater under different conditions with removal efficiencies above 70%. This study shows improved results compared to similar MEC pilot plants treating domestic wastewater in terms of hydrogen production and treatment efficiency and also compares its performance against conventional activated sludge processes.
The Origin and Occurrence of Natural Hydrogen
Mar 2023
Publication
Hydrogen is an attractive clean sustainable energy source primarily produced via industry. At present most reviews on hydrogen mainly focus on the preparation and storage of hydrogen while the development and utilization of natural hydrogen will greatly reduce its cost. Natural hydrogen has been discovered in many geological environments. Therefore based on extensive literature research in this study the distribution and sources of natural hydrogen were systematically sorted and the identification method and occurrence state of natural hydrogen were examined and summarized. The results of this research show that hydrogen has been discovered in oceanic spreading centers transform faults passive margins convergent margins and intraplate settings. The primary sources of the hydrogen include alterations in Fe(II)-containing rocks the radiolysis of water degassed magma and the reaction of water- and silica-containing rocks during the mechanical fracturing. Hydrogen can appear in free gas it can be adsorbed and trapped in inclusions. Currently natural hydrogen exploration is in its infancy. This systematic review helps to understand the origin distribution and occurrence pattern of natural hydrogen. In addition it facilitates the exploration and development of natural hydrogen deposits thus enabling the production of low-cost hydrogen.
Hydrogen Role in the Valorization of Integrated Steelworks Process Off-gases through Methane and Methanol Syntheses
Jun 2021
Publication
The valorization of integrated steelworks process off-gases as feedstock for synthesizing methane and methanol is in line with European Green Deal challenges. However this target can be generally achieved only through process off-gases enrichment with hydrogen and use of cutting-edge syntheses reactors coupled to advanced control systems. These aspects are addressed in the RFCS project i3 upgrade and the central role of hydrogen was evident from the first stages of the project. First stationary scenario analyses showed that the required hydrogen amount is significant and existing renewable hydrogen production technologies are not ready to satisfy the demand in an economic perspective. The poor availability of low-cost green hydrogen as one of the main barriers for producing methane and methanol from process off-gases is further highlighted in the application of an ad-hoc developed dispatch controller for managing hydrogen intensified syntheses in integrated steelworks. The dispatch controller considers both economic and environmental impacts in the cost function and although significant environmental benefits are obtainable by exploiting process off-gases in the syntheses the current hydrogen costs highly affect the dispatch controller decisions. This underlines the need for big scale green hydrogen production processes and dedicated green markets for hydrogen-intensive industries which would ensure easy access to this fundamental gas paving the way for a C-lean and more sustainable steel production.
True Cost of Solar Hydrogen
Sep 2021
Publication
Green hydrogen will be an essential part of the future 100% sustainable energy and industry system. Up to one-third of the required solar and wind electricity would eventually be used for water electrolysis to produce hydrogen increasing the cumulative electrolyzer capacity to about 17 TWel by 2050. The key method applied in this research is a learning curve approach for the key technologies i.e. solar photovoltaics (PV) and water electrolyzers and levelized cost of hydrogen (LCOH). Sensitivities for the hydrogen demand and various input parameters are considered. Electrolyzer capital expenditure (CAPEX) for a large utility-scale system is expected to decrease from the current 400 €/kWel to 240 €/kWel by 2030 and to 80 €/kWel by 2050. With the continuing solar PV cost decrease this will lead to an LCOH decrease from the current 31–81 €/ MWhH2LHV (1.0–2.7 €/kgH2) to 20–54 €/MWhH2LHV (0.7–1.8 €/kgH2) by 2030 and 10–27 €/MWhH2LHV (0.3–0.9 €/kgH2) by 2050 depending on the location. The share of PV electricity cost in the LCOH will increase from the current 63% to 74% by 2050.
The Role of Offshore Wind Power in Renewable Hydrogen Production
Jan 2023
Publication
We investigate the role of offshore wind in a hybrid system comprising solar PV offshore wind electrical storage (pumped hydro energy storage or battery) and an electrolyser in an off-grid hydrogen production system. Further we capture a wide range of future cost reduction scenarios for offshore wind power and solar PV generation in addition to accounting for future projected falls in electrolyser costs allowing future hydrogen costs to be estimated with a variety of different assumptions. The empirical setting of Australia and incorporation of solar PV as an additional potential source of electricity enables us to examine the contribution of offshore wind to renewable hydrogen production when an low-cost renewable alternative is available. This study complements a small number of studies on opportunities for offshore wind power in the Australian setting (Briggs et al. 2021; Golestani et al. 2021; Aryai et al. 2021) and contributes to research on the potential for offshore wind to contribute to green hydrogen production focused on the crucial Asia-Pacific region (Kim and Kim 2017; Song et al. 2021).<br/>In the following sections we describe the optimization model and the process used for selecting sites used in the study. We then summarize the modelling scenarios and assumptions before outlining the modelling results. We conclude by discussing the implications of the findings.
Techno-Economic Analysis of Grid-Connected Hydrogen Production via Water Electrolysis
Mar 2024
Publication
As the global energy landscape transitions towards a more sustainable future hydrogen has emerged as a promising energy carrier due to its potential to decarbonize various sectors. However the economic competitiveness of hydrogen production by water electrolysis strongly depends on renewable energy source (RES) availability. Thus it is necessary to overcome the challenges related to the intermittent nature of RESs. This paper presents a comprehensive techno-economic analysis of complementing green hydrogen production with grid electricity. An evaluation model for the levelized cost of hydrogen (LCOH) is proposed considering both CO2 emissions and the influence of RES fluctuations on electrolyzers. A minimum load restriction is required to avoid crossover gas. Moreover a new operation strategy is developed for hydrogen production plants to determine optimal bidding in the grid electricity market to minimize the LCOH. We evaluate the feasibility of the proposed approach with a case study based on data from the Kyushu area in Japan. The results show that the proposed method can reduce the LCOH by 11% to 33% and increase hydrogen productivity by 86% to 140% without significantly increasing CO2 emission levels.
Water Consumption from Electrolytic Hydrogen in a Carbon-neutral US Energy System
Feb 2023
Publication
Hydrogen is an energy carrier with potential applications in decarbonizing difficult-to-electrify energy and industrial systems. The environmental profile of hydrogen varies substantially with its inputs. Water consumption is a particular issue of interest as decisions are made about capital and other investments that will affect the scale and scope of hydrogen use. This study focuses on electrolytic hydrogen due to its path to greenhouse gas neutrality and irreducible water demand (though other pathways might be more water intensive). Specifically it evaluates life cycle consumptive freshwater intensity of electrolytic hydrogen in the United States at volumes associated with 12 scenarios for a deeply decarbonized 2050 US energy system from two modeling efforts for which both electricity fuel mix and electrolytic hydrogen production were projected (America’s Zero Carbon Action Plan and Net Zero America) in addition to volumes for a stylized energy storage project (500 MW hydrogen-fired turbine). Freshwater requirements for hydrogen could be large. Under a central estimate for 2050 US electrolytic hydrogen production electrolytic freshwater demand for process and feedstock inputs alone (i.e. excluding water for electricity) would be about 7.5% of total 2014 US freshwater consumption for energy (1 billion cubic meters/year 109 m3 /y; [0.2% 15%] across scenarios for 2050 electrolytic hydrogen production of [0.3 18] exajoules EJ). Including water associated with production of input electricity doubles this central estimate to 15% (2 × 109 m3 /y; [1% 23%] across scenarios). Turbines using electrolytic hydrogen are estimated to be about as freshwater intensive as a coal or nuclear plant assuming decarbonized low-water electricity inputs. Although a decarbonized energy system is projected to require less water for resource capture and electricity conversion than the current fossil-dominated energy system additional conversion processes supporting decarbonization like electrolysis could offset water savings.
Solar Fuel Processing: Comparative Mini-review on Research, Technology Development, and Scaling
Oct 2022
Publication
Solar energy provides an unprecedented potential as a renewable and sustainable energy resource and will substantially reshape our future energy economy. It is not only useful in producing electricity but also (hightemperature) heat and fuel both required for non-electrifiable energy services. Fuels are particularly valuable as they are energy dense and storable and they can also act as a feedstock for the chemical industry. Technical pathways for the processing of solar fuels include thermal pathways (e.g. solar thermochemistry) photo pathways (e.g. photoelectrochemistry) and combinations thereof. A review of theoretical limits indicates that all technical solar fuel processing pathways have the potential for competitive solar-to-fuel efficiencies (>10 %) but require very different operating conditions (e.g. temperature levels or oxygen partial pressures) making them complementary and highly versatile for process integration. Progress in photoelectrochemical devices and solar thermochemical reactors over the last 50 + years are summarized showing encouraging trends in terms of performance technological viability and scaling.
Life Cycle Assessment and Economic Analysis of an Innovative Biogas Membrane Reformer for Hydrogen Production
Feb 2019
Publication
This work investigates the environmental and economic performances of a membrane reactor for hydrogen production from raw biogas. Potential benefits of the innovative technology are compared against reference hydrogen production processes based on steam (or autothermal) reforming water gas shift reactors and a pressure swing adsorption unit. Both biogas produced by landfill and anaerobic digestion are considered to evaluate the impact of biogas composition. Starting from the thermodynamic results the environmental analysis is carried out using environmental Life cycle assessment (LCA). Results show that the adoption of the membrane reactor increases the system efficiency by more than 20 percentage points with respect to the reference cases. LCA analysis shows that the innovative BIONICO system performs better than reference systems when biogas becomes a limiting factor for hydrogen production to satisfy market demand as a higher biogas conversion efficiency can potentially substitute more hydrogen produced by fossil fuels (natural gas). However when biogas is not a limiting factor for hydrogen production the innovative system can perform either similar or worse than reference systems as in this case impacts are largely dominated by grid electric energy demand and component use rather than conversion efficiency. Focusing on the economic results hydrogen production cost shows lower value with respect to the reference cases (4 €/kgH2 vs 4.2 €/kgH2) at the same hydrogen delivery pressure of 20 bar. Between landfill and anaerobic digestion cases the latter has the lower costs as a consequence of the higher methane content.
Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector
Feb 2021
Publication
Achieving European climate neutrality by 2050 requires further efforts not only from the industry and society but also from policymakers. The use of high-efficiency cogeneration facilities will help to reduce both primary energy consumption and CO2 emissions because of the increase in overall efficiency. Fuel cell-based cogeneration technologies are relevant solutions to these points for small- and microscale units. In this research an innovative and new fuel cell-based cogeneration plant is studied and its performance is compared with other cogeneration technologies to evaluate the potential reduction degree in energy consumption and CO2 emissions. Four energy consumption profile datasets have been generated from real consumption data of different dwellings located in the Mediterranean coast of Spain to perform numerical simulations in different energy scenarios according to the fuel used in the cogeneration. Results show that the fuel cell-based cogeneration systems reduce primary energy consumption and CO2 emissions in buildings to a degree that depends on the heat-to-power ratio of the consumer. Primary energy consumption varies from 40% to 90% of the original primary energy consumption when hydrogen is produced from natural gas reforming process and from 5% to 40% of the original primary energy consumption if the cogeneration is fueled with hydrogen obtained from renewable energy sources. Similar reduction degrees are achieved in CO2 emissions.
Photocatalytic Water Splitting: How Far Away Are We from Being Able to Industrially Produce Solar Hydrogen?
Oct 2022
Publication
Solar water splitting (SWS) has been researched for about five decades but despite successes there has not been a big breakthrough advancement. While the three fundamental steps light absorption charge carrier separation and diffusion and charge utilization at redox sites are given a great deal of attention either separately or simultaneously practical considerations that can help to increase efficiency are rarely discussed or put into practice. Nevertheless it is possible to increase the generation of solar hydrogen by making a few little but important adjustments. In this review we talk about various methods for photocatalytic water splitting that have been documented in the literature and importance of the thin film approach to move closer to the large-scale photocatalytic hydrogen production. For instance when comparing the film form of the identical catalyst to the particulate form it was found that the solar hydrogen production increased by up to two orders of magnitude. The major topic of this review with thin-film forms is discussion on several methods of increased hydrogen generation under direct solar and one-sun circumstances. The advantages and disadvantages of thin film and particle technologies are extensively discussed. In the current assessment potential approaches and scalable success factors are also covered. As demonstrated by a film-based approach the local charge utilization at a zero applied potential is an appealing characteristic for SWS. Furthermore we compare the PEC-WS and SWS for solar hydrogen generation and discuss how far we are from producing solar hydrogen on an industrial scale. We believe that the currently employed variety of attempts may be condensed to fewer strategies such as film-based evaluation which will create a path to address the SWS issue and achieve sustainable solar hydrogen generation.
Blue Hydrogen Production from Natural Gas Reservoirs: A Review of Application and Feasibility
Feb 2023
Publication
Recently interest in developing H2 strategies with carbon capture and storage (CCS) technologies has surged. Considering that this paper reviews recent literature on blue H2 a potential low-carbon short-term solution during the H2 transition period. Three key aspects were the focus of this paper. First it presents the processes used for blue H2 production. Second it presents a detailed comparison between blue H2 and natural gas as fuels and energy carriers. The third aspect focuses on CO2 sequestration in depleted natural gas reservoirs an essential step for implementing blue H2. Globally ~ 75% of H2 is produced using steam methane reforming which requires CCS to obtain blue H2. Currently blue H2 needs to compete with other advancing technologies such as green H2 solar power battery storage etc. Compared to natural gas and liquefied natural gas blue H2 gas results in lower CO2 emissions since CCS is applied. However transporting liquefied and compressed blue H2 entails higher energy economic and environmental costs. CCS must be appropriately implemented to produce blue H2 successfully. Due to their established capacity to trap hydrocarbons over geologic time scales depleted natural gas reservoirs are regarded as a viable option for CCS. Such a conclusion is supported by several simulation studies and field projects in many countries. Additionally there is much field experience and knowledge on the injection and production performance of natural gas reservoirs. Therefore using the existing site infrastructure converting these formations into storage reservoirs is undemanding.
Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming
Nov 2022
Publication
Hydrogen has received substantial attention because of its diverse application in the energy sector. Steam methane reforming (SMR) dominates the current hydrogen production and is the least expensive endothermic reaction to produce grey hydrogen. This technology provides the advantages of low cost and high energy efficiency; however it emits an enormous amount of CO2. Carbon capture storage (CCS) technology helps reduce these emissions by 47% to 53% producing blue hydrogen. Methane pyrolysis is an alternative to SMR that produces (ideally) CO2-free turquoise hydrogen. In practice methane pyrolysis reduces CO2 emissions by 71% compared to grey hydrogen and 46% compared to blue hydrogen. While carbon dioxide emissions decrease with CCS fugitive methane emissions (FMEs) for blue and turquoise hydrogen are higher than those for grey hydrogen because of the increased use of natural gas to power carbon capture. We undertake FMEs of 3.6% of natural gas consumption for individual processes. In this study we also explore the utilization of biogas as a feedstock and additional Boudouard reactions for efficient utilization of solid carbon from methane pyrolysis and carbon dioxide from biogas. The present study focuses on possible ways to reduce overall emissions from turquoise hydrogen to provide solutions for a sustainable low-CO2 energy source.
Electrolyzer Array Alternate Control Strategy Considering Wind Power Prediction
Aug 2022
Publication
Non grid connected wind power hydrogen production technology is of great significance for the large-scale comprehensive utilization of hydrogen energy and accelerating the development of clean energy. In this paper an electrolyzer power allocation and alternate control method for non grid connected wind power hydrogen production is proposed and the optimized control strategy are combined to predict the maximum wind power of certain time interval. While retaining the required data characteristics the instantaneous fluctuation of some wind power data is eliminated which provides a reliable basis for power distribution in the alternation control strategy of electrolyzer array. The case simulation verifies the effectiveness of the electrolyzer array control principle and the prediction of the maximum wind power. While ensuring the absorption effect and hydrogen production rate the service life and operation safety of the electrolyzer array are effectively improved by balancing the working state of each electrolyzer.
Integration of Renewable Hydrogen Production in Steelworks Off-Gases for the Synthesis of Methanol and Methane
May 2021
Publication
The steel industry is among the highest carbon-emitting industrial sectors. Since the steel production process is already exhaustively optimized alternative routes are sought in order to increase carbon efficiency and reduce these emissions. During steel production three main carbon-containing off-gases are generated: blast furnace gas coke oven gas and basic oxygen furnace gas. In the present work the addition of renewable hydrogen by electrolysis to those steelworks off-gases is studied for the production of methane and methanol. Different case scenarios are investigated using AspenPlusTM flowsheet simulations which differ on the end-product the feedstock flowrates and on the production of power. Each case study is evaluated in terms of hydrogen and electrolysis requirements carbon conversion hydrogen consumption and product yields. The findings of this study showed that the electrolysis requirements surpass the energy content of the steelwork’s feedstock. However for the methanol synthesis cases substantial improvements can be achieved if recycling a significant amount of the residual hydrogen.
Biohydrogen—A Green Fuel for Sustainable Energy Solutions
Oct 2022
Publication
Energy plays a crucial role in the sustainable development of modern nations. Today hydrogen is considered the most promising alternative fuel as it can be generated from clean and green sources. Moreover it is an efficient energy carrier because hydrogen burning only generates water as a byproduct. Currently it is generated from natural gas. However it can be produced using other methods i.e. physicochemical thermal and biological. The biological method is considered more environmentally friendly and pollution free. This paper aims to provide an updated review of biohydrogen production via photofermentation dark fermentation and microbial electrolysis cells using different waste materials as feedstocks. Besides the role of nanotechnology in enhancing biohydrogen production is examined. Under anaerobic conditions hydrogen is produced during the conversion of organic substrate into organic acids using fermentative bacteria and during the conversion of organic acids into hydrogen and carbon dioxide using photofermentative bacteria. Different factors that enhance the biohydrogen production of these organisms either combined or sequentially using dark and photofermentation processes are examined and the effect of each factor on biohydrogen production efficiency is reported. A comparison of hydrogen production efficiency between dark fermentation photofermentation and two-stage processes is also presented.
Design of a Hydrogen Production System Considering Energy Consumption, Water Consumption, CO2 Emissions and Cost
Oct 2022
Publication
CO2 emissions associated with hydrogen production can be reduced replacing steam methane reforming with electrolysis using renewable electricity with a trade-off of increasing energy consumption water consumption and cost. In this research a linear programming optimization model of a hydrogen production system that considers simultaneously energy consumption water consumption CO2 emissions and cost on a cradle-to-gate basis was developed. The model was used to evaluate the impact of CO2 intensity on the optimum design of a hydrogen production system for Japan considering different stakeholders’ priorities. Hydrogen is produced using steam methane reforming and electrolysis. Electricity sources include grid wind solar photovoltaic geothermal and hydro. Independent of the stakeholders’ priorities steam methane reforming dominates hydrogen production for cradle-to-gate CO2 intensities larger than 9 kg CO2/kg H2 while electrolysis using renewable electricity dominates for lower cradle-to-gate CO2 intensities. Reducing the cradle-to-gate CO2 intensity increases energy consumption water consumption and specific cost of hydrogen production. For a cradle-to-gate CO2 intensity of 0 kg CO2/kg H2 the specific cost of hydrogen production varies between 8.81 and 13.6 USD/kg H2; higher than the specific cost of hydrogen production targeted by the Japanese government in 2030 of 30 JPY/Nm3 3.19 USD/kg H2.
Renewable Hydrogen Production: A Techno-economic Comparison of Photoelectrochemical Cells and Photovoltaic-electrolysis
Aug 2020
Publication
The present paper reports a techno-economic analysis of two solar assisted hydrogen production technologies: a photoelectrochemical (PEC) system and its major competitor a photovoltaic system connected to a conventional water electrolyzer (PV-E system). A comparison between these two types was performed to identify the more promising technology based on the levelized cost of hydrogen (LCOH). The technical evaluation was carried out by considering proven designs and materials for the PV-E system and a conceptually design for the PEC system extrapolated to future commercial scale. The LCOH for the off-grid PV-E system was found to be 6.22 $/kgH2 with a solar to hydrogen efficiency of 10.9%. For the PEC system with a similar efficiency of 10% the LCOH was calculated to be much higher namely 8.43 $/kgH2. A sensitivity analysis reveals a great uncertainty in the LCOH of the prospective PEC system. This implies that much effort would be needed for this technology to become competitive on the market. Therefore we conclude that the potential techno-economic benefits that PEC systems offer over PV-E are uncertain and even in the best case limited. While research into photoelectrochemical cells remains of interest it presents a poor case for dedicated investment in the technology’s development and scale-up.
Sustainable Hydrogen Production from Seawater Electrolysis: Through Fundamental Electrochemical Principles to the Most Recent Development
Nov 2022
Publication
Among the many potential future energy sources hydrogen stands out as particularly promising. Because it is a green and renewable chemical process water electrolysis has earned much interest among the different hydrogen production techniques. Seawater is the most abundant source of water and the ideal and cheapest electrolyte. The first part of this review includes the description of the general theoretical concepts: chemical physical and electrochemical that stands on the basis of water electrolysis. Due to the rapid development of new electrode materials and cell technology research has focused on specific seawater electrolysis parameters: the cathodic evolution of hydrogen; the concurrent anodic evolution of oxygen and chlorine; specific seawater catalyst electrodes; and analytical methods to describe their catalytic activity and seawater electrolyzer efficiency. Once the specific objectives of seawater electrolysis have been established through the design and energy performance of the electrolyzer the study further describes the newest challenges that an accessible facility for the electrochemical production of hydrogen as fuel from seawater must respond to for sustainable development: capitalizing on known and emerging technologies; protecting the environment; utilizing green renewable energies as sources of electricity; and above all economic efficiency as a whole.
No more items...